Transport-collapse scheme for scalar conservation laws - initial-boundary value problem

Darko Mitrovic and Andrej Novak

July 6, 2016

Scalar conservation laws - initial and boundary conditions

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded smooth domain and $\mathbb{R}^{+}=[0, \infty)$. We consider

$$
\begin{align*}
& \partial_{t} u+\operatorname{div}_{\mathbf{x}} f(u)=0, \quad(t, \mathbf{x}) \in \mathbb{R}^{+} \times \Omega, \tag{1}\\
& \left.u\right|_{t=0}=u_{0}(\mathbf{x}), \tag{2}\\
& \left.u\right|_{\mathbb{R}^{+} \times \partial \Omega}=u_{B}(t, \mathbf{x}) . \tag{3}
\end{align*}
$$

where $f \in C^{2}\left(\mathbb{R} ; \mathbb{R}^{d}\right)$. If not stated otherwise, we assume that $u_{0} \in L^{1}\left(\mathbb{R}^{d}\right), u_{B} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{+} \times \partial \Omega\right)$. We also assume that

$$
\begin{equation*}
a \leq u_{0}, u_{B} \leq b \text { for some constants } a \leq b \tag{4}
\end{equation*}
$$

Kruzhkov admissibility conditions - Cauchy problem

For every $\lambda \in \mathbb{R}$ it holds

$$
\begin{equation*}
\partial_{t}|u-\lambda|+\operatorname{div}_{\mathbf{x}}[\operatorname{sgn}(u-\lambda)(f(u)-f(\lambda))] \leq 0 \tag{5}
\end{equation*}
$$

in the sense of distributions on $\mathcal{D}^{\prime}\left(\mathbb{R}_{+}^{d}\right)$, and it holds esslim $t_{\rightarrow 0} \int_{\Omega}\left|u(t, \mathbf{x})-u_{0}(\mathbf{x})\right| d \mathbf{x}=0$.

The kinetic formulation

Roughly speaking, if we find derivative of the Kruzhkov admissibility conditions with respect to λ, we get the following statement.

The function $u \in C\left([0, \infty) ; L^{1}\left(\mathbb{R}^{d}\right)\right) \cap L_{\text {loc }}^{\infty}\left((0, \infty) ; L^{\infty}\left(\mathbb{R}^{d}\right)\right)$ is the entropy admissible solution to (1), (2) if and only if there exists a non-negative Radon measure $m(t, \mathbf{x}, \lambda)$ such that $m\left((0, T) \times \mathbb{R}^{d+1}\right)<\infty$ for all $T>0$ and such that the function
$\chi(\lambda, u)=\left\{\begin{array}{ll}1, & 0 \leq \lambda \leq u \\ -1, & u \leq \lambda \leq 0 \\ 0, & \text { else }\end{array}\right.$, represents the distributional solution to

$$
\begin{align*}
& \partial_{t} \chi+\operatorname{div}_{\mathbf{x}}\left(f^{\prime}(\lambda) \chi\right)=\partial_{\lambda} m(t, \mathbf{x}, \lambda), \quad(t, \mathbf{x}) \in \mathbb{R}^{+} \times \mathbb{R}^{d} \tag{6}\\
& \chi(\lambda, u(t=0, \mathbf{x}))=\chi\left(\lambda, u_{0}(\mathbf{x})\right) . \tag{7}
\end{align*}
$$

Initial-boundary value problem - standard definition

A function $u \in L^{\infty}(\Omega)$ is said to be the weak entropy solution to (1), (2), (3) if there exists a constant $L \in \mathbb{R}$ such that for every $k \in \mathbb{R}$ and every non-negative $\varphi \in C_{c}\left(\mathbb{R}_{+}^{d} ; \mathbb{R}^{+}\right), \mathbb{R}_{+}^{d}=\mathbb{R}^{+} \times \mathbb{R}^{d}$, it holds

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{d}}\left(|u-k|_{+} \partial_{+} \varphi+\operatorname{sgn}_{+}(u-k)(f(u)-f(k)) \nabla_{\mathbf{x}} \varphi\right) d \mathbf{x} d t \\
&+\int_{\mathbb{R}^{d}}\left|u_{0}-k\right|_{+} \varphi(0, \cdot) d \mathbf{x}+L \int_{\mathbb{R}^{+} \times \partial \Omega} \varphi\left|u_{B}-k\right|_{+} d \gamma(\mathbf{x}) d t \geq 0
\end{aligned}
$$

and

$$
\begin{align*}
& \int_{\mathbb{R}_{+}^{d}}\left(|u-k|_{-} \partial_{+} \varphi+\operatorname{sgn}_{-}(u-k)(f(u)-f(k)) \nabla_{\mathbf{x}} \varphi\right) d \mathbf{x} d t \tag{9}\\
&+\int_{\mathbb{R}^{d}}\left|u_{0}-I\right|_{-} \varphi(0, \cdot) d \mathbf{x}+L \int_{\mathbb{R}^{+} \times \partial \Omega} \varphi\left|u_{B}-k\right|_{-} d \gamma(\mathbf{x}) d t \geq 0
\end{align*}
$$

Where \sim is the megsure on $\partial 0$

Initial-boundary value problem - heuristics

Assume that we are dealing with the flux depending on \mathbf{x} i.e. $f=f(\mathbf{x}, \lambda)$. Denote by

$$
S^{-}=\left\{\mathbf{x} \in \partial \Omega:\left\langle f_{\lambda}^{\prime}(\mathbf{x}, \lambda), \vec{\nu}\right\rangle \leq 0 \text { a.e. } \lambda \in I\right\},
$$

where I contains all essential values of the functions u_{B} and u_{0} (i.e. of appropriate entropy solution u), and $\vec{\nu}$ is the outer unit normal on $\partial \Omega$. The set S^{-}actually consists of all points such that all possible characteristics from that point enter into the (interior of the) set Ω. Therefore, for every $\mathbf{x} \in S^{-}$, the trace of the corresponding entropy solution is actually $u_{B}(\mathbf{x})$.
Similarly, for

$$
S^{+}=\left\{\mathbf{x} \in \partial \Omega:\left\langle f_{\lambda}^{\prime}(\mathbf{x}, \lambda), \vec{\nu}\right\rangle \geq 0 \text { a.e. } \lambda \in I\right\},
$$

all possible characteristics issuing from $\mathbf{x} \in S^{+}$leave the set Ω, and $u_{B}(\mathbf{x})$ does not influence on the weak entropy solution u to the initial boundary problem.

Initial-boundary value problem - Definition 2

We say that the function $u \in L^{\infty}\left(\mathbb{R}^{+} \times \Omega ;[a, b]\right)$ is a weak entropy admissible solution to (1), (2), (3) if for every $k \in \mathbb{R}$ and every non-negative $\varphi \in C_{c}^{1}\left(\Omega \times \mathbb{R}^{+}\right)$it holds

$$
\begin{align*}
& \int_{\Omega \times \mathbb{R}^{+}}\left(|u-k|_{+} \partial_{+} \varphi+\operatorname{sgn}_{+}(u-k)(f(u)-f(k)) \nabla_{\mathbf{x}} \varphi\right) d \mathbf{x} d t \tag{10}\\
& -\int_{a}^{b} \int_{\substack{\mathbb{R}^{+} \times \partial \Omega \\
\left\langle f^{\prime}(\lambda), \vec{\nu}(\mathbf{x})\right\rangle<0}} \varphi(t, \mathbf{x})\left\langle f^{\prime}(\lambda), \vec{\nu}(\mathbf{x})\right\rangle \operatorname{sgn}_{+}(\lambda-k) \operatorname{sgn}_{+}\left(u_{B}(t, \mathbf{x})-\lambda\right) d \gamma(\mathbf{x}) d t d \lambda \\
& +\int_{\mathbb{R}^{d}}\left|u_{0}-k\right|_{+} \varphi(0, \cdot) d \mathbf{x} \geq 0
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\Omega \times \mathbb{R}^{+}}\left(|u-k|_{-} \partial_{+} \varphi+\operatorname{sgn}_{-}(u-k)(f(u)-f(k)) \nabla_{\mathbf{x}} \varphi\right) d \mathbf{x} d t \tag{11}\\
& -\int_{a}^{b} \int_{\substack{\mathbb{R}^{+} \times \partial \Omega \\
\left\langle f^{\prime}(\lambda), \vec{\nu}(\mathbf{x})\right\rangle<0}} \varphi(t, \mathbf{x})\left\langle f^{\prime}(\lambda), \vec{\nu}(\mathbf{x})\right\rangle \operatorname{sgn}_{-}(\lambda-k) \operatorname{sgn}_{-}\left(u_{B}(t, \mathbf{x})-\lambda\right) d \gamma(\mathbf{x}) d t d \lambda
\end{align*}
$$

Transport-collapse operator

The idea of the transport collapse scheme for the initial value problem is to solve the kinetic equation when we omit its right-hand side:

$$
\begin{equation*}
\partial_{\dagger} h+\operatorname{div}_{\mathbf{x}, \lambda}[F(t, \mathbf{x}, \lambda) h]=0,\left.\quad h\right|_{t=0}=\chi\left(\lambda, u_{0}(\mathbf{x})\right) . \tag{12}
\end{equation*}
$$

The solution of this equation is obtained via the method of characteristics and, since the equation is linear, it is given by

$$
\begin{equation*}
h(t, \mathbf{x}, \lambda)=\chi\left(\lambda, u_{0}\left(\mathbf{x}-f^{\prime}(\lambda) t\right)\right) . \tag{13}
\end{equation*}
$$

Convergence toward admissible solution

The transport collapse operator $T(t)$ is defined for every $u \in L^{1}\left(\mathbb{R}^{d}\right)$ by

$$
\begin{equation*}
T(t) u(\mathbf{x})=\int \chi\left(\lambda, u\left(\mathbf{x}-f^{\prime}(\lambda) t\right)\right) d \lambda \tag{14}
\end{equation*}
$$

For any initial value $u_{0} \in L^{1}\left(\mathbb{R}^{d}\right)$, the unique entropy solution to the Cauchy problem is given by

$$
u(t, \mathbf{x})=S(t) u_{0}(\mathbf{x})=L^{1}-\lim _{n \rightarrow \infty}\left(T\left(\frac{t}{n}\right)^{n}\right)^{n} u_{0}(\mathbf{x})
$$

Boundary value problem

Assume that Ω is an open set such that for some $\sigma \in(0,1)$, no two outer normals from $\partial \Omega$ do not intersect in the set

$$
\begin{aligned}
& \Omega_{\sigma}=\left\{\mathbf{x} \in \mathbb{R}^{d}: \quad \operatorname{dist}(\mathbf{x}, \Omega)<\sigma\right\} \text { i.e. in the set } \\
& \Omega^{\sigma}=\Omega_{\sigma} \backslash \Omega
\end{aligned}
$$

Denote by $\vec{\nu}(\mathbf{x}), \mathbf{x} \in \Omega_{\sigma} \backslash \Omega$ the unit outer normal on $\partial \Omega$ passing trough the point \mathbf{x}. We then extend the boundary data $u_{B}(t, \mathbf{x})$ for every fixed $t \geq 0$ along the normals $\vec{\nu}(\mathbf{x})$ in the set Ω_{σ}. More precisely, we set for $\mathbf{x} \in \Omega^{\sigma}=\Omega_{\sigma} \backslash \Omega$ (slightly abusing the notation)

$$
\begin{equation*}
u_{B}(t, \mathbf{x})=u_{B}\left(t, \mathbf{x}_{0}\right), \text { for } \mathbf{x}_{0} \in \partial \Omega \text { such that } \vec{\nu}\left(\mathbf{x}_{0}\right)=\vec{\nu}(\mathbf{x}) . \tag{15}
\end{equation*}
$$

Finally, introduce the function

$$
w_{u(t, \cdot)}(\mathbf{x})= \begin{cases}0, & \mathbf{x} \notin \Omega_{\sigma} \tag{16}\\ u(t, \mathbf{x}), & \mathbf{x} \in \Omega^{\prime} \\ u_{B}(t, \mathbf{x}), & \mathbf{x} \in \Omega_{\sigma} \backslash \Omega=\Omega^{\sigma}\end{cases}
$$

Remark that we can rewrite the function $w_{u(t, \cdot)}(\mathbf{x})$ in the form

$$
w_{u(t, \cdot)}(\mathbf{x})=u(t, \mathbf{x}) \kappa_{\Omega}(\mathbf{x})+u_{B}(t, \mathbf{x}) \kappa_{\Omega^{\sigma}}(\mathbf{x}),
$$

where $\kappa_{\Omega^{\sigma}}$ is the characteristic function of the set Ω^{σ}.

Fix $t>0$ and $n \in \mathbf{N}$. We neglect the right-hand side in the kinetic equation and, on the first step, we take $\chi\left(\lambda, w_{u_{0}}(\mathbf{x})\right)$ as the initial data.

$$
\begin{align*}
\partial_{t} h+f^{\prime}(\lambda) \operatorname{div}_{\mathbf{x}} h & =0, \tag{17}\\
\left.h\right|_{t=0} & =\chi\left(\lambda, w_{u_{0}}(\mathbf{x})\right) . \tag{18}
\end{align*}
$$

The solution to (17) is given by $h(t, \mathbf{x}, \lambda)=\chi\left(\lambda, \omega_{u_{0}}\left(\mathbf{x}-f^{\prime}(\lambda) t\right)\right)$ (see (13)). We construct the approximate solution u_{n} to (1), (2), (3) by the following procedure $(\mathbf{x} \in \Omega)$:

$$
\begin{equation*}
u_{n}\left(t^{\prime}, \mathbf{x}\right)=T\left(t^{\prime} / n\right)\left(w_{u_{0}}(\mathbf{x})\right):=\int_{0}^{b} \chi\left(\lambda, \omega_{u_{0}}\left(\mathbf{x}-f^{\prime}(\lambda) t^{\prime}\right)\right) d \lambda, t^{\prime} \in(0, t / n] \tag{19}
\end{equation*}
$$

- For $k=1, \ldots, n-1$, we take

$$
\begin{equation*}
u_{n}\left(k t / n+t^{\prime}, \mathbf{x}\right)=\int_{0}^{b} \chi\left(\lambda, \omega_{u_{n}(k t / n,)}\left(\mathbf{x}-f^{\prime}(\lambda) t^{\prime}\right)\right) d \lambda, \quad t^{\prime} \in(0, t / n] . \tag{20}
\end{equation*}
$$

There exists a unique function u satisfying the initial boundary value problem in the sense of Definition 2.

The End

Thank you for listening.

