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The necessary and sufficient condition of optimality

Statement of the problem

Let Ω ⊂ Rd be open and bounded set. It consists of two phases each with
different isotropic conductivity: α, β (0 < α < β).

qα is the prescribed volume of the first phase α (0 < qα < |Ω|).
χ ∈ L∞(Ω, {0, 1}) a measurable characteristic function.

Conductivity can be expressed as

A(χ) := χα I+(1− χ)β I,

where ∫
Ω
χ(x) dx = qα.

State functions ui ∈ H1
0(Ω), i = 1, 2, ...,m are solutions of the following

boundary value problems:

(1)

{
−div(A∇ui) = fi in Ω

ui = 0 on ∂Ω,
i = 1, 2, ...,m.

Energy functional:

I(χ) :=

m∑
i=1

µi

∫
Ω

fi(x)ui(x) dx.

where µi > 0, i = 1, 2, ...,m.

Optimal design problem:

(2)


I(χ) =

∑m
i=1 µi

∫
Ω
fiui dx→ max

s.t. χ ∈ L∞(Ω, {0, 1}),
∫

Ω
χ dx = qα,

u solves (1) with A = χα I+(1− χ)β I .

If solution χ exists for (2) we call it classical solution.

Important: For general optimal design problems the classical solutions
usually do not exist.

Relaxed design: Effective conductivity

For characteristic functions relaxation consists of:

(3) χ ∈ L∞(Ω, {0, 1})  θ ∈ L∞(Ω, [0, 1]),

with
∫

Ω θ dx := qα.

Set of effective conductivities K(θ) :
A ∈ K(θ) iff there exists sequence of characteristic functions χn

L∞?
−−⇀ θ

An = χnα I+(1− χn)β I
H
−−⇀A .

Visual representation of a set K(θ)

K(θ) is given in terms of eigenvalues
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θ j = 1, . . . , d
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+

d− 1

λ+
θ − α

d∑
j=1

1

β − λj
≤ 1

β − λ−θ
+

d− 1

β − λ+
θ

,

where

λ+
θ = θα + (1− θ)β

1

λ−θ
=
θ

α
+

1− θ
β

.

O λ1

λ2

α
θ = 1

α

β
θ = 0

β

λ+θ

λ+θ

λ−θ

λ−θ

K(θ)

λ1

λ2

λ3

Relaxed problem A:

A =

{
(θ,A) ∈ L∞(Ω, [0, 1]× Symd)

∣∣∣∣∣
∫

Ω θ dx = qα,

A(x) ∈ K(θ(x)), a.e. x

}
Relaxed problem can be written as:

(A) max
(θ,A)∈A

J(θ,A) = max
(θ,A)∈A

m∑
i=1

µi

∫
Ω

fi(x)ui(x) dx

Generalized (convex) problem B

Unfortunately, A is not a convex set. To achieve convexity, an enlarged
(artificial) set is introduced:

B =

{
(θ,A) ∈ L∞(Ω, [0, 1]× Symd)

∣∣∣∣∣
∫

Ω θ dx = qα,

λ−
θ(x)

I≤A(x) ≤ λ+
θ(x)

I, a.e. x

}
and with it

(B) max
(θ,A)∈B

J(θ,A) = max
(θ,A)∈B

m∑
i=1

µi

∫
Ω

fi(x)ui(x) dx

Using fluxes one can rewrite problem (B) as max-min problem and prove:

Theorem
Optimization problem (B) is equivalent to following optimization problem:

(I)


I(θ) =

m∑
i=1

µi
∫

Ω fiui dx→ max

s.t. θ ∈ L∞(Ω, [0, 1]),
∫

Ω θ = qα, where u satisfies

− div(λ−θ ∇ui) = fi, ui ∈ H1
0(Ω), i = 1, ...,m,

�

The necessary and sufficient condition of optimality

Define

ψ :=

m∑
i=1

µi|σ∗i |
2.

Lemma
The necessary and sufficient condition of optimality for solution θ∗ of
optimal design problem (I) simplifies to the existence of a Lagrange
multiplier c ≥ 0 such that

(4)

ψ =

m∑
i=1

µi|σ∗i |
2 > c ⇒ θ∗ = 1 ,

ψ =

m∑
i=1

µi|σ∗i |
2 < c ⇒ θ∗ = 0 .

�

Analytical example on annulus for single state problem

For spherically symmetric problem such that:

Ω = R(Ω) for any rotation R

fi are radial functions

it can be proved that there exists radial solution θ∗R of (I).

In particular, it can be shown that

max
(θ,A)∈A

J(θ,A) = I(θ∗R).

Ω

r2r1

Ω = K(0, r2)\K(0, r1)

Single state equation:

(5)

{
− div(λ−θ (x)∇u) = 1 in Ω

u = 0 on ∂Ω

where λ−θ (x) =
(
θ(x)
α +

1−θ(x)
β

)−1
.

Optimization problem:
For θ ∈ T :={
θ ∈ L∞(Ω, [0, 1]) :

∫
Ω θ dx = qα

}
I(θ) =

∫
Ω
u dx→ max

One can rewrite (5) in polar coordinates :

− 1

rd−1
(rd−1 λ−θ u

′(r)︸ ︷︷ ︸
σ

)′ = 1 in 〈r1, r2〉 , u(r1) = u(r2) = 0.

Observe that σ satisfies

σ = −r
d

+
γ

rd−1
, γ > 0

σ(r) : 〈0,∞〉 → R is a strictly decreasing function.

The necessary and sufficient condition of optimality for θ∗ states

|σ∗| > c ⇒ θ∗ = 1 ,
|σ∗| < c ⇒ θ∗ = 0 .

σ

c

−c

r+ r−

There are only three possible candidates for optimal design:

1) θ∗(r) =

 1, r ∈ [r1, r+〉
0, r ∈ [r+, r−〉
1, r ∈ [r−, r2]

alpha-beta-alpha

2) θ∗(r) =

{
1, r ∈ [r1, r+〉
0, r ∈ [r+, r2〉

alpha-beta

3) θ∗(r) =

{
0, r ∈ [r1, r−〉
1, r ∈ [r−, r2〉

beta-alpha

Direct calculations

Necessary and sufficient condition of optimality can also be
expressed as a non-linear system (unknowns γ, c, r+r−):

(6)



Sd

r2∫
r1

θ(ρ)ρd−1 dρ = qα

u(r2) = 0 ⇐⇒ γ

r2∫
r1

(
1

a(ρ)ρd−1

)
dρ =

r2∫
r1

ρ

a(ρ)
dρ

σ(r+) = c, σ(r−) = −c, where c > 0

where

σ(r) =
γ

rd−1
− r

d
, & a(r) =

(
θ(r)

α
+

1− θ(r)

β

)−1

.

Results for d = 2, 3

3) case beta-alpha

Non-linear system (6) does
not admit a solution (proved
for d = 2 and d = 3).

Therefore, cases: 1) and 2) should be considered as only
possible solutions. One can easily prove if qα is very small, case
alpha-beta is always solution (for arbitrary chosen parameters
α, β, r1, r2).

Furthermore, one can numerically obtain critical value for which
optimal design changes from case alpha-beta to
alpha-beta-alpha.

alpha-beta
(qα < critical value)

alpha-beta-alpha
(qα > critical value)

Remark:

• Problem can be easily generalized to multi-state problem for
example m = 2;

f1(r) = 1, f2(r) =
b

r(b− r)2
, where b > r2

• Existence of such solutions is important for any numerical
method like shape derivative method.

Gradient method using shape derivative

Perturbation of the set Ω is given with

Ωt = (Id +tψ)Ω

where ψ ∈ W k,∞(Rd,Rd)
If t is small (i.e. ‖tψ‖W k,∞ � 1) mapping Id +tψ is homeomorphism. This allows us to
define shape derivative:

Definition (Shape derivative)
Let J = J(Ω) be a shape functional. J is said to be shape differentiable at Ω in direction
ψ if

J ′(Ω, ψ) := lim
t↘0

J(Ωt)− J(Ω)

t

exists and the mapping ψ 7→ J ′(Ω, ψ) is linear and continuous.
J ′(Ω, ψ) is called the shape derivative.

�
For our optimal design problem : shape derivative is given with:

J ′(Ω, ψ) =

∫
Ω

A(− div(ψ) +∇ψ +∇ψτ )∇u0 · ∇u0 dx

+

∫
Ω

2(div(ψ)f +∇f · ψ)u0 dx

where u0 is solution of BVP (1) on domain Ω with A.
Vector field ψ ∈ H1

0(Ω) is constructed from:∫
Ω
∇ψ : ∇ϕ +

∫
Ω
ψ · ϕ = J ′(Ω, ϕ), ∀ϕ ∈ H1

0(Ω)

The shape is evolved by gradually moving the boundary between phases.

Numerical results:
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