Variant of optimality criteria method for multiple state optimal design problems

Ivana Crnjac, J. J. Strossmayer University of Osijek
joint work with Krešimir Burazin and Marko Vrdoljak

Optimal design problem

- Let $\Omega \subseteq \mathbf{R}^{d}$ be open and bounded and $f \in \mathrm{H}^{-1}(\Omega)$. We consider stationary diffusion equation with homogenous Dirichlet boundary condition:

$$
\left\{\begin{array}{l}
-\operatorname{div}(\mathbf{A} \nabla u)=f \\
u \in \mathrm{H}_{0}^{1}(\Omega) .
\end{array}\right.
$$

- We assume that Ω is a mixture of two isotropic materials with conductivities $0<\alpha<\beta$, i.e.

$$
\mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}, \quad \text { where } \quad \chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})
$$

and that the amount of the first material is given by $q_{\alpha}=\int_{\Omega} \chi d \mathbf{x}$. Then, the multiple state optimal design problem is

$$
\left\{\begin{array}{c}
J(x)=\int_{\Omega} \chi(x) g_{q}(x, u)+(1-\chi(x)) g_{f}(x, u) d x \rightarrow \text { min }, \\
x \in \mathrm{~L}^{\infty}(\Omega ;\{0,1\}), \int_{\Omega} x d x=q_{a},
\end{array}\right.
$$

where $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)$ is the state function determined by

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}\right.
$$

with $\mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}$ and $f_{i} \in \mathrm{H}^{-1}(\Omega)$, while g_{α}, g_{β} are Caratheodory functions which satisfies growth condition

$$
g_{j}(x, u) \leq a|u|^{s}+b(x)
$$

$j=\alpha, \beta$,
for some $a>0, b \in \mathrm{~L}^{1}(\Omega)$ and $1 \leq s<\frac{2 d}{d-2}, d \geq 3$.

Relaxed problem

- Problem (1) does not have classical solution, therefore using relaxation by the homogenization method we get relaxed problem

$$
\left\{\begin{array}{l}
J(\theta, \mathbf{A})=\int_{\Omega}\left(\theta(\mathbf{x}) g_{\alpha}(\mathbf{x}, \mathbf{u})+(1-\theta(\mathbf{x})) g_{\beta}(\mathbf{x}, \mathbf{u})\right) d \mathbf{x} \longrightarrow \min \\
(\theta, \mathbf{A}) \in\left\{(\theta, \mathbf{A}) \in \mathrm{L}^{\infty}\left(\Omega ;[0,1] \times \mathrm{M}_{d}(\mathbf{R})\right): \mathbf{A} \in \mathcal{K}(\theta) \text { a.e. }\right\}, \int_{\Omega} \theta d \mathbf{x}=q_{\alpha}, \\
\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m}\right), \text { where } u_{i}, i=1, \ldots, m \text { satisfies } \\
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega) .
\end{array}\right.
\end{array}\right.
$$

Set $\mathcal{K}(\theta)$ is given in terms of eigenvalues of matrix \mathbf{A} (Murat \& Tartar; Lurie \& Cherkaev)

$$
\begin{aligned}
\lambda_{\theta}^{-} & \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d \\
\sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} & \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha} \\
\sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} & \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}}, \\
\lambda_{\theta}^{+} & =\theta \alpha+(1-\theta) \beta, \\
\frac{1}{\lambda_{\theta}^{-}} & =\frac{\theta}{\alpha}+\frac{1-\theta}{\beta}
\end{aligned}
$$

2D:

3D:

- Let us introduce adjoint states p_{1}, \ldots, p_{m} as solutions of

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(\mathbf{A} \nabla p_{i}\right)=\theta \frac{\partial g_{\alpha}}{\partial u_{i}}(\cdot, \mathbf{u})+(1-\theta) \frac{\partial g_{\beta}}{\partial u_{i}}(\cdot, \mathbf{u}) \\
p_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}\right.
$$

Result

Theorem 1. Let $\left(\theta^{*}, \mathbf{A}^{*}\right)$ be a local minimizer for relaxation problem (2) with corresponding states u_{i}^{*} and adjoint states p_{i}^{*}. We introduce symmetric matrix

$$
\mathbf{N}^{*}=\operatorname{Sym} \sum_{i=1}^{m} \sigma_{i}^{*} \otimes \tau_{i}^{*},
$$

for $\sigma_{i}^{*}=\mathbf{A}^{*} \nabla u_{i}^{*}, \tau_{i}^{*}=\mathbf{A}^{*} \nabla p_{i}^{*}$ and function $g(\theta, \mathbf{N})=\min _{\mathbf{A} \in()(\theta)}\left(\mathbf{A}^{-1}: \mathbf{N}\right)$. Then
$\left(\mathbf{A}^{*}\right)^{-1}(\mathbf{x}): \mathbf{N}^{*}(\mathbf{x})=g\left(\theta^{*}(\mathbf{x}), \mathbf{N}^{*}(\mathbf{x})\right), \quad$ a.e. $x \in \Omega$
Moreover, if we define function

$$
R^{*}(\mathbf{x}):=g_{\alpha}\left(\mathbf{x}, u^{*}(\mathbf{x})\right)-g_{\beta}\left(\mathbf{x}, u^{*}(\mathbf{x})\right)+l+\frac{\partial g}{\partial \theta^{*}}\left(\theta^{*}(\mathbf{x}), \mathbf{N}^{*}(\mathbf{x})\right),
$$

the optimal θ^{*} satisfies (a.e. on Ω)

$$
\begin{array}{cc}
\theta^{*}(\mathbf{x})=0 & \Longrightarrow R^{*}(\mathbf{x})>0 \\
\theta^{*}(\mathbf{x})=1 & \Longrightarrow R^{*}(\mathbf{x})<0 \\
0 \leq \theta^{*}(\mathbf{x}) \leq 1 & \Longrightarrow R^{*}(\mathbf{x})=0 .
\end{array}
$$

- For two and three dimensional case we explicitly calculated partial derivative $\frac{\partial g}{\partial \theta}$, which enabled us update of design variables $\left(\theta^{k}, \mathbf{A}^{k}\right)$ in optimality criteria method.

Algorithm 1. Take some initial θ^{0} and \mathbf{A}^{0}. For k from 0 to N :

1. Calculate $u_{i}^{k}, i=1, \ldots, m$, the solution of

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A}^{k} \nabla u_{i}\right)=f_{i} \\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}\right.
$$

2. Calculate $p_{i}^{k}, i=1, \ldots, m$, the solution of

$$
\left\{\begin{array}{c}
-\operatorname{div}\left(\mathbf{A}^{k} \nabla p_{i}\right)=\theta^{k} \frac{\partial g_{\alpha}}{\partial u_{i}}\left(\cdot, \mathbf{u}^{k}\right)+\left(1-\theta^{k}\right) \frac{\partial g_{\beta}}{\partial u_{i}}\left(\cdot, \mathrm{u}^{k}\right) \\
p_{i} \in \mathrm{H}_{0}^{1}(\Omega), \mathrm{u}^{k}=\left(u_{1}^{k}, \ldots, u_{m}^{k}\right)
\end{array}\right.
$$

and define $\sigma_{i}^{k}:=\mathbf{A}^{k} \nabla u_{i}^{k}, \tau_{i}^{k}:=\mathbf{A}^{k} \nabla u_{i}^{k}$ and $\mathbf{N}^{k}:=\operatorname{Sym} \sum_{i=1}^{m}\left(\sigma_{i}^{k} \otimes \tau_{i}^{k}\right)$.
3. For $\mathbf{x} \in \Omega$ let $\theta^{k+1}(\mathbf{x}) \in[0,1]$ be a zero of function

$$
\theta \mapsto R^{k}(\theta, \mathbf{x}):=g_{\alpha}\left(\mathbf{x}, \mathrm{u}^{k}(\mathbf{x})\right)-g_{\beta}\left(\mathbf{x}, \mathrm{u}^{k}(\mathrm{x})\right)+l+\frac{\partial g}{\partial \theta}\left(\theta, \mathbf{N}^{k}(\mathrm{x})\right),
$$

and if a zero doesn't exist, take 0 (or 1) if the function is positive (or negative) on $[0,1]$.
4. Let $\mathbf{A}^{k+1}(\mathbf{x})$ be the minimizer in the definition of $g\left(\theta^{k+1}(\mathbf{x}), \mathbf{N}^{k}(\mathbf{x})\right)$.

Optimality criteria method

Example 1. Consider two-dimensional problem of weighted energy minimization

$$
J(\theta, \mathbf{A})=2 \int_{\Omega} f_{1} u_{1} d \mathbf{x}+\int_{\Omega} f_{2} u_{2} d \mathbf{x} \longrightarrow \min
$$

where $\Omega \subseteq \mathbf{R}^{2}$ is a ball $B(\mathbf{0}, 2), \alpha=1, \beta=2$, while u_{1} and u_{2} are state functions for

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}, \quad i=1,2,\right.
$$

where we take $f_{1}=\chi_{B(\mathbf{0}, 1)}$ and $f_{2} \equiv 1$ for right-hand sides.

Figure 1: Optimal distribution of materials with volume fraction $\eta=0.25$ of the first phase.

Figure 2: Dependence of L^{1} error between numerical and exact solution with respect to mesh refinement for various choices of volume fractions η of the first phase.

Example 2. Consider three-dimensional energy minimization problem

$$
J(\theta, \mathbf{A})=\int_{\Omega}\left(f_{1} u_{1}+f_{2} u_{2}\right) d \mathbf{x} \longrightarrow \min ,
$$

on a cube $[-1,1]^{3}$, with $\alpha=1, \beta=2$ and two state equations

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}, \quad i=1,2 .\right.
$$

We take function f_{1} to be zero on the upper half $(z>0)$ and 10 on the lower half of the cube, and function f_{2} to be zero on the left half $(y<0)$ and 10 on the right half of the cube

(b) Intersection of the cube with $x=0$ plane.

Figure 3: Optimal distribution of materials with volume fraction $\eta=0.5$ of the first phase

