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One-scale H-measures

Q C R? open

Theorem

If U — 0in LE(Q), v, — 0 in LY (Q) and w, — 0T, then there exist (uy/),
(vnr) and ug)";z € M(Q x Ko,oo(R%)) such that for any @1, 2 € Co(Q) and
¥ € C(Ko,e(R7))

lim /R G (€)7a0 (€ () dE = (i) 12 B

The measure ,u;“:) ";Z is called the one-scale H-measure with characteristic

length (wp/) associated to the (sub)sequences (u,/) and (v,/).

Luc TARTAR: The general theory of homogenization: A personalized
introduction, Springer (2009)

Luc TARTAR: Multi-scale H-measures, Discrete and Continuous Dynamical
Systems, S 8 (2015) 77-90.
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One-scale H-

Qngopen,peﬂ,oo),%Jri:l

Theorem

If wy, — 0 in L2 (Q), v, — 0 in L _(Q) and w, — 0T, then there exist (),
(vnr) and Z/I(:;;j € D'(Q x Ko,00(R%)) such that for any o1, p2 € C2°(€2) and
YeE ’

lim / A (@11 ) () 20m ) 00 dx = (W) o152 B )
n Rd

The distribution l/I(( n') is called the one-scale H-distribution with characteristic

length (w.,’) assoaated to the (sub)sequences (u,) and (v,/).

Ay (u) = ()", ¥n () == Y(wnk)
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One-scale H-distributions

Qngopen,peﬂ,oo),%Jri:l

Theorem

If wy, — 0 in L2 (Q), v, — 0 in L (Q) and w, — 0T, then there exist (),
(vns) and VI(:)C;) € D’(Q x Ko,00(R?)) such that for any o1, p2 € C2(Q) and

Y el

lim / A (@11 ) () 20m ) 00 dx = (W) o152 B )
n Rd

The distribution l/I(( n') is called the one-scale H-distribution with characteristic

length (w.,’) assoaated to the (sub)sequences (u,) and (v,/).

Ay (u) = ()", ¥n () == Y(wnk)

Determine E such that
o Ay : LP(RY) — LP(R?) is continuous
e The First commutation lemma is valid
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x(Rd)

Ko,00(R?) is a compactification of R¢ homeomorphic to a spherical layer

(i.e. an annulus in R?):

We shall need a differential structure on Ko oo (R?).

3120



Precise description of Ko - (R?) 1/3

For fixed ro > 0 let us define 11 = —=2—, and denote by

1/r8+1'
A[0,71,1] = {c eRY:r < ¢ < 1}

closed d-dimensional spherical layer equipped with the standard topology
(inherited from R?). In addition let us define A(0,71,1) := Int A[0,71,1], and
by Ao[0,71,1] := S¢71(0; 1) and Aso[0,71,1] := S*~! we denote boundary
spheres.

We want to construct a homeomorphism J : RY — A(0,71,1).
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Precise description of Ko - (R?) 2/3

From the previous construction we get that 7 : R — A(0,r1,1) is given by

7 = d —Eltr,

2 [EIK(&)
g2+ (fsls)

where K (§) = K([€]) := /1 + (|€] +70)*.
& and J(&) lie on the same line:

JE “”%6__5

\T@OI gelel &l

J is homeomorphism and its inverse 7! : A(0,r1, 1) — R? is given by

ey el =m0y
IO = A ¢

resulting that (A[0,71,1],J) is a compactification of R.

— 1) —rogl¢) T,
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Precise description of KO,OC(R(I) 3/3

Now we define
Yo :={0°:ee s’} and Yoo = {00 e €S},

and Ko oo (RY) := REU Yo U T
Let us extend 7 to the whole Ko oo (R%) by J(0°) := 71e and J(o0®) = e,
which gives 77 (30) = Ao[0,71,1] and T~ (X)) = Axs[0, 71, 1].
0. (€1, €,) == |7 (€)) — T (€,)] is a metric on Koo(RY), so (Ko, (R%), d.) is
a metric space isomorphic to A[0, 71, 1].

¢ ¢

lim \7(§) —J(0%T)| =0,  lim \J(§) = J(cTT)| =0,

|&]—0 [€] =00

lim |77'(¢))=0, lim |77'(¢)|=+c.

[¢l—=m1 [¢l—=1
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Continuous functions on Kg o (R?)

Lemma

For v : Ko,co(R*) — C the following is equivalent:
a) ¥ € C(Ko,(R%)), N

b) (3¢ € C(A[0,71,1])) =90 T,

c) 1/J|Rd € C(RY), and

£ £

lim [¢(§) —¢(0%T)| =0  and lim [4)(§) — ¢ (coTeT)[ = 0.

|&]—0 [€] =00

For 1 € C(RY) we have ¢ € C(Ko,oo (R%)) iff there exist 1, e € C(S*71)
such that

vl&) = vo(gg) = 0. lel= 0,
0l&) = v~ (ig) 0. lel oo

In particular, ¥ —to({7) € Cus(R™) (uniformly continuous bounded functions).
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Differential structure on Kq o (R%)

For k € No U {oo} let us define
(Koo (RY)) = {0 € C(Ko,(RY)) 1 " i= 0. T € C*(A[0, 74, 1]) }

It is not hard to check that C°(Ko oo (R?)) and C(Ko, o (R?)) coincide.
For ¢ € C" (Ko, (R)) we define [l (ko o (re)) 7= 19" lox (afo,m 1))

C"(A[0,71,1]) Banach algebra = C"(Ko,o(R%)) Banach algebra

A[0,71,1] compact = C"(A[0,71,1]) separable
= C"(Ko,e(R%) separable

Is Ay = (¥9)" : LP(R%) — LP(R?) continuous?
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Theorem (Hérmander-Mihlin)
If for v € L>°(R?) there exists C > 0 such that

(VE€ERH(Va NG, la| <) [0%9(€)| < m%

where k = LgJ + 1, then 4 is a Fourier multiplier. Moreover, we have

1
HA’l/J”ﬁ(LP(Rd)) < Cy max{p, pfl}c

We shall use Fad di Bruno formula: for sufficiently smooth functions
g:RY— R"and f: R" — R we have

0%(fog)(§) = |a! >, CBa),

1<IBI<] e, BENG

where

B Vs
C(B, ) = (0 fz;!g(ﬁ)) Z H Z H 9 g;

o=, j=1
1016;1 ’ Zl 1 Y=
0 ’hENo\{O}
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Lemma

For every j € 1..d and o € N& we have

1
€]
where P (€,m) is a polynomial of degree less or equal to |a| + 1 in & and
2|ae| + 1 in m, in addition that in the expression Alelp, ()\, oA, %) we do

not have terms of the negative order. Precisely, polynomial Po(&,n) has only
terms of the form C&Pn* where |B| + |a| > k.

v
Lemma

For every j € 1..d and o € N& we have

0*(T)(&) = Pa(& 5 ) K© !, geRE,

v
Theorem

Let s € No. For every 1 € C*(Ko,o0(R?)) and a € N such that |a| < x we
have
1%l e (o, 00 (RAY)

, teRY.
GE s

10%¢ (&) < Cra
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Let k € Ng. For every 1) € C*(Ko,oo(R?%)) and a € N such that |a| < k we
have

11l cr (k0,00 (R))

, £€RL
|&[le!

0%¢(§)] < Cra
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Let k € Ng. For every 1) € C*(Ko,oo(R?%)) and a € N such that |a| < k we
have

11l cr (k0,00 (R))

, £€RL
|&[le!

0%¢(§)] < Cra

Therefore, for k > | %] + 1 and 1 € C*(Ko,00(R%)) we have

HAw”L(LP(Rd)) Ca PH"ZJHCK(KO 0 (R3)) -
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Let k € Ng. For every 1) € C*(Ko,oo(R?%)) and a € N such that |a| < k we
have

11l cr (k0,00 (R))

, £€RL
|&[le!

0%¢(§)] < Cra

Therefore, for k > | %] + 1 and 1 € C*(Ko,00(R%)) we have

vl £ wr@ay) < Capll¥lles ko o ®ma)) -

i) S(RY) — C*(Ko,00(R%)), and
i) {pom : ¢ € C¥S 1)} = C" (Koo (R?)).

10120



Commutation lemma

Bou = pu , Ayu = (i)Y,
Lemma

Let ) € C*(Ko,o(RY)), & > [£] + 1, ¢ € Co(R?), wn — 0T, and denote
Yn (&) := Y(wn&). Then the commutator can be expressed as a sum

Cn :=[By, Ay, ] =Cn + K,

where for any p € (1,00) we have that K is a compact operator on L (R%),
while C,, —> 0 in the operator norm on L(LF(R?)).

11120



Commutation lemma

Bou = pu , Ayu = (i)Y,

Let ) € C*(Ko,o(RY)), & > [£] + 1, ¢ € Co(R?), wn — 0T, and denote
Yn (&) := Y(wn&). Then the commutator can be expressed as a sum

Crn =By, Ay, | = Cn + K,

where for any p € (1,00) we have that K is a compact operator on L (R%),
while C,, —> 0 in the operator norm on L(LF(R?)).

Dem.
[Bw Awn] = [BsﬂvAwnfll)oOﬂ'] + [B<P7A’¢’UO7"] )

Cn K

where m(€) := & and

€]
P(€) — (Yoom)(§) — 0, [§]—0.

Let r € (1,00) and 6 € (0,1) such that * = § 4 =2,

T
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Proof of Comm. Lemma: C,, := By, Ay, —yyor]

Yn —tho o € C"(Ko,oo(RY)) = ., bounded on L"(R?)
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Proof of Comm. Lemma: C,, := By, Ay, —yyor]

Yn —tho o € C"(Ko,oo(RY)) = ., bounded on L"(R?)

Lemma (Tartar, 2009)
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the operator norm on L(L*(R%)).
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Proof of Comm. Lemma: C,, := By, Ay, —yyor]

Yn —tho o € C"(Ko,oo(RY)) = ., bounded on L"(R?)

Lemma (Tartar, 2009)

Let ¢ € Cup(R?), p € Co(R?), wn — 0T, and denote 1, (€) := (wn).
Then the commutator Cy, := [By, Ay, | = ByoAy,, — Ay, B, tends to zero in
the operator norm on L(L*(R%)).

Yo —Poom € Cp(RY) = C, — 0in L(L*(RY))

By the Riesz-Thorin interpolation theorem we have
HCnHE(LP(Rd)) ||C Hﬁ(lﬁ(Rd))”C ||£(Lr(Rd))a

implying Cr, — 0 in the operator norm on LP(R%).
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Proof of Comm. Lemma: K := [B,, Ayon)

Yoom e C"(Kowo(R?) = K bounded on L"(R%)
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Proof of Comm. Lemma: K := [B,, Ayon)
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Proof of Comm. Lemma: K := [B, Ayjon)

Yoom e C"(Kowo(R?) = K bounded on L"(R%)

Lemma (Tartar, 1990)

For v € C(S%') and ¢ € Co(R?) the commutator C := [By,, Ay] is a
compact operator on L*(R%).

Yo € C(S* ') = K compact on L*(R%)

Lemma (Antonié, Midur, Mitrovi¢, 2016)

Let A be compact on L2(R?) and bounded on L"(R%), for some
r € (1,00) \ {2}. Then A is also compact on LP(R?), for any p between 2 and
r (i.e. such that 1/p = 0/2+ (1 — 0)/r, for some 6 € (0,1)).

6 1-0
=5+

1_9 — K compact on L”(R%)
p 2 T
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One-scale H-distributions

Theorem

Ifup — O in LY () and (vy) is bounded in L{ _(S2), for some p € (1, c0)
and ¢ > p', and w, — 07, then there exist subsequences ('), (v,/) and a
complex distribution of finite order v (w " € D/(Q x Ko.00(R?)) such that for

any o1, @2 € Cc(Q) and ¢ € C“(Ko,oo(Rd)), where k = [ 2] + 1, we have

lim / Ay, (01un ) P20 dx =lim / Prunr Ay, (p20,) dx
<V1<<O D 152 B ¢>
where 1y, := (wn-). The distribution I/I(( ;j we call one-scale H-distribution
(with characteristic length (w,)) associated to (sub)sequences (u,) and (v,).
v
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One-scale H-distributions

Theorem

Ifup — O in LY () and (vy) is bounded in L{ _(S2), for some p € (1, c0)
and ¢ > p', and w, — 07, then there exist subsequences ('), (v,/) and a
complex distribution of finite order v (w " € D/(Q x Ko.00(R?)) such that for

any o1, @2 € Cc(Q) and ¢ € C“(Ko,oo(Rd)), where k = [ 2] + 1, we have

lirln/A,/)n, (P1Un ) P2 dx:lirp/golun/.AJ,n, (p2vn) dx

R4 R4
<V1<<O D 152 B ¢>

where 1y, := (wn-). The distribution I/I(( ;j we call one-scale H-distribution

(with characteristic length (w,)) associated to (sub)sequences (u,) and (v,).
v

/ Ay, (0100 ) P20 dx = (pavnr, Ay, (©1Un1)) .
R4

K, compacts such that K, C Int K1 and {J,,, Km = Q.
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The existence of one-scale H-distributions: proof 1/2

For ¢ € C"(Ko,00(R%)) and @1, @2 € Cc(Q) such that
supp @1, supp g2 C K,,, we have

| {p20n, Ay, (P1un)) | < Cmallprllnee (s, [92llnee (e 1]l en ko, oo ra)) -

15120



The existence of one-scale H-distributions: proof 1/2

For ¢ € C"(Ko,00(R%)) and @1, @2 € Cc(Q) such that
supp @1, supp g2 C K,,, we have

[ {p2vn, Ay, (p1un)) | < Cm,alle1lLee (5,0 192]lLoe () 1]l om0, o mAY) -

By the Cantor diagonal procedure (we have separability) ... we get trilinear
form L:

L(SOl, ®2, ¢) = l’lnl;n <S02vn’ 5 Awn/ (Solun’)> .
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The existence of one-scale H-distributions: proof 1/2

For ¢ € C"(Ko,00(R%)) and @1, @2 € Cc(Q) such that
supp @1, supp g2 C K,,, we have

[ {p2vn, Ay, (p1un)) | < Cm,alle1lLee (5,0 192]lLoe () 1]l om0, o mAY) -

By the Cantor diagonal procedure (we have separability) ... we get trilinear
form L:

L(@l, Y2, ¢) = l’lnl;n <S02vn’ ) Awn/ (Solun’)> .

L depends only on the product p1@2: ¢; € Cc(Q2) such that {; =1 on supp ¢,
i=1,2,

lim (20w, v, (1)) =l (p2vn, 1.As,, (Gun))
= hnn'ﬂ (@rp2vnr, Ay, (Crun))
=lim (C1¢ovn, @182Ap,, (Crum))
=lim (G1Govnr, Ay, (p1¢2un))

= L(p1,92,9) = L(v1$2,(1(2, %) .
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The existence of one-scale H-distributions: proof 2/2

For ¢ € Cc(Q) and ¢ € C*(Ko,c(R?)) we define

L(p,¥) == L(p,(,v),

where ( = 1 on supp .
L is continuous bilinear form on C.(22) x C*(Kg,oo(R%)).
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The existence of one-scale H-distributions: proof 2/2

For ¢ € Cc(Q) and ¢ € C*(Ko,c(R?)) we define

L(p,¥) == Ly, (, %),

where ( = 1 on supp .
L is continuous bilinear form on C.(22) x C*(Kg,oo(R%)).

Theorem

Let Q@ C R? be open, and let B be a continuous bilinear form on
O () x C(Ko,0o(RY)). Then there exists a unique distribution
v €D (Q x Ko oo(RY)) such that

(Vf€CZ(Q)(Vg € C°(Kow(RY)) B(f,9)=(v,fHg).

Moreover, if B is continuous on C%(€) x C'(Ko .o (R%)) for some k,l € No, v
is of a finite order q < k + 1 + 2d + 1.

16120



The existence of one-scale H-distributions: proof 2/2

For ¢ € Cc(Q) and 9 € C*(Ko,o(R?%)) we define
L(p, ) == L(p,C,¥),

where ( = 1 on supp .
L is continuous bilinear form on C.(22) x C*(Kg,oo(R%)).

Theorem

Let Q@ C R? be open, and let B be a continuous bilinear form on
O () x C(Ko,0o(RY)). Then there exists a unique distribution
v €D (Q x Ko oo(RY)) such that

(Vf€CZ(Q)(Vg € C°(Kow(RY)) B(f,9)=(v,fHg).

Moreover, if B is continuous on C%(€) x C'(Ko .o (R%)) for some k,l € No, v
is of a finite order q < k + 1 + 2d + 1.

Therefore, we have that there exists I/I(f;";j € Dltnar1 (2 x Ko,oo(R?)) such
that ’

<VI(<U;7;37 P12 W 1/1> =L(p1¢2,¢)

:L(‘PISEL C1C27 d))

=L(p1,02,v) = hnr/n <<p2vn/,A¢n/ (801un/)> 16120



Localisation principle: assumptions

H*P(RY) : {u cS A )3 U E Lp(Rd)}

(1+¢
HIP(9Q) ::{u €D : (Vo eC () pue H”’(Rd)}

loc

17120



Localisation principle: assumptions

S,p dy . _ D d
HP(RY) : {uGS A(Hm,_,,ueL(R)}

HIP(9Q) ::{u €D : (VpeCP(Q) pue H”’(Rd)}

loc
Let © C R? open, m € N, u, = 0in LY (2;C"), p € (1,00), and
> eMoa(A%u,) =f, inQ, (%)
0<|ex|sm

where
o g, 0T
o A% € C™(2; Myx:(C))
o f, € H 7" (Q; C") such that

(Ve eCZ(Q) Ay, ca-z(efa) —0 in LP(R% QY. (x%)
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Localisation principle: assumptions

S,p dy . _ D d
HP(RY) : {uGS A(ng‘z,ueL(R)}

HIP(9Q) ::{u €D : (VpeCP(Q) pue H”’(Rd)}

loc
Let © C R? open, m € N, u, = 0in LY (2;C"), p € (1,00), and
> eMoa(A%u,) =f, inQ, (%)
0<|ex|sm

where
e c, »0F
o A% € C™(Q;Mgx:(C))

o f, € H 7" (Q; C") such that
(Ve eCZ(Q) Ay, ca-z(efa) —0 in LP(R% QY. (x%)
(14 |€>)™ % is a Fourier multiplier = (fnﬁ)O = (**))
of (14’2 28 H TP
_ < frn ——
0 <( T+ e ) < gl = ((**) = 0)
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Localisation principle

Theorem

’
Under previous assumptions let (vy) be a bounded sequence in L{, .(; C").
Then one-scale H-distribution vk, . associated to (sub)sequences (v,) and

(un) with characteristic length (e,,) satisfies:

p(x, vk, . =0,

where

px&) = 3 (@m)el—5 _ae(),

T (1_|_ |£|2)%+q+1

while q is order of VK, o0 -

18120



Localisation principle

Theorem

Under previous assumptions let (v,) be a bounded sequence in LIOC(Q; Cn).
Then one-scale H-distribution vk, . associated to (sub)sequences (v,) and
(un) with characteristic length (e,,) satisfies:
T
p(x7 £)VK0,OO = 07

where

X, = 27 Ia‘LmAa X),
p( g) OSIQZKT”( 7”) (1+|£|2)7+(I+1 ( )

while q is order of VK, o0 -

Dem. Multiplying (x) by ¢ € C°(Q2) and using the Leibniz rule we get

> > (= m( )Elflaaﬁ((aw)Aaun)wan.

0<|a|<m 0<BLx

18120



Localisation principle: proof 1/2

Let (¢,,) be a sequence in Rt bounded from above and let (f,) be a sequence
of vector valued functions such that for some k € 0..m it converges strongly to
zero in H-FP(R%; C9). Then (ekf,,) satisfies (+x).

B#£0 = o, s ((Bgnp)Ao‘un> satisfies (#x*)

19120



Localisation principle: proof 1/2

Let (¢,,) be a sequence in Rt bounded from above and let (f,) be a sequence
of vector valued functions such that for some k € 0..m it converges strongly to
zero in H-FP(R%; C9). Then (ekf,,) satisfies (+x).

B#£0 = o, s ((Bgnp)Ao‘un> satisfies (#x*)

Thus, we have ~
Z Sllala‘l(Aa‘PUn) =fn,

o<lal<m

where (f,,) satisfies ().
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Localisation principle: proof 1/2

Let (¢,,) be a sequence in Rt bounded from above and let (f,) be a sequence
of vector valued functions such that for some k € 0..m it converges strongly to
zero in H-FP(R%; C9). Then (ekf,,) satisfies (+x).

B#£0 = o, s ((Bgnp)Ao‘un> satisfies (#x*)

Thus, we have ~
Z 8L&|8&<Aawun) =fn,

o<lal<m

where (f,,) satisfies ().

Form € N and o € N{ such that m > 2q + |c| + 2 we have

—=5 € 1Ko, (RY)).
(1+1€12) 2 (Koo (B)

€a q d
Wiel<m) G gygre © " (K0xRD)



Localisation principle: proof 2/2

Applying Awm+2q+2,0 we get

Y Appyialgmizirza(pA®u,) — 0 in LP(R%CY),

0]l <m

where g t2at2e . — (&7
¥n (1+leng]2) 2 FoF1

20120



Localisation principle: proof 2/2

Applying Awm+2q+2,0 we get

Y Appyialgmizirza(pA®u,) — 0 in LP(R%CY),
o<lal<m
m+2g+2,00 . (en &)™
where 17, T hjene) BT
After applying Ay, ), for ¢ € C?(Ko,oo(R%)), to the above sum, forming a
tensor product with @1vy, for o1 € CZ°(Q2), and taking the complex
conjugation, for the (4, ) component of the above sum we get

0= Z th/ A(Qm)\a\w wm+zq+za(<pA]Sun)<p1U,’idx

0<|a|<m s=1
S S {Cn A o n)
0<|algm s=1
-\ | O ga o - A
_< > @m) e ATV ik G018 )

0<e|<m
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