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Averaging of strongly inhomogeneious materials

First works at the end of 19th century (mathematical physics)
Poisson, Maxwell, Rayleigh

Examples of strongly inhomogeneous media:
fibre reinforced materials (reinforced glass, concrete)
layered materials (sperr holz)
gas concrete
porous media (interesting e.g. for oil extraction)
leaf

Inhomogeneous structures are usually better than homogeneous (they better
optimise in order to achieve some property).
Shape optimisation

The notion of effective property:
the simplest structure of inhomogeneities — periodic structure (true for
crystals, man-made materials, . . . )
apply the averaging procedure, which will produce the effective coefficients
(constants in this case!)
we replace a strongly inhomogeneious material by a homogeneous one — thus
the name homogenisation (Ivo Babuška, 1974)
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Mathematical approaches to homogenisation

There are three different frameworks when approaching the homogenisation (in
the mathematical sense):
Periodic assumption: assume that the coefficients are periodic
This assumption is realistic for crystals and man-made materials. However, it
turns out that it gives reasonably good results even when it is not satisfied.
Weak convergences: general approach introduced by L. Tartar and F. Murat.
The passage from microscale to the macroscale is modelled by various weak
convergences.
Probabilistic approach: the behaviour is assumed to follow some probabilistic
distribution
In fact, we know that our laws are deterministic (continuum mechanics;
nothing to do with quantum mechanical uncertainty).
We shall follow the second approach.

4



Asymptotic expansions using multiple scales

When working with periodic functions on [0, 1] it is natural to denote the
period by ε = 1/n. Thus we have (Dirichlet b.c. on both sides):{

−
(
aε(x)u′ε(x)

)′
= f(x)

uε(0) = uε(1) = 0 .

Assume the asymptotic expansion

uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · ,

where y = x/ε = nx is the fast variable. ( d
dx

= ∂x + 1
ε
∂y), thus:

u′ε = ∂xu
0 +

1

ε
∂yu

0 + ε

(
∂xu

1 +
1

ε
∂yu

1

)
+ ε2

(
∂xu

2 +
1

ε
∂yu

2

)
+ · · ·

=
1

ε
∂yu

0 +
(
∂xu

0 + ∂yu
1)+ ε

(
∂xu

1 + ∂xu
2)+ ε2(· · · ) + · · · .

Note that uε depends only on x, while the functions on the right in general
depend both on x and y.
Additionally assume that the above functions depend 1–periodically on y; more
precisely consider the mapping: y 7→ y̌; R −→ S1, e.g.
y 7→ y̌ = (cos 2πy, sin 2πy), while a is defined on S1.
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The heat flux
If we assumed that aε(x) = a((x/ε)∨), after inserting the expansion into the
equation we obtain:

pε(x) := aε(x)u′ε(x) .

Rewrite the equation in the form:

−f = p′ε(x) =
1

ε2
∂y(aε∂yu

0) +
1

ε

(
∂x(aε∂yu

0) + ∂y(aε∂xu
0 + aε∂yu

1)
)

+ ∂x(aε∂xu
0 + aε∂yu

1) + ∂y(aε∂xu
1 + aε∂yu

2) + ε(· · · ) + · · ·
The expansions are equal if the terms multiplying the same powers are equal, so

∂y(aε∂yu
0) = 0 ,

which is an ODE on the circle for u0(x, ·), with a solution unique up to a
constant. Therefore, u0(x, ·) does not depend on y; this fact simplifies the
asymptotic expansion.
Considering the form of uε, pε can also be written in a form of an asymptotic
expansion:

pε(x) = p0(x, y) + εp1(x, y) + ε2p2(x, y) + · · · ,
which allows us to further rewrite the equation as

−
(
∂x +

1

ε
∂y

)
pε = f .
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After equating the corresponding terms . . .

1

ε
: −∂yp0 = 0

1 : −∂xp0 − ∂yp1 = f

ε : −∂xp1 − ∂yp2 = 0

By the first equality, neither p0 depends on y.
After defining the mean-value operator (in y): ϕ̃ := −

∫
S1 ϕ, and applying it to

the second equation, we get:

−∂xp0 = f .

This is the macroscopic equation.
What is the relationship between p0 and (u0)′?

7



Study of the local problem

We assumed that aε(x) = a((x/ε)∨), so after inserting the expansion into the
equation we also obtain:

∂y(a∂xu
0) + ∂y(a∂yu

1) = 0 ,

thus after integrating

a(y)[∂xu
0(x) + ∂yu

1(x, y)] = C(x) ,

and

∂yu
1(x, y) =

C(x)

a(y)
− (u0)′(x) .

After we take the mean value in y (i.e. integrate once more), and denote
A−1 := (1/a)∼, we finally get:

∂yu
1(x, y) = (A/a(y)− 1)(u0)′(x) .

Returning to the equation we started with, if we find a function w such that

−∂y(a(y)w′(y)) = a′ ,

then u1 = (u0)′w.
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Back to the macroscopic equation

In terms of u-s it reads:

a(u0)′′ + ∂y(aw)(u0)′′ + aw′(u0)′′ + ∂y(a∂yu
2) = −f ,

which after applying the averaging operator becomes

(u0)′′[ã+ 0 + ãw′] + 0 = −f .

Returning to the equation for a: w′ = C/a− 1, thus after integrating over the
period we get C = A.
Finally we get:

A(u0)′′ = −f ,

which is the same equation as the one for uε, except that the effective
coefficients are the harmonic mean of a.
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The precise mathematical result in the periodic setting

Theorem. Let f ∈ L2(〈0, 1〉), uε ∈ H1(〈0, 1〉) the solution of problem{
−
(
aε(x)u′ε(x)

)′
= f(x)

uε(0) = uε(1) = 0 ,

then uε −⇀ u0, where u0 solves the same equation, but with(̃
1

a1

)
instead of 1

aε
.

We shall see the proof of this theorem in a more general setting then periodic.
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The general result

The problem {
−
(
an(x)u′n(x)

)′
= f(x)

un(0) = un(1) = 0 .

Assume that α < an < β, and f ∈ L2(〈0, 1〉).

The equation can be written in the variational form:

(∀ v ∈ H1
0(〈0, 1〉))

∫ 1

0

anu
′
nv
′ =

∫ 1

0

fv .

As the expression on the left is equivalent to the scalar product on H1
0(〈0, 1〉),

while on the right we have a bounded linear functional, so by the Riesz
representation theorem there is a unique un ∈ H1

0(〈0, 1〉) representing the right
hand side.

The Riesz representation theorem gives us also the bound on the norm of un;
in particular, the bound on the ‖u′n‖L2(〈0,1〉). Thus, u′n is bounded, and

therefore has a weak limit (say, u∞).
On the other hand, p′n := (anu

′
n)′ = −f , so pn = anu

′
n ∈ L2(〈0, 1〉),

p′n = f ∈ L2(〈0, 1〉) and it is bounded in H1
0(〈0, 1〉). Therefore we can pass

once more to a subsequence pn −⇀ p in H1(〈0, 1〉), which by the Rellich
compact embedding gives pn −→ p in L2(〈0, 1〉).
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The general result (cont.)

Rewritting the equation as:

u′n =
1

an
pn ,

we can pass to the limit in the product (as 1
α
> 1

an
> 1

β
and there is a further

subsequence such that 1
an

∗−−⇀ 1
a∞

), or after taking the derivative:

−

(
u′∞

1
a∞

)′
= −p′ = f .

Thus the effective coefficients are a∞.

In the periodic case, the limit of 1/an is the mean value, and the effective
coefficients are constant. Any limit u∞ has to satisfy the equation, which has
the unique solution—thus the whole sequence converges.

In the general case we only know the result for an accummulation point (note
that above, for simplicity, we did not explicitly write down each passage to a
subsequence).
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Classical example—in variational formulation

Stationary diffusion: {
−div (A∇u) = f

+ boundary conditions

Consider it on open and bounded Ω ⊆ Rd. We search for an u ∈ H1(Ω),
satisfying the boundary conditions and the equation in the sense of
distributions.
For simplicity take homogeneous Dirichlet boundary conditions, i.e. u ∈ H1

0(Ω).
For A we assume it is from L∞(Ω), so the bilinear form

a(u, v) :=

∫
Ω

A∇u · ∇v

is well defined. If we additionally set L(v) := 〈f, v〉 (in the real case), it is a
bounded linear functional for f ∈ H−1(Ω) = (H1

0(Ω))′.
The variational formulation reads: find u ∈ H1

0(Ω) such that

(∀ v ∈ H1
0(Ω)) a(u, v) = L(v)

(because of density it is enough to take v ∈ C∞c (Ω)).
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Classical example (cont.)
Additionally assume the ellipticity:

(∃α ∈ R+)(∀ ξ ∈ Rd) A(x)ξ · ξ > α|ξ|2 (a.e. x ∈ Ω) ,

so that a(u, u) > α‖∇u‖2L2(Ω).
On the bounded Ω one also has the Poincaré inequality:

(∃C > 0)(∀u ∈ C∞c (Ω)) ‖u‖L2(Ω) 6 C‖∇u‖L2(Ω) ,

which by density implies that ‖∇u‖L2(Ω) is a norm equivalent to the standard

one on H1
0(Ω). Finally, this gives us an inequality

a(u, u) >
α

1 + C
‖u‖2H1

0(Ω) ,

and we can apply the Lax-Milgram lemma.

For a Hilbert space V , a bilinear form a which is V -elliptic, and L a bounded
functional, the above problem has the unique solution.

H−1(Ω) = {f = g0 + div g1 ∈ D′(Ω) : g0 ∈ L2(Ω), g1 ∈ L2(Ω;Rd)} ,

and we have the Gelfand triplet:

H1
0(Ω) ⊆ L2(Ω) ≡ (L2(Ω))′ ⊆ H−1(Ω) .

If we take f ∈ L2(Ω), then E := ∇u has good tangential components (as
rot E = 0), while D := AE has good normal components (as div D = f).

14



H-convergence

Define

M(α, β; Ω) := {A ∈ L∞(Ω;Rd×d) : Aξ · ξ > α|ξ|2 & A−1ξ · ξ > 1

β
|ξ|2} .

Theorem. For any sequence (An) in M(α, β; Ω) there is an accummulation
point (i.e. a subsequence and its limit Aeff ∈M(α, β; Ω)) for the
H-convergence.

A sequence An H-converges to A∞ if for any f ∈ H−1(Ω) the sequence of
solutions (un) of the problems{

−div (An∇un) = f

u|Γ = 0 ,

weakly converges to a limit u∞ in H1
0(Ω), while the sequence An∇un

converges weakly in L2(Ω) to A∞∇u∞.
u∞ is the unique solution of the above problem with A∞

The H-convergence indeed comes from a topology.
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G-convergence

Earlier, another weak convergence was introduced by Spagnolo (and De Giorgi).
When we have that our problem is well-posed, even that there is a bijection
between f and u, we can define the operator: An(u) = f and its inverse
u = A−1

n f .
Take V to be a reflexive separable Banach space, V ′ being its dual. A
continuous linear operator A : V −→ V ′ is coercive if

(∃α > 0)(∀u ∈ V ) 〈Au, u〉 > α‖u‖2V .

Theorem. If A is coercive, and f ∈ V ′, then the equation Au = f has a
unique solution in V , and it holds:

‖u‖V = ‖A−1f‖V 6
1

α
‖f‖V ′ .

A sequence (An) of coercive operators in L(V ;V ′) G-converges to an invertible
operator A∞ if one has

(∀ f, g ∈ V ′) lim
n
〈g,A−1

n f〉 = 〈g,A−1
∞ f〉 .

This is exactly the weak convergence of operators A−1
n .
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G-convergence (cont.)

By E(α,M) denote the class of all coercive operators A ∈ L(V ;V ′) such that

〈Au, u〉 > α‖u‖2V and ‖A‖ 6M .

Theorem. Any sequence in E(α,M) has an accummulation point in the

G-convergence sense, which is in E(α, M
2

α
).

The difficulty with G-converdence is the identification of limit coefficients.
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The heat conducting equation{
∂tu− div (A∇u) = f

u(0) = u0,

in an abstract form, suitable to the application of variational techniques
(cf. Dautray & Lions, Ch. XVIII, §3).
Recall that for stationary diffusion we had V,H real separable Hilbert spaces,
such that

V ↪→ H ↪→ V ′ ,

where H ≡ H ′, while V ′ is the dual of V , with continuous and dense
imbeddings (i.e. V,H, V ′ form a Gel’fand triple).

Lemma. Let X,Y be Hilbert spaces, X ↪→ Y , and a, b ∈ R. Then

W (a, b;X,Y ) := {u ∈ L2([a, b];X) : u′ ∈ L2([a, b];Y )}
is a Hilbert space with the norm ‖u‖2W = ‖u‖2L2([a,b];X)+ ‖u′‖2L2([a,b];Y ).

Furthermore, C∞c ([a, b];X) (the restrictions of functions from C∞c (R;X) to
[a, b] ∩R ) is dense in W (a, b;X,Y ).
In particular, for X = V , Y = V ′, and H a Hilbert space such that V,H, V ′

form a Gel’fand triple,

W (a, b;V ) := W (a, b;V, V ′) ↪→ C([a, b];H).

(for the proof cf. Dautray & Lions)
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Variational formulation
Let a(t; ·, ·) denote a continuous bilinear form on V × V such that a(·;u, v) is
measurable on [0, T ] for u, v ∈ V, T ∈ R+, and that there are M,α ∈ R+ such
that {

a(t;u, v) 6M‖u‖V ‖v‖V , (a.e. t ∈ [0, T ]), u, v ∈ V

a(t;u, u) > α‖u‖2V , (a.e. t ∈ [0, T ]), u ∈ V.

Then for (a.e. t ∈ [0, T ]) the form a defines A(t) ∈ L(V ;V ′) by

V ′〈A(t)u, v 〉V := a(t;u, v),

where
sup
t∈[0,T ]

‖A(t)‖L(V ;V ′) 6M .

The existence of solutions of
d

dt
〈u(·) | v 〉H + a(·;u(·), v) = 〈f(·), v〉, v ∈ V

u(0) = u0,

is guaranteed by:

Theorem. If u0 ∈ H, f ∈ L2([0, T ];V ′), and a on V × V satisfies the above
bound, there exists a unique solution u ∈W (0, T ;V ).
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Relaxed assumptions
Note that the initial condition makes sense, because we look for the solution in
W(0,T ;V ) ↪→ C([0, T ];H).
The Theorem remains valid if we relax the assumptions on a; if there are
λ ∈ R and α ∈ R+ such that

a(t;u, u) + λ‖u‖2H > α‖u‖
2
V , (a.e. t ∈ [0, T ]), u ∈ V.

Indeed, for ũ = ue−kt, k ∈ R it is true that
d

dt
〈 ũ(·) | v 〉H + k〈 ũ(·) | v 〉H + a(·; ũ(·), v) = 〈e−ktf(·), v〉

ũ(0) = u0; ,

so ã(t;u, v) = k〈u | v 〉H + a(t;u, v), with k = λ, satisfies the theorem.
The solution is obtained by the Gal’erkin method as a strong limit in
L2(0, T ;V ) ∩ L∞(0, T ;H) of a sequence of approximative solutions um
satisfying

‖um(t)‖2H+α

∫ t

0

‖um(s)‖2V ds 6 C
(
‖u0‖2H +

∫ T

0

‖f(s)‖2V ′ ds
)
, t ∈ [0, T ] .

Thus u has to satisfy the same bounds; furthermore, for t ∈ [0, T ] it satisfies
the energy equality

1

2
‖u(t)‖2H +

∫ t

0

a(s;u(s), u(s))ds =
1

2
‖u(0)‖2H +

∫ t

0

〈f(s), u(s)〉ds,

where the rhs represents the energy. 20



Relaxed assumptions (cont.)

From the equation: ∂tu = f −A(t)u, and supt∈[0,T ] ‖A(t)‖L(V ;V ′) 6M we
get

‖∂tu‖L2(0,T ;V ′) 6 ‖f‖L2(0,T ;V ′) +M‖u‖L2(0,T ;V )

6 C
(
‖u0‖H + ‖f‖L2(0,T ;V ′)

)
.

These bounds were obtained under the assumption A(t;u, u) > α‖u‖2V .
However, usually we shall have only a weaker condition; what bounds can we
prove?
For ũ = ue−λt the above holds, while it is a solution of

d

dt
〈 ũ(·) | v 〉H + ã(·; ũ(·), v) = 〈e−λtf(·), v〉

ũ(0) = u0,

where ã(t;u, v) = λ〈u | v 〉H + a(t;u, v). Thus

‖ũ(t)‖2H + α

∫ t

0

‖ũ(s)‖2V ds 6 C̃
(
‖u0‖2H +

∫ T

0

‖e−λsf(s)‖2V ′ ds
)

6 C̃

(
‖u0‖2H +

∫ T

0

‖f(s)‖2V ′ ds
)
, t ∈ [0, T ].
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Variational formulation (cont.)
On the other hand, for t ∈ [0, T ]

‖ũ(t)‖2H + α

∫ t

0

‖ũ(s)‖2V ds = e−2λt‖u(t)‖2H + α

∫ t

0

e−2λs‖u(s)‖2V ds

> e−2λT

(
‖u(t)‖2H + α

∫ t

0

‖u(s)‖2V ds
)
.

Comparing them we get

‖u(t)‖2H + α

∫ t

0

‖u(s)‖2V ds 6 C
(
‖u0‖2H +

∫ T

0

‖f(s)‖2V ′ ds
)
, t ∈ [0, T ].

Do we still have the bound?
By inserting ũ = ue−λt and ã(t;u, v) = λ〈u | v 〉H + a(t;u, v) we get

1

2
e−2λt‖u(t)‖2H +

∫ t

0

e−2λs
(
λ‖u(s)‖2H + a(s;u(s), u(s))

)
ds

=
1

2
‖u(0)‖2H +

∫ t

0

e−2λs〈f(s), u(s)〉ds ,

or

0 =

∫ t

0

1

2

d

ds

(
e−2λs‖u(s)‖2H

)
+ e−2λs

(
λ‖u(s)‖2H + a(s;u(s), u(s))− 〈f(s), u(s)〉

)
ds

=

∫ t

0

e−2λs
(1

2

d

ds
‖u(s)‖2H + a(s;u(s), u(s))− 〈f(s), u(s)〉

)
ds.
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The result
Taking the derivative we get that the energy inequality remains valid

1

2

d

dt
‖u(t)‖2H + a(t;u(t), u(t)) = 〈f(t), u(t)〉 .

In our case V = H1(Rd), H = L2(Rd), and

a(t;u, v) = H−1(Ω)〈−div (A∇u), v 〉H1(Ω) = 〈A∇u | ∇v 〉L2(Ω),

where A ∈ L∞(R+
0 ×Rd; Md×d(R)). Additionally assuming the ellipticity:

there is an α > 0 such that Aξ · ξ > α|ξ|2 for ξ ∈ Rd,

a(t;u, u) = 〈A∇u | ∇u 〉L > α‖∇u‖2L = α(‖u‖2H1(ω) − ‖u‖
2
L),

or a defined above satisfies boundedness from above and below.

Corollary. There is a unique solution u of{
∂tu− div (A∇u) = f ∈ L2(0, T ; H−1(Rd))

u(0) = u0 ∈ L2(Rd),

u ∈W (0, T ; H1(Rd)) ↪→ C(〈0, T 〉; L2(Rd)), where ‖u‖L∞(0,T ;L2(Rd)) and

‖u‖W (0,T ;H1(Rd)) are bounded from above by the norms of u0 and f .
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Sequence of problems

If we consider a sequence of problems:{
∂tun − div (A∇un) = fn −⇀ f in L2(0, T ; H−1(Ω))

un(0) = u0
n −⇀ u0 in L2(Ω).

As (fn), (u0
n) are bounded, the solutions are as well: (un) in W (0, T ; H1(Ω)),

and on a subsequence we have its convergence. The strong convergence of
(un) we can obtain by the following

Lemma. (the Aubin compactness) Let B0, B1 and B2 be Banach spaces
with B1 ↪→ B2 continuously and B0 ↪→ B1 compactly. If (un) is bounded in
Lp([0, T ];B0) and (u′n) in Lp([0, T ];B2) for a T <∞ and p ∈ 〈1,∞〉, then
(un) is contained in a compact in Lp([0, T ];B1).

We take B0 = H1
0(Ω), B1 = L2(Ω), B2 = H−1(Ω), Ω bounded. From the

uniform bounds in n, the sequence (un) is relatively compact in
L2(0, T ; L2(Ω)), thus we have that un → u (up to a subsequence) in
L2(R+ × Ω).
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Non-stationary heat conduction

Consider a domain Q = 〈0, T 〉 × Ω, where Ω ⊆ Rd is open:{
∂tu− div (A∇u) = f

u(0, ·) = u0 .

More precisely: V := H1
0(Ω), V ′ := H−1(Ω) and H := L2(Ω),

Gel’fand triple: V ↪→ H ↪→ V ′.
For time dependent functions: V := L2(0, T ;V ), V ′ := L2(0, T ;V ′)
(which is indeed the dual of V) and H := L2(0, T ;H), we again have a
Gel’fand triple: V ↪→ H ↪→ V ′.
Additionally assume that A ∈ L∞(Q; Md×d) satisfies:

A(t,x)ξ · ξ > α|ξ|2

A(t,x)ξ · ξ > 1

β
|A(t,x)ξ|2 ,

i.e. it belongs to M(α, β;Q).
With such coefficients the problem is well posed, i.e.:
‖u‖W 6 c1‖u0‖H + c2‖f‖V′ , where W := {u ∈ V : u′ ∈ V ′}.
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Parabolic operators

Parabolic operator P ∈ L(W;V ′)

Pu := ∂tu− div (A∇u)

is an isomorphisms of W0 := {u ∈ W : u(0, ·) = 0} onto V ′.
Spagnolo introduced G-convergence for more general parabolic operators:

PA := ∂t +A :W −→ V ′ ,

where (Au)(t) := A(t)u(t), with A(t) ∈ L(V ;V ′) such that for ϕ,ψ ∈ V

t 7→ 〈A(t)ϕ,ψ〉 is measurable

λ0‖ϕ‖2V 6 〈A(t)ϕ,ϕ〉 6 Λ0‖ϕ‖2V
|〈A(t)ϕ,ψ〉| 6M

√
〈A(t)ϕ,ϕ〉

√
〈A(t)ψ,ψ〉 ,

where λ0,Λ0 and M are some positive constants.
The set of all such operators PA is denoted by P(λ0,Λ0,M).
For A(t) = −div (A(t, ·), ·) we write PA instead of PA.
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G-convergence

The adjoint operator to A is A∗ : V ′ −→ V:

(∀u, v ∈ V) V′〈Au, v 〉V = V〈u,A∗v 〉V′ .

The formal adjoint of PA is then

P∗Au = −∂tu+A∗u .

Note ( WT := {u ∈ W : u(T, ·) = 0} )

(∀u ∈ W0)(∀ v ∈ WT ) V′〈 PAu, v 〉V = V〈u,P∗Av 〉V′ .

A sequence PAn ∈ P(λ0,Λ0,M) G-converges to PA (and we write
PAn

G−−−⇀PA) if for any f ∈ V ′

P−1
An
f −⇀ P−1

A f in W .

If V ↪→ H is compact, then P−1
An
f −→ P−1

A f (strongly!) in H.
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Compactness

If V ↪→ H ↪→ V ′ (continuous inclusions) are also compact, which is the case
for our equation (H1

0(Ω) is by the Rellich theorem compactly embedded in
L2(Ω)), Spagnolo proved the compactness of G-convergence:

For any PAn ∈ P(λ0,Λ0,M) there is a subsequence PAn′ and a

PA ∈ P(λ0,M
2Λ0,

√
Λ0/λ0M), such that PAn′

G−−−⇀PA.

Here we again see that the choice of bounds is not as good as we would wish.
Of course, in the particular case we are interested in, the above inequalities are
satisfied.
Let us prove this theorem.
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Proof of compactness

As V is reflexive and separable, by the Cantor diagonal procedure one can find
a subsequence (for which we shall keep the original notation) and a bounded
linear operator B : V ′ −→W0 such that

(∀ f ∈ V ′) P−1
n f −⇀ Bf .

Indeed, let F = {f1, f2, . . .} be a countable dense subset of V ′. The sequence
P−1
An
f1 is bounded in W0, so it has a weakly convergent subsequence; denote it

by P−1
A

n1
k

f1.

Next we apply the same argument to the subsequence P−1
A

n1
k

f2, which has a

weakly convergent subsequence P−1
A

n2
k

f2.

Continuing in the same way, for each m ∈ N we have a weakly convergent
subsequence P−1

Anm
k

fl, for l ∈ 1..m.

Now we can construct a diagonal subsequence by taking P−1
A

nk
k

.
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Proof of compactness (cont.)

We have to show that B is a parabolic operator.
To this end define: Anv := An(t)v, un := P−1

n f and Kf := f − (Bf)′.
Thus we get:

u′n +Anun = f

(Bf)′ +Kf = f

After multiplying the first by un and the second by Bf , and taking into
account the initial condition, we get

1

2
‖un(T )‖2H + V′〈Anun, un 〉V = V′〈 f, un 〉V

1

2
‖(Bf)(T )‖2H + V′〈Kf,Bf 〉V = V′〈 f,Bf 〉V .

As un = P−1
n f −⇀ Bf u W, so

V′〈Anun, un 〉V −⇀ V′〈Kf,Bf 〉V ,

thus u′n −⇀ (Bf)′ and Anun −⇀ f − (Bf) = Kf in V ′.
B is injective.
Indeed, take Bf = 0, thus V′〈Anun, un 〉V −⇀ 0. However, from the
coercitivity then ‖un‖V −→ 0, so Kf = 0, giving f − (Bf)′ = 0.
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Proof of compactness (cont.)

B(V ′) is dense in V.
Indeed, if (∀ g ∈ V ′) V′〈Kf,Bg 〉V = 0, then in particular V′〈Kf,Bf 〉V = 0, so

V′〈Kf,Bf 〉V 6 0, and by coercitivity ‖un‖V −→ 0, finally giving Bf = 0 and
f = 0.

We next define A : B(V ′) −→ V ′ by

A(Bf) := Kf ,

such that for u := Bf we have

u′ +Au = f ,

Anun −⇀ Au and V′〈Anun, un 〉V −→ V′〈Au, u 〉V .

Now we can use the uniform estimates on An:

|V′〈Anun, v 〉V | 6M
√
V′〈Anun, un 〉V

√
Λ0‖v‖V

V′〈Anun, un 〉V > λ0‖un‖2V .
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Proof of compactness (cont.)
After passing to the limit (‖u‖ 6 lim inf ‖un‖):

|V′〈Anu, v 〉V | 6M
√
V′〈Au, u 〉V

√
Λ0‖v‖V

V′〈Au, u 〉V > λ0‖u‖2V .

Taking v = u in the first inequality:

|V′〈Au, u 〉V | 6M
√

Λ0

√
V′〈Au, u 〉V‖u‖V ,

so V′〈Au, u 〉V 6M2Λ0‖u‖2V , and then again

|V′〈Anu, v 〉V | 6M2Λ0‖u‖V‖v‖V .

Therefore A : B(V ′) −→ V ′ is bounded in the topology of V, so it can be
extended by continuity to all of V, and the extension Ã defines an isomorphism
d/dt+ Ã of W0 onto V ′.
In particular:

(
d

dt
+ Ã)Bf = f , f ∈ V

implies B = (d/dt+ Ã)−1.
Finally, the form of operator: (Au)(t) := A(t)u(t) is a consequence of the fact
that it commutes with multiplication by bounded functions in t (as a weak limit
of such operators).
And the Theorem is proven.
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H-convergence
If each An is of the form: An(t)u = −div (An(t, ·)∇u) , u ∈ V , the limit is
of the same form, where the matrix coefficients A satisfy the same type of
bounds, but with different constants. Also, in such a case, on the subsequence
we have the convergence

An′∇un′ −⇀ A∇u in L2(Q;Rd) .

The above motivates the following definition [DM, ŽKO]:

A sequence of matrix functions An ∈M(α, β;Q) H-converges to
A ∈M(α′, β′;Q) if for any f ∈ V ′ and u0 ∈ H the solutions of parabolic
problems {

∂tun − div (An∇un) = f

un(0, ·) = u0 .

satisfy
un −⇀ u in V

An∇un −⇀ A∇u in L2(Q;Rd) .

Moreover, A ∈M(α, β;Q).
H-convergence still has the advantage of the proper choice of constants (the
limit stays in the chosen set).
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Remark 1

In the definition of H-convergence it is enough to consider u0 = 0.

Indeed, assume it is valid only for the homogeneous initial condition. For
u0 ∈ H and f ∈ V ′, let un be the solution.
The sequence of solutions (un) is bounded in W and, due to the reflexivity, has
a weakly converging subsequence. Its limit we denote by u.
Applying the locality of G-convergence we get that ut − div (A∇u) = f on Q.
As the imbedding W ↪→ C([0, T ];H) is compact, we have the strong
convergence of the subsequence in C([0, T ];H). This means that the initial
condition is preserved on the limit, i.e. u(0, ·) = u0.
Thus, any weak accumulation point of (un) satisfies the equation with the
initial condition u0, and therefore the accumulation point is unique, which
means that the whole sequence converges weakly to that solution u in W.
Now we obtain An∇un −⇀ A∇u in L2(Q;Rd) for a subsequence. An
argument as above, based on the uniqueness of the accumulation point, gives
us finally that the whole sequence converges, i.e. that An

H−−−⇀A.
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Remark 2

The parabolic H-convergence is generated by a topology.

X :=
⋃
n∈N

M(
1

n
, n;Q) ,

for f ∈ V ′, define Rf : X −→W0 and Qf : X −→ L2(Q;Rd):

Rf (A) := u , where u solves

{
ut − div (A∇u) = f

u(0, ·) = 0
,

with the weak topology assumed on W0;
and Qf (A) := A∇u, with the weak topology on L2(Q;Rd).
On X, define the weakest topology such that Rf and Qf are continuous. It is
not metrisable.

However, the relative topology on M(α, β;Q) is metrisable.
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H-convergent sequence depending on a parameter

Theorem. Let P ⊆ R be an open set and the sequence
An : Q× P → Md×d(R) such that An(·, p) ∈M(α, β;Q) for p ∈ P .
Moreover, suppose that p 7→ An(·, p) is a Ck mapping from P to
L∞(Q; Md×d(R)) with derivatives up to order k equicontinuous on every
compact set K ⊆ P :

(∀ ε > 0)(∃ δ > 0)(∀ p, q ∈ K)(∀n ∈ N)(∀ i ∈ {0, . . . , k})

|p− q| < δ =⇒ ‖A(i)
n (·, p)−A(i)

n (·, q)‖L∞(Q;Md×d(R)) < ε .

Then, there exists a subsequence (Ank ) such that for every p ∈ P

Ank (·, p) H−−⇀ A(·, p) in M(α, β;Q) ,

and p 7→ A(·, p) is a Ck mapping from P to L∞(Q; Md×d(R)).
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Analytical dependence

Theorem. Let P ⊆ R be open set and the sequence An : Q×P → Md×d(R)
such that An(·, p) ∈M(α, β;Q) for p ∈ P . Moreover, suppose that
p 7→ An(·, p) is analytic mapping from P to L∞(Q; Md×d(R)).
Then, there exists a subsequence (Ank ) such that for every p ∈ P

Ank (·, p) H−−⇀ A(·, p) in M(α, β;Q) ,

and p 7→ A(·, p) is analytic mapping from P to L∞(Q; Md×d(R)).
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Setting of the problem

A sequence of parabolic problems

(∗)

{
∂tun − div (An∇un) = f

un(0, ·) = u0 .

where An is a perturbation of A0 ∈ C(Q; Md×d), which is bounded from
below; for small γ function An is analytic in γ:

An
γ (t,x) = A0 + γBn(t,x) + γ2Cn(t,x) + o(γ2) ,

where Bn,Cn ∗−−⇀ 0 in L∞(Q; Md×d)).
Then (after passing to a subsequence if needed)

An
γ

H−−−⇀A∞γ = A0 + γB0 + γ2C0 + o(γ2) ;

the limit being measurable in t,x, and analytic in γ.
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No first-order term on the limit

Theorem. The effective conductivity matrix A∞γ admits the expansion

A∞γ (t,x) = A0(t,x) + γ2C0(t,x) + o(γ2) .

Indeed, take u ∈ L2([0, T ]; H1
0(Ω)) ∩H1(〈0, T 〉; H−1(Ω)), and define

fγ := ∂tu− div (A∞γ ∇u), and u0 := u(0, ·) ∈ L2(Ω).

Next, solve (∗) with An
γ , fγ and u0, the solution unγ .

Of course, fγ and unγ analytically depend on γ.

Because of H-convergence, we have the weak convergences in L2(Q):

(†)
Enγ := ∇unγ −⇀ ∇u
Dnγ := An

γEnγ −⇀ A∞γ ∇u .

Expansions in Taylor serieses (similarly for fγ and unγ ):

Enγ = En0 + γEn1 + γ2En2 + o(γ2)

Dnγ = Dn0 + γDn1 + γ2Dn2 + o(γ2) .
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No first-order term on the limit (cont.)

Inserting (†) and equating the terms with equal powers of γ:

En0 = ∇u , Dn0 = A0∇u

Dn1 = A0En1 + Bn∇u −⇀ 0 in L2(Q) .

Also, Dn1 converges to B0∇u (the term in expansion with γ1)

Dnγ −⇀ A∞γ ∇u = A0∇u+ γB0∇u+ γ2C0∇u+ o(γ2) .

Thus B0∇u = 0, and as u ∈ L2([0, T ]; H1
0(Ω)) ∩H1(〈0, T 〉; H−1(Ω)) was

arbitrary, we conclude that B0 = 0.
For the quadratic term we have:

Dn2 = A0En2 + BnEn1 + Cn∇u −⇀ limBnEn1 = C0∇u ,

and this is the limit we still have to compute.
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Periodic homogenisation — an example

In the periodic case the explicit formulae for the homogenisation limit are
known [BLP].
Together with Fourier analysis:
leading terms in expansion for the small amplitude homogenisation limit.

Periodic functions—functions defined on T := S1 = R/Z, Y := Rd/Zd and
Z := R1+d/Z1+d

We implicitly assume projections of x 7→ y ∈ Y , etc.
For given ρ ∈ 〈0,∞〉 we define the sequence An by

An(t,x) = A(nρt, nx) .

Then An H-converges to a constant A∞ defined by

A∞h =

∫
Z

A(τ,y)(h +∇w(τ,y)) dτdy .

For given h, w is a solution of some BVP, depending on ρ.
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Three different cases depending on ρ

ρ ∈ 〈0, 2〉: w(τ, ·) is the unique solution of

−div (A(τ, ·)(h +∇w(τ, ·))) = 0

w(τ, ·) ∈ H1(Y ) ,

∫
Y

w(τ,y) dy = 0 ,

ρ = 2: w is defined by

∂tw − div (A(h +∇w)) = 0

w ∈ L2(T ; H1(Y )) , ∂tw ∈ L2(T ; H−1(Y )) ,

∫
Z

w dτdy = 0 .

ρ ∈ 〈2,∞〉: define Ã(y) =
∫ 1

0
A(τ,y) dτ and w as the solution of

−div (Ã(h +∇w)) = 0

w ∈ H1(Y ) ,

∫
Y

w dy = 0 .
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Periodic small-amplitude homogenisation

A sequence of small perturbations of a constant coercive matrix A0 ∈ Md×d:

An
γ (t,x) = A0 + γBn(t,x) ,

where Bn(t,x) = B(nρt, nx), B is Z-periodic L∞ matrix function satisfying∫
Z
B dτdy = 0.

For γ small enough, (eventually passing to a subsequence) we have the
H-convergence to a limit depending analytically on γ:

An
γ

H−−⇀ A∞γ = A0 + γB0 + γ2C0 + o(γ2)

and a formula for A∞γ :

A∞γ h =

∫
Z

(A0 + γB))(h +∇wγ) dτdy

= A0h +

∫
Z

A0∇wγ + γ

∫
Z

Bh + γ

∫
Z

B∇wγ = A0h + γ

∫
Z

B∇wγ .
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Periodic small-amplitude homogenisation (cont.)

In the last equality the second term equals zero by Gauss’ theorem, as wγ is a
periodic function. Similarly for the third term.

Since wγ is a solution of some (initial–)boundary value problem, depending on
ρ, it also depends analytically on γ:

wγ = w0 + γw1 + o(γ) .

The first order term vanishes, as A0 is constant.

A∞γ h = A0h + γ2

∫
Z

B∇w1 + o(γ2) ,

so we conclude that B0 = 0 and C0h =
∫
Z
B∇w1.

From this formula, using the Fourier series, one can calculate the second-term
approximation C0. Off course, we must treat separately each one of the above
three cases for ρ.
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The case ρ ∈ 〈0, 2〉 on the limit

Fix τ ∈ [0, 1]; the BVP with coefficient A0 + γB instead of A and the above
expression for w, we see that w1 solves

(‡) −div (A0∇w1(τ, ·)) = div (Bh) , w1(τ, ·) ∈ H1(Y ) ,

∫
Y

w1(τ,y) dy = 0

Expanding w1 in the Fourier series gives us (J = Z× (Zd \ {0}))

w1 =
∑

(l,k)∈J

alke
2πi(lτ+k·y) ,

because of
∫
Y
w1(τ,y) dy = 0.

Straightforward calculation gives us

∇w1 =
∑
J

2πik alke
2πi(lτ+k·y) ,

divA0∇w1 =
∑
J

(2πi)2A0k · k alke2πi(lτ+k·y) .
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The case ρ ∈ 〈0, 2〉 on the limit (cont.)
For B denote I := Zd+1 \ {0}

B =
∑
I

Blke
2πi(lτ+k·y) ,

divBh =
∑
I

2πiBlkh · k e2πi(lτ+k·y) .

(‡) leads to a relation among corresponding Fourier coefficients

2πiA0k · k alk = −Blkh · k , (l, k) ∈ Zd+1 ,

i.e. alk =

−
Blkh · k

2πiA0k · k , (l, k) ∈ J

0 , otherwise .

Finally, we obtain

C0h =

∫
Z

B∇w1 dτdy

=

∫
Z

(∑
I

Blke
2πi(lτ+k·y)

)(∑
J

(2πik′)al′k′e
2πi(l′τ+k′·y)

)
dτdy
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The case ρ ∈ 〈0, 2〉 on the limit (cont.)

Due to orthogonality, for the non-vanishing terms in the above product of two
series we have l′ = −l and k′ = −k. Therefore,

C0h = −2πi
∑
J

Blkka−l,−k

= −
∑
J

Blkk
B−l,−kh · k
A0k · k = −

∑
J

Blkk⊗Blkk

A0k · k h ,

where the last equality holds since B is a real matrix function i.e.
Blk = B−l,−k. We conclude

C0 = −
∑
J

Blkk⊗Blkk

A0k · k .
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The case ρ = 2 on the limit

The calculation is similar to the first case. The only difference appears in the

equation for w1 =
∑

(l,k)∈I

alke
2πi(lτ+k·y):

∂τw1 − div (A0∇w1(τ, ·)) = div (Bh) ,

implying the following relation for the Fourier coefficients

(l − 2πiA0k · kalk) = Blkh · k , (l, k) ∈ I ,

and the formula for the second order approximation of the H-limit:

C0 = −
∑
J

Blkk⊗Blkk
l

2πi
+ A0k · k

.
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The case ρ ∈ 〈2,∞〉 on the limit

In this case w1 does not depend on τ . Introducing

B̃(y) :=

∫ 1

0

B(τ,y) dτ

this case actually has the same behaviour as the one in elliptic setting, giving
the formula

C0 = −
∑

Zd\{0}

B̃kk⊗ B̃kk

A0k · k .
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Parabolic small-amplitude homogenisation—general case

Let us continue what we were doing before . . .
For the quadratic term we have:

Dn2 = A0En2 + BnEn1 + Cn∇u −⇀ limBnEn1 = C0∇u ,

and this is the limit we shall express using only the parabolic variant H-measure
µ.

un1 satisfies the equation (∗) with coefficients A0, div (Bn∇u) on the right
hand side and the homogeneous innitial condition.

By applying the Fourier transform (as if the equation were valid in the whole
space), and multiplying by 2πiξ, for (τ, ξ) 6= (0, 0) we get

∇̂un1 (τ, ξ) = − (2π)2 (ξ ⊗ ξ) ̂(Bn∇u)(τ, ξ)

2πiτ + (2π)2A0ξ · ξ
.
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Expression for the quadratic correction

As (ξ ⊗ ξ)/(2πiτ + (2π)2A0ξ · ξ) is constant along branches of paraboloids
τ = cξ2, c ∈ R, we have (ϕ ∈ C∞c (Q))

lim
n

〈
ϕBn | ∇un1

〉
= − lim

n

〈
ϕ̂Bn | (2π)2 (ξ ⊗ ξ) ̂(Bn∇u)

2πiτ + (2π)2A0ξ · ξ

〉
= −

〈
µ, ϕ

(2π)2ξ ⊗ ξ ⊗∇u
−2πiτ + (2π)2A0ξ · ξ

〉
,

where µ is the parabolic variant H-measure associated to (Bn), a measure with
four indices (the first two of them not being contracted above).
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Expression for the quadratic correction (cont.)

By varying function u ∈ C1(Q) (e.g. choosing ∇u constant on 〈0, T 〉 × ω,
where ω ⊆ Ω) we get∫

〈0,T 〉×ω
Cij0 (t,x)φ(t,x)dtdx = −

〈
µij , φ

(2π)2ξ ⊗ ξ

−2πiτ + (2π)2A0ξ · ξ

〉
,

where µij denotes the matrix measure with components
(
µij
)
kl

= µiklj .
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Examples

For the periodic example of small-amplitude homogenisation, we get the same
results by applying the variant H-measures, as with direct calculations
performed above.
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Stationary case

(Tartar, 1976 and 1984)
Ω ⊆ R3 open set, un −⇀ u0 in H1

loc(Ω;R3){
−ν4un + un × rot (v0 + λvn) +∇pn = fn

div un = 0 .

Not a realistic model, but contains the terms: u× rot A
resulting from the Lorentz force q(u× B) in electrostatics, or

in fluids (∇u)u = u× rot (−u) +∇ |u|
2

2
.

Theorem. There is a subsequence and M > 0, depending on the choice of
the subsequence, such that the limit u0 satisfies:{

−ν4u0 + u0 × rot v0 + λ2Mu0 +∇p0 = f0

div u0 = 0 ,

and it holds:

ν|∇un|2 −⇀ ν|∇u0|2 + λ2Mu0 · u0 in D′(Ω) .
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Explicit formula via H-measures

Can M be computed directly from vn −⇀ 0 in L2(Ω;R3)
(also bounded in L3(Ω;R3))? Yes! (Tartar, 1990)

M =
1

ν

〈〈
µ, (v2 − (v · ξ)2)ξ ⊗ ξ

〉〉
.

Note. The meaning of the formula: (∀ϕ ∈ C∞c (Ω))∫
Ω

M(x)ϕ(x) dx =
1

ν
[〈trµ, ϕ� (ξ ⊗ ξ)〉 − 〈µ, ϕ� (ξ ⊗ ξ)⊗ (ξ ⊗ ξ)〉] .

M is not only a measure, but a function.
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What in the time-dependent case?

Stationary model motivated the introduction of H-measures.
Time-dependent led to a variant.
Tartar with Chun Liu and Konstantina Trevisa some twenty years ago; only
written record in Multiscales 2000.
M. Lazar and myself — wrote it down (technical difference in the scaling).

58



Time dependent case

On R3 (we need good estimates for the pressure).

Tartar’s model from 1985:{
∂tun − ν4un + un × rot (v0 + λvn) +∇pn = fn

div un = 0 .

Assume that
un −−⇀ u0 in L2([0, T ]; H1(R3;R3)) ,

un
∗−−⇀ u0 in L∞([0, T ]; L2(R3;R3)) .

and (pn) is bounded in L2([0, T ]×R3).
Oscillation in (vn) generates oscillation in (∇un), which dissipates energy via
viscosity.
This should be visible from the macroscopic equation (the equation satisfied by
u0).
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Sufficient assumptions on vn and fn

fn = divGn, with Gn −→ G0 in L2([0, T ]×R3; M3×3)

v0 ∈ L2([0, T ]; L∞(R3;R3)) + L∞([0, T ]; L3(R3;R3))

vn = an + bn, where

an
∗−−⇀ 0 in Lq([0, T ]; L∞(R3;R3)), for some q > 2,

bn
∗−−⇀ 0 in L∞([0, T ]; Lr(R3;R3)), for some r > 3.
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Homogenised equation

Theorem. There is a subsequence and a function M > 0 such that the limit
u0 satisfies: {

∂tu0 − ν4u0 + u0 × rot v0 + λ2Mu0 +∇p0 = f0

div u0 = 0 ,

and that we have the convergence

ν|∇un|2 −⇀ ν|∇u0|2 + λ2Mu0 · u0 in D′(R1+3) .

There is a new term, M, in the macroscopic equation.
How can it be computed?
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Oscillating test functions

{
−∂twn − ν4wn + k× rot vn +∇rn = 0

div wn = 0 ,

supplemented by requirements:

wn −−⇀ 0 in L2([0, T ]; H1(R3;R3)), and
wn

∗−−⇀ 0 in L∞([0, T ]; L2(R3;R3)).

Sufficient to take homogeneous condition at t = T ,
and (additional assumption) vn bounded in L2([0, T ]; L2(R3;R3)).

This in particular gives rn bounded in L2([0, T ]×R3).

ν

∫
R1+3

ϕ|∇wn|2 dy −→
∫
R1+3

ϕMk · k dy ,

M ∈ L2([0, T ]; H−1(R3; M3×3×)) and 〈Mk | k 〉 > 0, k ∈ R3.
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Can we avoid wn?

Theorem. Let µ be a variant H-measure associated to a subsequence of (vn).∫
R1+3

M(t,x)φ(t,x)dtdx =

= 4π2ν
〈(

trµ|ξ|2 − µ · (ξ ⊗ ξ)
) (ξ ⊗ ξ)

τ2 + ν24π2|ξ|4 , φ� 1
〉
,

with φ ∈ C∞c (〈0, T 〉 ×R3).
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Proof.

For wn we have (with 0 6M ∈ L2([0, T ]; H−1(R3; M3×3))):

ν

∫
R1+3

ϕ|∇wn|2 dy −→
∫
R1+3

ϕMk · k dy .

From estimates on rn and vn we get w′n −⇀ 0 in L2(0, T ; H−1
loc(R3)), and

compactness lemma gives us wn → 0 in L2
loc([0, T ]×R3).

Therefore:

lim
n

∫
R1+3

|ϕ∇wn|2 dy = lim
n

∫
R1+3

|∇(ϕwn)|2 dy .
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Localise . . .

Localise by multiplying the auxilliary problem by ϕ ∈ C∞c (〈0, T 〉 ×R3)

−∂t(ϕwn)− ν4(ϕwn) + k× rot (ϕvn) = −∇(ϕrn) + qn ,

qn = −(∂tϕ)wn − ν(4ϕ)wn − 2ν(∇wn)∇ϕ+ k× (∇ϕ× vn) + rn∇ϕ ,

qn −⇀ 0 in L2(R1+3) (and also strongly in H−
1
2
,−1(R1+3)).

As wn −⇀ 0 in L2([0, T ]; H1(R3)), so localised wn and ∇wn converge weakly
in L2.

Of course, localised vn and rn converge weakly in L2 as well.
From boundedness of the support of ϕ, we have strong convergence in

H−
1
2
,−1.
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The Fourier transform

(−2πiτ + ν4π2ξ2)ϕ̂wn = −k×
(

(2πiξ)× ϕ̂vn
)
− 2πiϕ̂rnξ + q̂n ,

and dividing by (−2πiτ + ν4π2ξ2) we get

ϕ̂wn =
−k×

(
(2πiξ)× ϕ̂vn

)
− 2πiϕ̂rnξ + q̂n

−2πiτ + ν4π2ξ2 .

The penultimate term disappears if we project it to the plane ⊥ ξ (projection
Pξ).

div wn = 0, so ξ · ŵn = 0; which does not hold for div (ϕwn) = ∇ϕ · wn.
However, the RHS converges strongly in L2 to 0, so in the Fourier space:

2πξ · ϕ̂wn −→ 0 .
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Projection by Pξ

After projection

ϕ̂wn =
−Pξ

(
k×

(
(2πiξ)× ϕ̂vn

))
+ Pξq̂n

−2πiτ + ν4π2ξ2 + dn ,

with dn −→ 0 in L2.
By Plancherel

lim
n

∫
Ω

ν|∇(ϕwn)|2 dx = lim
n

∫ 1+d

R

ν4π2|(̂ϕwn)|2dτdξ

= lim
n

∫ 1+d

R

ν4π2ξ2

∣∣∣∣Pξ

(
k×

(
(2πiξ)× ϕ̂vn

)
+ q̂n

)
−2πiτ + ν4π2ξ2

∣∣∣∣2dτdξ
= lim

n

∫ 1+d

R

νξ2

∣∣∣Pξ

(
k×

(
(2πiξ)× ϕ̂vn

)
+ q̂n

)∣∣∣2
τ2 + ν4π2ξ4 dτdξ
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Applying the Lemma (analysis)

|ξ|q̂n√
τ2 + ν4π2ξ4

→ 0 in L2(R1+3) .

By Pη ∣∣∣Pη

(
k× (η × a)

)∣∣∣2 = (k · η)2
(
|a|2 − |a · η0|

2
)

where η0 is the unit vector in the direction of η.
Note that k and η are real, while only a is complex. Therefore:

lim
n

∫
Ω

ν|∇(ϕwn)|2 dx

= lim
n

∫
R3

ξ2

(
k · 2πiξ

)2(
|ϕ̂vn|2 −

∣∣∣ϕ̂vn · ξ
|ξ|

∣∣∣2)
τ2 + ν4π2ξ4 dξ .
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Finally (after some algebra)

lim
n

∫
R3

ξ2
0

(
k · 2πiξ0

)2(
|ϕ̂vn|2 −

∣∣∣ϕ̂vn · ξ0
|ξ0|

∣∣∣2)
τ2
0 + ν4π2ξ4

0

dξ =

=
1

ν
〈trµ, (

ξ0 · k
τ2
0 + ν4π2ξ4

0

)2ϕϕ〉

− 1

ν
〈µ, ( ξ0 · k

τ2
0 + ν4π2ξ4

0

)2ϕϕξ ⊗ ξ〉 .
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