
H-measures and variants

Nenad Antonić
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Why a parabolic variant?
Parabolic pde-s are:

well studied, and we have good theory for them
in some cases we even have explicit solutions (by formulae)

1 : 2 is certainly a good ratio to start with

Besides the immediate applications (which motivated this research), related to
the properties of parabolic equations, applications are possible to other
equations and problems involving the scaling 1 : 2.
Naturally, after understanding this ratio 1 : 2, other ratios should be considered
as well, as required by intended applications.

Terminology: classical as opposed to parabolic or variant H-measures.
The sphere we replace by:

σ4(τ, ξ) := (2πτ)2 + (2π|ξ|)4 = 1 , or

σ2
1(τ, ξ) := |τ |+ (2π|ξ|)2 = 1 .

finally we chose the ellipse

ρ2(τ, ξ) := |ξ/2|2 +
√

(ξ/2)4 + τ2 = 1 .

Notation.
For simplicity (2D): (t, x) = (x0, x1) = x and (τ, ξ) = (ξ0, ξ1) = ξ.

We use the Fourier transform in both space and time variables.
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Rough geometric idea
Take a sequence un −⇀ 0 in L2(R2), and integrate |ϕ̂un|2 along

rays and project onto S1 parabolas and project onto P 1

τ

ξ1

T

T0

τ

ξ

T

T0

√
2
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In R2 we have a compact curve (a surface in higher dimensions):

S1 . . . r2(τ, ξ) := τ2 + ξ2 = 1 P 1 . . . ρ2(τ, ξ) := (ξ/2)2 +
√

(ξ/2)4 + τ2 = 1

and projection R2
∗ = R2 \ {0} onto the curve (surface):

p(τ, ξ) :=
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)
π(τ, ξ) :=

( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
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Analytic picture

Multiplication by b ∈ L∞(R2), a bounded operator Mb on L2(R2):
(Mbu)(x) := b(x)u(x) , norm equal to ‖b‖L∞(R2).

Fourier multiplier Pa, for a ∈ L∞(R2): P̂au = aû.
The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1 or P 1.
We extend it by the projections, p or π: if α is a function defined on a
compact surface, we take a := α ◦ p or a := α ◦ π, i.e.

a(τ, ξ) := α
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)
a(τ, ξ) := α

( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
The precise scaling is contained in the projections, not the surface.

Now we can state the main theorem.
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Existence of H-measures

Theorem. If un −⇀ 0 in L2(Rd;Rr), then there exists its subsequence and a
complex matrix Radon measure µ on

Rd × Sd−1 Rd × P d−1

such that for any ϕ1, ϕ2 ∈ C0(Rd) and

ψ ∈ C(Sd−1) ψ ∈ C(P d−1)

one has

lim
n′

∫
Rd

ϕ̂1un′ ⊗ ϕ̂2un′(ψ ◦ pπ) dξ = 〈µ, (ϕ1ϕ̄2)� ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) =

∫
Rd×Pd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) .
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First commutation lemma

Lemma. (general form of the first commutation lemma) If b ∈ C0(Rd)
and a ∈ L∞(Rd) satisfy the condition

(∀ ρ, ε ∈ R+)(∃M ∈ R+) |a(ξ)− a(η)| 6 ε (a.e. (ξ,η) ∈ Y (M,ρ)) ,

then C := [Pa,Mb] is a compact operator on L2(Rd).

For given M,ρ ∈ R+ denote the set

Y = Y (M,ρ) = {(ξ,η) ∈ R2d : |ξ|, |η| >M & |ξ − η| 6 ρ} .

η

ξ

ρ

Y

X

M

where X denotes the complement of Y in the diagonal strip of width ρ.

In both cases discussed above, this lemma can also be proven directly, based on
elementary inequalities.
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Proof of the First commutation lemma
I. Assume additionally that |supp b̂| 6 ρ; for u ∈ S(Rd)

Ĉu(ξ) = a(ξ)
(
b̂ ∗ u

)
(ξ)−

(
b̂ ∗
(
aû
))

(ξ) =

∫
Rd

k(ξ,η)û(η) dη ,

where k(ξ,η) =
(
a(ξ)− a(η)

)
b̂(ξ − η). For this ρ and arbitrary ε > 0 we can

find an M such that |a(ξ)− a(η)| 6 ε (a.e. (ξ,η) ∈ Y (M,ρ)).
Next we decompose C = D + E, where

D̂u(ξ) =

∫
X

k(ξ,η)û(η) dη ,

Êu(ξ) =

∫
Y

k(ξ,η)û(η) dη .

As X is bounded, D̂· is an integral operator with compactly supported and
bounded kernel, therefore a Hilbert-Schmidt operator, and compact. As F is
an isometry, D is also a Hilbert-Schmidt operator, and therefore compact.
On Y we have |k(ξ,η)| 6 ε|b̂(ξ − η)|, thus by Young’s inequality

‖Êu‖2 6 ε‖b̂‖1‖û‖2 for u ∈ S(Rd). As S(Rd) is dense in L2(Rd), by the

Plancherel theorem, we have also for the operator norm ‖E‖ 6 ε‖b̂‖1.
Taking a sequence ε −→ 0, we get that C is a limit (in the operator norm
topology) of a sequence of Hilbert-Schmidt operators, so C is also compact.
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Proof of the First commutation lemma (cont.)

II. For any b ∈ C0(Rd), C is a bounded operator, with norm 6 2‖a‖∞‖b‖∞.

In particular, if bm −→ b in L∞(Rd), then Cm := [Pa,Mbm ] converges in the
operator (uniform) topology to C. Therefore, C will be a compact operator, if
Cm are such.

Finally, we can approximate b by a sequence of functions as in part I of the
proof, obtaining a sequence of compact operators converging to C.

Indeed, for given b ∈ C0(Rd) we can find a sequence (fn) in S(Rd) uniformly
converging to b. Then gn := f̂n ∈ S(Rd) ⊆ L1(Rd), so for any fixed n we can
find a sequence (gmn )m in C∞c (Rd) converging in L1 norm to gn. The sequence
(F̄gmn )m now uniformly converges to fn, and after applying the Cantor diagonal

procedure we find that bn := F̄gm(n)
n uniformly converges to b, as claimed.
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In particular . . .

Lemma.Let π : Rd
∗ −→ Σ be a smooth projection to a smooth compact

hypersurface, such that |∇π(ξ)| −→ 0 for |ξ| −→ ∞, and a ∈ C(Σ). Then
(the extended) a satisfies the assumptions of previous lemma.

Dem. Taking C resulting from uniform continuity of a on compact Σ:∣∣∣a(ξ)−a(η)
∣∣∣ =

∣∣∣a(π(ξ))−a(π(η))
∣∣∣ 6 C∣∣∣π(ξ)−π(η)

∣∣∣ 6 |ξ−η| sup
ζ∈[ξ,η]

∣∣∇π(ζ)
∣∣ ,

where we applied the Mean value theorem to projection π.

For |ξ − η| 6 ρ and ε > 0 given, we can find M large enough such that for
|ξ|, |η| >M > ρ the above is bounded by |ε|.

Q.E.D.

Check that this applies to the classical and parabolic H-measures.
In both cases we have a continuous function a defined on a smooth compact
surface Σ (Sd−1 or P d−1), then extended to Rd

∗ taking constant values along
certain curves, which transversally intersect Σ and cover the whole space (rays
from the origin, or parts of quadratic parabolas in the parabolic case). It only
remains to be shown that the projections satisfy ‖∇π(ξ)‖ −→ 0 for |ξ| −→ ∞.
It is a matter of straightforward calculation to check that ‖∇π‖ 6 1/|ξ| in the
first case, and ‖∇π‖ 6 cρ−2 in the second (c being some positive constant).
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Alternative proof

Lemma. The commutator [Pa,Mb] is a compact operator.

ξ2

ξ1

S0

T0

S

T ′

S′

T

d(S0, T0)

1
=
d(S, T ′)

rS
=
d(S′, T )

rT

d(S0, T0) 6 2
d(S, T )

rS + rT

τ

ξ

S0

T0

S
T

d(S0, T0) 6 C
d(S, T )

ρS + ρT

(ρS := ρ(τS , ξS) etc.)
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Representation of bilinear functionals

Recall the Riesz representation theorem:
A positive functional L on Cc(X) defines the unique Radon measure µ on X

(∀ f ∈ Cc(X)) Lf =

∫
X

f dµ .

Boundedness in L∞ norm allows extension of L from Cc(X) to C0(X) by
continuity (Mb(X) := C0(X)′).

We need such a representation for positive continuous bilinear forms on
C0(X)× C0(Y ).

Lemma. (representation of bilinear functionals) Let X,Y be open and
bounded in Rd, Rr, and B a continuous bilinear form on C0(X)× C0(Y ).
If for f ∈ C0(X) and g ∈ C0(Y ), f, g > 0 implies B(f, g) > 0, then there
exists a bounded Radon measure µ on X × Y such that for any f ∈ C0(X)
and g ∈ C0(Y ) the following representation is valid:

B(f, g) = Mb(X×Y )〈µ, f � g 〉C0(X×Y ) .

The representation is valid on manifolds as well, even on any locally compact
Hausdorff spaces.
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Proof of existence

Recall that Pψ̄ stands for the Fourier multiplier associated to ψ; so by the
Plancherel formula the limit reads

lim
n

∫
R1+d

(φ1un)(τ, ξ)⊗
(
Pψ̄φ2un

)
(τ, ξ)dτdξ.

By the First commutation lemma (Pψ̄φ2 − φ2Pψ̄)un = Kun, with K being a
compact operator on L2, so the limit can be written as

lim
n

∫
R1+d

(φ1φ2un)(τ, ξ)⊗
(
Pψ̄un

)
(τ, ξ)dτdξ.

The above sequence is bounded by C‖φ1‖L∞‖φ2‖L∞‖ψ‖L∞ , with
C = supn ‖un‖

2
L2(R1+d;Cr).
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Cantor diagonal procedure

As C0(R1+d) and C(P ) are separable, we denote their countable dense subsets
with S and T respectively. The Cantor diagonal procedure results in a
subsequence unr such that the above limit is valid for each
(φ1, φ2, ψ) ∈ S × S × T . To this end we index by m ∈ N all ordered triples in
S × S × T . As the above sequence is bounded in Mr×r, for m = 1 there is a
subsequence un1(n) such that the sequence∫

R1+d

(φ1
1φ

1
2un1(n))(τ, ξ)⊗

(
Pψ̄1un1(n)

)
(τ, ξ)dτdξ

converges. For this subsequence, there is another subsequence un2(n), for
which analogous sequence as above converges with m = 2 instead of m = 1.
Continuing the procedure, in such a way we construct a subsequence
un1(1), un2(2), . . . , for which the sequence∫

R1+d

(φm1 φ
m
2 unr(r))(τ, ξ)⊗

(
Pψ̄munr(r)

)
(τ, ξ)dτdξ

converges for any m, i.e. for any choice of functions (φ1, φ2, ψ) from dense set
S × S × T . This subsequence we shall denote in the same way as the original
sequence, for simplicity.
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Extension by density

In the next step we prove that the above sequence converges for arbitrary
(φ1, φ2, ψ) ∈ C0(R1+d)× C0(R1+d)× C(P ). Indeed, let
(φk1 , φ

k
2 , ψ

k) ∈ S × S × T be a sequence converging to (φ1, φ2, ψ). Then∫
R1+d

(
(φ1φ2un)(τ, ξ)⊗ (Pψ̄un)(τ, ξ)− (φ1φ2um)(τ, ξ)⊗ (Pψ̄um)(τ, ξ)

)
dτdξ

=

∫ (
((φ1φ2 − φk1φk2)un)(τ, ξ)⊗ (Pψ̄un)(τ, ξ)

+(φk1φ
k
2un)(τ, ξ)⊗ ((Pψ̄ − Pψ̄k )un)(τ, ξ)

)
dτdξ

−
∫ (

((φ1φ2−φk1φk2)um)(τ, ξ)⊗ (Pψ̄um)(τ, ξ)

+(φk1φ
k
2um)(τ, ξ)⊗ ((Pψ̄ − Pψ̄k )um)(τ, ξ)

)
dτdξ

+

∫ (
(φk1φ

k
2un)(τ, ξ)⊗ (Pψ̄kun)(τ, ξ)

−(φk1φ
k
2um)(τ, ξ)⊗ (Pψ̄kum)(τ, ξ)

)
dτdξ .
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First two integrals on the right hand side are bounded by

C
(
‖φ1φ2−φk1φk2‖L∞‖ψ‖L∞+‖φk1φk2‖L∞‖ψ−ψ

k‖L∞
)
,

where C = supn ‖un‖
2
L2 , thus arbitrary small, for k large enough.

The remaining integral represents the difference between m−th and n−th term
in a convergent sequence, so we have a Cauchy sequence, therefore convergent.
We have thus defined a mapping C0(R1+d)× C0(R1+d)× C(P )→ Mr×r,
which is linear in each of its arguments. It is also continuous, as

‖φ1φ2un ⊗ (Pψ̄un)‖
L1 6 ‖φ1φ2‖L∞‖un‖L2‖(Pψ̄un)‖

L2 6 C‖φ1φ2‖L∞‖ψ‖L∞ .

This mapping depends only on the product φ1φ2, and function ψ, so for any
i, j ∈ 1..r a bilinear form µij := µei · ej on C0(R1+d)× C(P ) is given:

〈µij , φ1φ2 � ψ〉 : = lim
n

∫
R1+d

(φ1φ2uin)(τ, ξ)
(
Pψ̄ujn

)
(τ, ξ)dτdξ

= lim
n

∫
R1+d

F
(
φ1uin

)
(τ, ξ)F

(
φ2ujn

)
(τ, ξ)ψ

(
τ0, ξ0

)
dτdξ ,

where uin := un · ei.By interchanging the indices i and j in the last equality,
and choosing real functions φ1, φ2, ψ, we obtain that µij = µji for any
i, j ∈ 1..r, i.e. matrix measure µ is hermitian.
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Positivity and conclusion

Furthermore, for φ, ψ > 0 we take φ1 = φ2 =
√
φ. Then for any λ ∈ Cr we

have〈∑
i,j

λiλjµij , φ1φ2 � ψ
〉

= lim
n

∫
R1+d

∣∣∣∣∣∑
i

λiF
(√

φuin
)∣∣∣∣∣

2

(τ, ξ)ψ(τ0, ξ0)dτdξ > 0 ,

and bilinear form B = µλ · λ is positively semidefinite. Now we can apply the
Lemma on representation of bilinear forms, thus the form B is determined by a
Radon measure mλ. By varying vector λ in mλ = µλ · λ, after taking into
account the hermitian character of µ, we identify all components µij .
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Immediate properties

Corollary. Parabolic H-measure µ is hermitian and nonnegative:

µ = µ∗ and (∀φ ∈ C0(R1+d;Cr)) 〈µ,φ⊗ φ〉 ≥ 0 ,

where 〈µ,φ⊗ φ〉 is considered as a Radon measure on Pd.

Indeed, let (e1, . . . , er) be an orthonormal basis in Cr. For µij := µei · ej

〈µij , φ1φ2 � ψ〉 := lim
n

∫
R1+d

F
(
φ1uin

)
F
(
φ2ujn

)
(ψ ◦ π)dτdξ ,

where uin := un · ei. By exchanging indices above, and taking real functions
φ1, φ2, ψ it follows µij = µji for each pair (i, j).
By taking φ1 := φ · ei, φ2 := φ · ej and ψ real nonnegative in the last equation,
summation in i and j gives the second statement.
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Simple localisation

For parabolic H-measures we have simple localisation as an immediate
consequence of the definition.

Corollary. Let the sequence (un) define a parabolic H-measure µ. If all the
components un · ei have their supports in closed sets Ki ⊆ R1+d respectively,
then the support of the component µei · ej is contained in (Ki ∩Kj)× Pd.

If un were defined on an open set Ω ⊆ R1+d, we would first extend each un by
zero to R1+d (such an extension clearly preserves the weak convergence), and
then apply the existence theorem. The resulting parabolic H-measure has its
support contained in Cl Ω, by Corollary.
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Weak ∗ limits

Parabolic H-measures can be used to describe weak ∗ limits of quadratic
quantities.

Corollary. If un ⊗ un converges weakly ∗ to a measure ν, then for every
φ ∈ C0(R1+d):

〈ν, φ〉 = 〈µ, φ� 1〉 .

Indeed, by choosing φ1, φ2 ∈ C0(R1+d) such that φ = φ1φ̄2, and taking
ψ := 1 in the defining limit, by Plancherel’s theorem we have

〈µ, φ1φ̄2�1〉 = lim
n

∫
R1+d

φ1un⊗φ2un dx =

∫
R1+d

lim
n

(un⊗un)φ1φ̄2 dx = 〈ν, φ1φ̄2〉 .
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Real sequences

Lemma. Let (un) be a pure sequence in L2(R1+d;Cr), and µ the
corresponding parabolic H-measure. Then the sequence (un) is pure with
associated parabolic H-measure ν, such that ν(t,x, τ, ξ) = µ>(t,x,−τ,−ξ).
In particular, a parabolic H-measure µ associated to a real scalar sequence is
antipodally symmetric, i. e. µ(t,x, τ, ξ) = µ(t,x,−τ,−ξ).
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Oscillation

un(x) := v(nx) −⇀ 0

v ∈ L2
loc(Rd) periodic function (with the unit period in each of variables), with

the zero mean value.
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Oscillation (classical H-measures)

The associated H-measure

µ(x, ξ) =
∑

k∈Zd\{0}

|vk|2λ(x) δ k
|k|

(ξ),

vk Fourier coefficients of v (v(x) =
∑

k∈Zd
vke

2πik·x).

Dual variable preserves information on the direction of propagation (of
oscillation).
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Concentration

un(x) := n
d
2 v (nx) ,

(
v ∈ L2(Rd)

)
.
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Concentration (classical H-measures)

The associated H-measure is of the form δ0(x)ν(ξ), where ν is measure on
Sd−1 with surface density

ν(ξ) =

∫ ∞
0

|v̂(tξ)|2td−1dt,

i.e.

µ(x, ξ) =

∫
Rd
|v̂(η)|2δ η

|η|
(ξ)δ0(x) dη,

where v̂ denotes the Fourier transformation of v.
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Oscillation (parabolic H-measures)

Let v ∈ L2(Z) be a periodic function

v(t,x) =
∑

(ω,k)∈Z1+d

v̂ω,k e
2πi(ωt+k·x) ,

where v̂ω,k denotes Fourier coefficients. Further, assume that v has mean value
zero, i.e. v̂0,0 = 0.

For α, β ∈ R+, we have a sequence of periodic functions with period tending
to zero:

un(t,x) := v(nαt, nβx) =
∑

(ω,k)∈Z1+d

v̂ω,k e
2πi(nαωt+nβk·x) .

Their Fourier transforms are:

ûn(τ, ξ) =
∑

(ω,k)∈Z1+d

v̂ω,k δnαω(τ)δnβk(ξ) .
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Oscillation (cont.)

(un) is a pure sequence, and the corresponding parabolic H-measure
µ(t,x, τ, ξ) is

λ(t,x)



∑
(ω,k)∈Z1+d

ω 6=0

|v̂ω,k|2δ( ω
|ω| ,0)

(τ, ξ) +
∑
k∈Zd

|v̂0,k|2δ(0, k
|k| )

(τ, ξ), α > 2β

∑
(ω,k)∈Z1+d

k 6=0

|v̂ω,k|2δ(0, k
|k| )

(τ, ξ) +
∑
ω∈Z

|v̂ω,0|2δ( ω
|ω| ,0)

(τ, ξ), α < 2β

∑
(ω,k)∈Z1+d

|v̂ω,k|2δ( ω
ρ2(ω,k)

, k
ρ(ω,k)

)(τ, ξ), α = 2β,

where λ denotes the Lebesgue measure.
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Concentration (parabolic H-measures)

For v ∈ L2(R1+d) and α, β ∈ R+

un(t,x) := nα+βdv(n2αt, n2βx),

is bounded in L2(R1+d) with the norm ‖un‖L2(R1+d) = ‖v‖L2(R1+d) which
does not depend on n, and weakly converges to zero.

(un) is a pure sequence, with the parabolic H-measure 〈µ, φ� ψ〉 =

φ(0, 0)



∫
R1+d

|v̂(σ,η)|2ψ(
σ

|σ| , 0)dσdη +

∫
Rd
|v̂(0,η)|2ψ(0,

η

|η| ) dη, α > 2β∫
R1+d

|v̂(σ,η)|2ψ(0,
η

|η| )dσdη +

∫
R

|v̂(σ, 0)|2ψ(
σ

|σ| , 0) dσ, α < 2β∫
R1+d

|v̂(σ,η)|2ψ
(

σ

ρ2(σ,η)
,

η

ρ(σ,η)

)
dσdη, α = 2β.
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From examples we learn . . .

Actually, any non-negative Radon measure on Ω× P d−1, of total mass A2, can
be described as a parabolic H-measure of some sequence un −⇀ 0, with
‖un‖L2 6 A+ ε.

Both for oscillation and concentration, for α > 2β the measure µ is supported
in poles, while for α < 2β on the equator of the surface Pd, regardless of the
choice of v.

When α = 2β the parabolic H-measure can be supported in any point of the
surface Pd.
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Symmetric systems

∂k(Aku) + Bu = f , Ak ∈ Cb(R
d; Mr×r) Hermitian

Assume:

un
L2

−−⇀ 0 , and defines µ

fn
H−1

loc−−→ 0 .

Theorem. (localisation principle) If un satisfies:

∂k
(
Akun

)
−→ 0 in space H−1

loc(Rd)r ,

then for P(x, ξ) := ξkA
k(x) on Ω× Sd−1 one has:

P(x, ξ)µ̄ = 0 .

Thus, the support of H-measure µ is contained in the set{
(x, ξ) ∈ Ω× Sd−1 : detP(x, ξ) = 0

}
of points where P is a singular matrix.

The localisation principle is behind the applications to the small-amplitude
homogenisation, which can be used in optimal design.

It is a generalisation of compactness by compensation to variable coefficients.
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Localisation principle for parabolic H-measures
In the parabolic case the details become more involved.

Anisotropic Sobolev spaces (s ∈ R; kp(τ, ξ) := (1 + σ4(τ, ξ))1/4) )

H
s
2
,s(R1+d) :=

{
u ∈ S ′ : kspû ∈ L2(R1+d)

}
.

Theorem. (localisation principle) Let un −⇀ 0 in L2(R1+d;Cr), uniformly
compactly supported in t, satisfy (s ∈ N)

√
∂t
s
(un · b) +

∑
|α|=s

∂α
x (un · aα) −→ 0 in H

− s
2
,−s

loc (R1+d) ,

where b, aα ∈ Cb(R
1+d;Cr), while

√
∂t is a pseudodifferential operator with

polyhomogeneous symbol
√

2πiτ , i.e.

√
∂tu = F

(√
2πiτ û(τ)

)
.

For parabolic H-measure µ associated to sequence (un) one has

µ

(
(
√

2πiτ)sb +
∑
|α|=s

(2πiξ)α aα

)
= 0.

32



How to use such a relation? — the heat equation

{
∂tun − div (A∇un) = div fn

un(0) = γn ,

fn −⇀ 0 in L2
loc(R1+d;Rd), γn ⇀ 0 in L2(Rd)

continuous, bounded and positive definite: A(t,x) v · v > αv · v

Localise in time: take θun, for θ ∈ C1
c(R

+), . . .
Now we can apply the localisation principle (we still denote the localised
solutions by un).

Furthermore,
√
∂t (un) :=

(√
2πiτ ûn

)∨
−⇀ 0 in L2(R1+d).
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The heat equation (cont.)

Take
ṽn = (v0

n, vn, fn) := (
√
∂tun,∇un, fn) −⇀ 0

in L2(R1+d;R1+2d), which (on a subsequence) defines H-measure

µ̃ =

 µ0 µ01 µ02

µ10 µ µ12

µ20 µ21 µf

 .
The localisation principle gives us:

µ0

√
2πiτ − 2πiµ01 ·A

>ξ − 2πiµ02 · ξ = 0

µ10

√
2πiτ − 2πiµA>ξ − 2πiµ12 ξ = 0

µ20

√
2πiτ − 2πiµ21 A

>ξ − 2πiµfξ = 0.

After some calculation (linear algebra) . . .
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Expression for H-measure — from given data

trµ =
(2πξ)2

τ2 + (2πAξ · ξ)2
µfξ · ξ,

µ =
(2π)2

τ2 + (2πAξ · ξ)2
(µfξ · ξ)ξ ⊗ ξ.

µ0 =
|2πτ |

τ2 + (2πAξ · ξ)2
µfξ · ξ.

Thus, from the H-measures for the right hand side term f one can calculate
the H-measure of the solution.

However, the oscillation in initial data dies out (the equation is hypoelliptic).
Only the right hand side affects the H-measure of solutions.

The situation is different for the Schrödinger equation and for the vibrating
plate equation.

35



Existence of classical and parabolic H-measures
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Propagation principle
Classical H-measures
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Classical H-measures

Theorem. (propagation principle for symmetric systems, N.A. 1992–6)
Let Ak ∈ C1

0(Ω; Mr×r) be hermitian and B ∈ C0(Ω; Mr×r).
If for every n the pair (un, fn) satisfies the system

∂k(Akun) + Bun = fn ,

and un, fn −⇀ 0 in L2(Ω; Cr), then any H-measure

µ =

[
µ11 µ12

µ21 µ22

]
associated to (a subsequence of) the sequence (un, fn) satisfies, in the sense of
distributions on Ω× Sd−1, the following first order pde:

∂l(∂
lP · µ11)− ∂lT (∂lP · µ11) + (d− 1)(∂lP · µ11)ξl + 2S · µ11 = 2Re trµ12 ,

where ∂lT := ∂l − ξlξk∂k is the (l-th component of) tangential gradient on the
unit sphere, while S is the hermitian part of matrix B.

This is based on the Second commutation lemma.
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Some function spaces . . . in the parabolic case

We take: kp(τ, ξ) := 4
√

1 + (2πτ)2 + (2π|ξ|)4 and define

X
m
2
,m(R1+d) :=

{
b ∈ S ′ : kmp b̂ ∈ L1(R1+d)

}
.

X
m
2
,m(R1+d) is a vector space, a Banach space when equipped with the norm:

‖b‖
X
m
2
,m :=

∫
R1+d

kmp |b̂| dτdξ .

Furthermore, S ↪→ X
m
2
,m(R1+d) ↪→ S ′, dense and continuous embeddings.

For s ∈ R, s > m+ d/2 + 1, we also have:

H
s
2
, s(R1+d) ↪→ X

m
2
,m(R1+d) .
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. . . and symbols

Homogeneous case: k(τ, ξ) :=
√

1 + 4π2|(τ, ξ)|2.

For m ∈ R, ρ ∈ 〈0, 1] and δ ∈ [0, 1〉 define Smρ,δ as the set of all

a ∈ C∞(R1+d ×R1+d) satisfying:

(∀α,β ∈ N1+d
0 )(∃Cα,β > 0)

∣∣∂β∂αa
∣∣ 6 Cα,βk

m−ρ|α|+δ|β| .

Smρ,δ is a vector space of symbols of order m and type ρ, δ. (we need Sm1
2
,0

)

These symbols define operators on S (and by transposition also on S ′):

a(·;D)ϕ := F̄(aϕ̂) .

If a ∈ Sk1
2
,0

and b ∈ Sm1
2
,0

,then the symbol of the composition of operators

a(·, D)b(·, D) is in Sk+m
1
2
,0

, and is given as an asymptotic expansion:

∑
|α|>0

1

α!
∂α
t,xaD

α
τ,ξb .
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Second commutation lemma

Lemma. (Martin Lazar & N.A.) Let Pψ and Mφ be operators on L2(R1+d),

with symbols ψ ∈ C1(Pd) and φ ∈ X
1
2
,1(R1+d).

Then for K = [Pψ,Mφ] = PψMφ −MφPψ one has:

a) K ∈ L(L2(R1+d); H
1
2
, 1(R1+d)).

b) Parabolic extension ψp, up to a compact operator on L2(R1+d), satisfies:

∂jK = ∂j (PψMφ −MφPψ) = Pξj∇ξψ
pM∇xφ .

Similarly also for
√
∂t
(
PψMφ −MφPψ

)
, with ξj replaced by

√
τ

2πi
.

This result allows for the treatment of nonhypoelliptic parabolic equations (like
the Schrödinger equation or the equation for vibrating elastic plate), as it was
done for the wave equation.
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Calculations in the smooth case
Denote by ψp = ψ ◦ p the parabolic extension of ψ ∈ C∞(Pd) to R1+d

∗ , and
further ψ̃ := (1− θ)ψp, for θ ∈ C∞c (R1+d) equal to 1 around the origin, which
vanishes for ρ > 1.

Lemma. ψ̃ ∈ S0
1
2
,0

, while ρ−m ∈ S−
m
2

1
2
,0

for k > 0.

For K̃ := [Pψ̃,Mφ] one has

2πiξjσ(K̃) + ∂jσ(K̃) =
∑

|(k,α)|>1

1

k!α!
Dk
τD

α
ξ ψ̃ ∂

k
t ∂

α
x (2πiξjφ+ ∂jφ) ,

∂kτ ∂
α
ξ ψ̃ behaves like ρ−(2k+|α|) for large (τ, ξ), while t,x derivatives of φ

remain in S0
1
2
,0

, so the symbol of the commutator K̃ ∈ S−
1
2

1
2
,0

, as well as ∂jσ(K̃).

Therefore in the asymptotic expansion the terms of the form ξj∂
k
τ ∂

α
ξ ψ̃ belong

to S
− 1

2
1
2
,0

for k > 1 or |α| > 2, so as the principal symbol of ∂jK̃ remains

ξj∇ξψ̃
p∇xφ.

As it is parabolicly homogeneous (outside of the compact ρ 6 1), so S0
1
2
,0

and

determines a bounded operator on L2(R1+d).

∂jK̃ − Pξj∇ξψ̃
M∇xφ ∈ S

− 1
2

1
2
,0

, leading to an operator from

L(L2(R1+d); H
1
2 (R1+d)).
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The Schrödinger equation

{
i∂tun + div (A∇un) = fn

un(0, ·) = u0
n ,

where u0
n −⇀ 0 in H1(Rd), fn −⇀ 0 in L2(0, T ; L2(Rd)), with (∂tfn) being

bounded in L2(0, T ; H−1(Rd)).

These assumptions assure that (on a subsequence)

[
∇un
fn

]
determines the

parabolic H-measure of the block form[
µ µ12

µ21 µf

]
,

where µ = ξ⊗ξ
|ξ|2 ν, while µ12 = ξν12. The localisation principle also gives that

µ is supported within the closed set of R1+d × Pd determined by the relation
Q(t,x; τ, ξ) = 0, which is disjoint with the set where ξ = 0.

Q(t,x; τ, ξ) = 2πτ + 4π2A(t,x)ξ · ξ is the symbol of the Schrödinger operator.

42



Propagation for the Schrödinger equation

Theorem. If we additionally assume that A ∈ X
1
2
,1(R+

0 ×Rd; Md×d)

(i.e. that A ∈ C1 ∩X
1
2
,1), the trace of parabolic H-measure ν = trµ satisfies

the equation

〈ν, {Ψ, Q}〉+
〈
ν,Ψ

α2

4

3− α2

α2 − 1
ξ · ∇xQ

〉
= 〈2Re ν12, 4π

2|ξ|2Ψ〉 ,

where Ψ = φ� ψ, φ ∈ C1
c(R

+ ×Rd) and ψ ∈ C1(Pd).

We use the Poisson bracket (only in x and ξ, not in t and τ):

{Ψ, Q} := ∇ξΨ · ∇xQ−∇xΨ · ∇ξQ ,

while α2 = 4
4−|ξ|2 on Pd.
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After integration by parts on Pd

Theorem. For H-measure µ associated to ∇un, with

A ∈ C1(R+
0 ×Rd; Md×d) ∩X

1
2
,1(R+

0 ×Rd; Md×d), the trace ν = trµ
satisfies the transport equation

∇xν ·

(
∇ξQ− α2

4

(
α2 + d+

2

α2 − 1

)
Qξ

)

−∇τ,ξν ·

([
0
∇xQ

]
−
([

0
∇xQ

]
· n
)

n

)
= |2πξ|2 2Re ν12.

The characteristics are

d

ds

[
t
x

]
=

[
0

∇ξQ− α2

4

(
α2 + d+ 2

α2−1

)
Qξ

]
d

ds

[
τ
ξ

]
= −

(
I− n⊗ n

)[ 0
∇xQ

]
,

with initial conditions

t(0) = t0 , x(0) = x0 , τ(0) = τ0 , ξ(0) = ξ0 .

This system has a solution, which might not be unique (if we have additional
smoothness of A, like A ∈ C1(R+

0 ×Rd; Md×d), the solution will be unique).
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Propagation of singularities

Take (τ0, ξ0) ∈ Pd, and multiply the second ode by n/α = (τ, ξ/2):

1

2

d

ds
(τ2 + |ξ|2/2) = −(1− n2)

[
0
∇xQ

]
· n

α
= 0 .

Then (τ, ξ) remains on Pd over the interval of existence.

By the Theorem, for a homogeneous equation (i.e. when ν12 = 0), measure ν
remains constant along the integral curves on R1+d × Pd.

Furthermore, if Q(t0,x0; τ0, ξ0) = 0, then along any characteristic we have
q(s) := Q(t(s),x(s); τ(s), ξ(s)) = 0, for s > 0.

This result generalises the localisation principle Qν = 0, and shows that Q
vanishes along integral curves that pass through the support of ν.

As the H-measure describes the density of microlocal energy, this can be
interpreted as its propagation.
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A general view

We can unify the results: consider equations of the form

P0%P0un + P1 ·AP1un = 0 ,

where P0 and P1 stand for (pseudo)differential operators in time and space
variables, with (principal) symbols p0 and p1, and Q = %p2

0 +Ap1 · p1 being the
symbol of the differential operator defining the left-hand side of the equation.
For the parabolic H-measure µ̃ associated to (P0un,P1un), converging weakly
in L2 to 0, µ̃ is of the form

µ̃ =
p⊗ p

|p|2 ν̃ ,

where ν̃ := trµ̃ is a scalar measure, and the localisation principle reads

Qν̃ = 0 .

Finally, the propagation principle states〈ξmν̃
|p|2 , {φ,Q}

〉
+
〈 ν

|p|2 , p ∂mQ
〉

= 0 .

This covers both the classical and the parabolic case.
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Other variants

— Evgenij Jurjevič Panov (ultraparabolic H-measures)
— Darko Mitrović, Ivan Ivec, Martin Lazar, Marko Erceg (fractional orders)

With the characteristic length — semiclassical measures:
— Patrick Gérard, Pierre-Louis Lions, Thierry Paul (semiclassical/Wigner

measures)
— Luc Tartar (variants with a characteristic length, multiscale H-measures)
— Marko Erceg, Martin Lazar, N.A. (one-scale H-measures)

Lp theory
— Darko Mitrović, Marko Erceg, Marin Mǐsur, N.A. (H-distributions)
— Ivan Ivec, N.A. (mixed-norm variants)
— Marko Erceg and N.A. (semiclassical distributions)

We have a number of tools, and know how to create new ones, adjusted to
problems at hand.
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