Classical optimal design on annuli

Petar Kunštek ${ }^{1}$ and Margo Vrdoljak ${ }^{2}$
Modern challenges in continuum mechanics, Zagreb 3-6 April 2017.

Statement of the problem

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded set. It consists of two phases each with different isotropic conductivity: $\alpha, \beta(0<\alpha<\beta)$
q_{α} is the prescribed volume of the first phase $\alpha\left(0<q_{\alpha}<|\Omega|\right)$.
$\chi \in L^{\infty}(\Omega,\{0,1\})$ a measurable characteristic function
Conductivity can be expressed as

$$
\mathbf{A}(\chi):=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I},
$$

where

$$
\int_{\Omega} \chi(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=q_{\alpha} .
$$

State functions $u_{i} \in \mathrm{H}_{0}^{1}(\Omega), i=1,2, \ldots, m$ are solutions of the following boundary value problems:
(1) $\quad\left\{\begin{array}{cc}-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} & \text { in } \Omega \\ u_{i}=0 & \text { on } \partial \Omega,\end{array} \quad i=1,2, \ldots, m\right.$

Energy functional:

$$
I(\chi):=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i}(\boldsymbol{x}) u_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} .
$$

where $\mu_{i}>0, i=1,2, \ldots, m$.

Optimal design problem:

$$
\left\{\begin{array}{c}
\quad I(\chi)=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} \mathrm{~d} \boldsymbol{x} \rightarrow \max \\
\text { s.t. } \quad \chi \in L^{\infty}(\Omega,\{0,1\}), \quad \int_{\Omega} \chi \mathrm{d} \boldsymbol{x}=q_{\alpha}, \\
\boldsymbol{u} \text { solves (1) with } \mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I} .
\end{array}\right.
$$

If solution χ exists for (2) we call it classical solution.
Important: For general optimal design problems the classical solutions usually do not exist.

Analytical example on annulus for single state problem

For spherically symmetric problem such that:
$\Omega=R(\Omega)$ for any rotation R
f_{i} are radial functions
it can be proved that there exists radial solution θ_{R}^{*} of (I).
In particular, it can be shown that

$$
\max _{(\theta, \mathbf{A}) \in \mathcal{A}} J(\theta, \mathbf{A})=I\left(\theta_{R}^{*}\right)
$$

Single state equation

(5) $\left\{\begin{array}{cc}-\operatorname{div}\left(\lambda_{\theta}^{-}(x) \nabla u\right)=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{array}\right.$ where $\lambda_{\theta}^{-}(x)=\left(\frac{\theta(x)}{\alpha}+\frac{1-\theta(x)}{\beta}\right)^{-1}$
Optimization problem:
For $\theta \in \mathcal{T}:=$
$\left\{\theta \in L^{\infty}(\Omega,[0,1]): \int_{\Omega} \theta \mathrm{d} \boldsymbol{x}=q_{\alpha}\right\}$
$I(\theta)=\int_{\Omega} u \mathrm{~d} x \rightarrow \max$
One can rewrite (5) in polar coordinates :
$-\frac{1}{r^{d-1}}(r^{d-1} \underbrace{\lambda_{\theta}^{-} u^{\prime}(r)}_{\sigma})^{\prime}=1$ in $\left\langle r_{1}, r_{2}\right\rangle, \quad u\left(r_{1}\right)=u\left(r_{2}\right)=0$. Observe that σ satisfies

$$
\sigma=-\frac{r}{d}+\frac{\gamma}{r^{d-1}}, \quad \gamma>0
$$

$\sigma(r):\langle 0, \infty\rangle \rightarrow \mathbb{R}$ is a strictly decreasing function.
The necessary and sufficient condition of optimality for θ^{*} states

$$
\begin{aligned}
& \left|\sigma^{*}\right|>c \Rightarrow \theta^{*}=1, \\
& \left|\sigma^{*}\right|<c \Rightarrow \theta^{*}=0 .
\end{aligned}
$$

There are only three possible candidates for optimal design

1) $\quad \theta^{*}(r)=\left\{\begin{array}{l}1, r \in\left[r_{1}, r_{+}\right\rangle \\ 0, r \in\left[r_{+}, r_{-}\right\rangle \\ 1, r \in\left[r_{-}, r_{2}\right]\end{array} \quad\right.$ alpha-beta-alpha
2) $\quad \theta^{*}(r)=\left\{\begin{array}{l}1, r \in\left[r_{1}, r_{+}\right\rangle \\ 0, r \in\left[r_{+}, r_{2}\right\rangle\end{array} \quad\right.$ alpha-beta
3) $\quad \theta^{*}(r)=\left\{\begin{array}{l}0, r \in\left[r_{1}, r_{-}\right\rangle \\ 1, r \in\left[r_{-}, r_{2}\right\rangle\end{array}\right.$
beta-alpha

Relaxed design: Effective conductivity

For characteristic functions relaxation consists of:
(3) $\quad \chi \in L^{\infty}(\Omega,\{0,1\}) \rightsquigarrow \theta \in L^{\infty}(\Omega,[0,1])$,
with $\int_{\Omega} \theta \mathrm{d} \boldsymbol{x}:=q_{\alpha}$.
Set of effective conductivities $\mathcal{K}(\theta)$:
$\mathbf{A} \in \mathcal{K}(\theta)$ iff there exists sequence of characteristic functions

$$
\left\{\begin{array}{c}
\chi_{n} \stackrel{L^{\infty} \star}{\longrightarrow} \\
\mathbf{A}^{n}=\chi_{n} \alpha \mathbf{I}+\left(1-\chi_{n}\right) \beta \mathbf{I} \xrightarrow{H} \mathbf{A} .
\end{array}\right.
$$

Visual representation of a set $\mathcal{K}(\theta)$

$$
\begin{gathered}
\mathcal{K}(\theta) \text { is given in terms of eigenvalues } \\
\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d \\
\sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{-}-\alpha} \\
\sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}},
\end{gathered}
$$

where

$$
\begin{aligned}
\lambda_{\theta}^{+} & =\theta \alpha+(1-\theta) \beta \\
\frac{1}{\lambda_{\theta}^{-}} & =\frac{\theta}{\alpha}+\frac{1-\theta}{\beta}
\end{aligned}
$$

Relaxed problem A:

$$
\mathcal{A}=\left\{\begin{array}{l|l}
(\theta, \mathbf{A}) \in L^{\infty}\left(\Omega,[0,1] \times \operatorname{Sym}_{d}\right) & \begin{array}{c}
\int_{\Omega} \theta \mathrm{d} \boldsymbol{x}=q_{\alpha}, \\
\mathbf{A}(\boldsymbol{x}) \in \mathcal{K}(\theta(\boldsymbol{x})), \text { a.e. } \boldsymbol{x}
\end{array}
\end{array}\right\}
$$

Relaxed problem can be written as:
(A) $\max _{(\theta, \mathbf{A}) \in \mathcal{A}} J(\theta, \mathbf{A})=\max _{(\theta, \mathbf{A}) \in \mathcal{A}} \sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i}(\boldsymbol{x}) u_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$

Generalized (convex) problem B

Unfortunately, \mathcal{A} is not a convex set. To achieve convexity, an enlarged (artificial) set is introduced:
$\mathcal{B}=\left\{(\theta, \mathbf{A}) \in L^{\infty}\left(\Omega,[0,1] \times \operatorname{Sym}_{d}\right) \left\lvert\, \begin{array}{c}\int_{\Omega} \theta \mathrm{d} \boldsymbol{x}=q_{\alpha}, \\ \lambda_{\theta(\boldsymbol{x})}^{-} \mathbf{I} \leq \mathbf{A}(\boldsymbol{x}) \leq \lambda_{\theta(\boldsymbol{x})}^{+} \mathbf{I}, \text { a.e. } \boldsymbol{x}\end{array}\right.\right\}$ and with it
(B) $\max _{(\theta, \mathbf{A}) \in \mathcal{B}} J(\theta, \mathbf{A})=\max _{(\theta, \mathbf{A}) \in \mathcal{B}} \sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i}(\boldsymbol{x}) u_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$

Using fluxes one can rewrite problem (B) as max-min problem and prove: Theorem
Optimization problem (B) is equivalent to following optimization problem:
(I) $\left\{\begin{array}{c}I(\theta)=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} \mathrm{~d} x \rightarrow \max \\ \text { s.t. } \theta \in L^{\infty}(\Omega,[0,1]), \quad \int_{\Omega} \theta=q_{\alpha}, \text { where } \boldsymbol{u} \text { satisfies } \\ -\operatorname{div}\left(\lambda_{\theta}^{-} \nabla u_{i}\right)=f_{i}, \quad u_{i} \in \mathrm{H}_{0}^{1}(\Omega), \quad i=1, \ldots, m,\end{array}\right.$

The necessary and sufficient condition of optimality Define

$$
\psi:=\sum_{i=1}^{m} \mu_{i}\left|\sigma_{i}^{*}\right|^{2}
$$

Lemma

The necessary and sufficient condition of optimality for solution θ^{*} of optimal design problem (I) simplifies to the existence of a Lagrange multiplier $c \geq 0$ such that
(4)

$$
\begin{aligned}
& \psi=\sum_{i=1}^{m} \mu_{i}\left|\boldsymbol{\sigma}_{i}^{*}\right|^{2}>c \Rightarrow \theta^{*}=1 \\
& \psi=\sum_{i=1}^{m^{m}} \mu_{i}\left|\boldsymbol{\sigma}_{i}^{*}\right|^{2}<c \Rightarrow \theta^{*}=0
\end{aligned}
$$

Direct calculations

Necessary and sufficient condition of optimality can also be expressed as a non-linear system (unknowns $\gamma, c, r_{+} r_{-}$):

$$
\left\{\begin{array}{c}
S_{d} \int_{r_{1}}^{r_{2}} \theta(\rho) \rho^{d-1} \mathrm{~d} \rho=q_{\alpha} \\
u\left(r_{2}\right)=0 \Longleftrightarrow \gamma \int_{r_{1}}^{r_{2}}\left(\frac{1}{a(\rho) \rho^{d-1}}\right) \mathrm{d} \rho=\int_{r_{1}}^{r_{2}} \frac{\rho}{a(\rho)} \mathrm{d} \rho \\
\sigma\left(r_{+}\right)=c, \quad \sigma\left(r_{-}\right)=-c, \quad \text { where } c>0
\end{array}\right.
$$

where
$\sigma(r)=\frac{\gamma}{r^{d-1}}-\frac{r}{d}, \quad \& \quad a(r)=\left(\frac{\theta(r)}{\alpha}+\frac{1-\theta(r)}{\beta}\right)^{-1}$

Results for $d=2,3$

3) case beta-alpha

Non-linear system (6) does not admit a solution (proved for $d=2$ and $d=3$)

Therefore, cases: 1) and 2) should be considered as only possible solutions. One can easily prove if q_{α} is very small, case alpha-beta is always solution (for arbitrary chosen parameter $\left.\alpha, \beta, r_{1}, r_{2}\right)$.
furthermore, one can numerically obtain critical value for which optimal design changes from case alpha-beta to alpha-beta-alpha

alpha-beta-alpha ($q_{\alpha}>$ critical value)

Remark:

- Problem can be easily generalized to multi-state problem for example $m=2$;
$f_{1}(r)=1, \quad f_{2}(r)=\frac{b}{r(b-r)^{2}}, \quad$ where $b>r_{2}$
- Existence of such solutions is important for any numerical method like shape derivative method.

Gradient method using shape derivative
Perturbation of the set Ω is given with

$$
\Omega_{t}=(\operatorname{Id}+t \psi) \Omega
$$

where $\psi \in W^{k, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$
If t is small (i.e. $\|t \psi\|_{W^{k, \infty}} \ll 1$) mapping Id $+t \psi$ is homeomorphism. This allows us to define shape derivative:

Definition (Shape derivative)

Let $J=J(\Omega)$ be a shape functional. J is said to be shape differentiable at Ω in direction ψ if

$$
J^{\prime}(\Omega, \psi):=\lim _{t \not 0} \frac{J\left(\Omega_{t}\right)-J(\Omega)}{t}
$$

exists and the mapping $\psi \mapsto J^{\prime}(\Omega, \psi)$ is linear and continuous.
$J^{\prime}(\Omega, \psi)$ is called the shape derivative.
For our optimal design problem : shape derivative is given with:

$$
\begin{aligned}
J^{\prime}(\Omega, \psi) & =\int_{\Omega} \mathbf{A}\left(-\operatorname{div}(\psi)+\nabla \psi+\nabla \psi^{\tau}\right) \nabla u_{0} \cdot \nabla u_{0} \mathrm{~d} \boldsymbol{x} \\
& +\int_{\Omega} 2(\operatorname{div}(\psi) f+\nabla f \cdot \psi) u_{0} \mathrm{~d} \boldsymbol{x}
\end{aligned}
$$

where u_{0} is solution of $\operatorname{BVP}(1)$ on domain Ω with \mathbf{A}
Vector field $\psi \in H_{0}^{1}(\Omega)$ is constructed from:

$$
\int_{\Omega} \nabla \psi: \nabla \varphi+\int_{\Omega} \psi \cdot \varphi=J^{\prime}(\Omega, \varphi), \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

The shape is evolved by gradually moving the boundary between phases,

Numerical results

[1] Murat, F., Tartar L. Calcul des Variations et Homogénéisation, Les Méthodes de l'Homogénéisation Théorie et Applications en Physique, Coll. Dir. Etudes et Recherche EDF, 57, Eyrolles,Paris, pp.319-369 (1985)
2] Vrdoljak, M. Classical Optimal Design in Two-Phase Conductivity Problems, SIAM Journal on Control and Optimization: 2020-2035 (2016)
[3] Laurain A., Sturm, K., Domain expression of the shape derivative and application to electrical impedance tomography Technical report 1863, Weierstrass - Institute for applied analysis and stochastic (2013)
4] Allaire, G., Pantz, O., Structural optimization with FreeFem++ Structural and Multidisciplinary Optimization 32.3: 173-181. (2006)

