Compensated compactness in the $\mathrm{L}^{p}-\mathrm{L}^{q}$ setting

Marin Mišur
email: mmisur@math.hr University of Zagreb
joint work with Darko Mitrović, dmitrovi@math.hr

February 11, 2016

Div-rot lemma in L^{2}

Theorem 1. Assume that Ω is open and bounded subset of \mathbf{R}^{3}, and that it holds:

$$
\begin{aligned}
\mathbf{u}_{n} & \rightharpoonup \mathbf{u} \text { in } \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right), \\
\mathbf{v}_{n} & \rightharpoonup \mathbf{v} \text { in } \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right),
\end{aligned}
$$

$$
\text { rot } \mathbf{u}_{n} \text { bounded in } \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \text {, div } \mathbf{v}_{n} \text { bounded in } \mathrm{L}^{2}(\Omega) \text {. }
$$

Then

$$
\mathbf{u}_{n} \cdot \mathbf{v}_{n} \rightharpoonup \mathbf{u} \cdot \mathbf{v}
$$

in the sense of distributions.

Quadratic theorem

Theorem 2. (Quadratic theorem) Assume that $\Omega \subseteq \mathbf{R}^{d}$ is open and that $\Lambda \subseteq \mathbf{R}^{r}$ is defined by

$$
\Lambda:=\left\{\boldsymbol{\lambda} \in \mathbf{R}^{r}:\left(\exists \boldsymbol{\xi} \in \mathbf{R}^{d} \backslash\{0\}\right) \quad \sum_{k=1}^{d} \xi_{k} \mathbf{A}^{k} \boldsymbol{\lambda}=0\right\}
$$

where Q is a real quadratic form on \mathbf{R}^{r}, which is nonnegative on Λ, i.e.

$$
(\forall \boldsymbol{\lambda} \in \Lambda) \quad Q(\boldsymbol{\lambda}) \geqslant 0
$$

Furthermore, assume that the sequence of functions (\mathbf{u}_{n}) satisfies

$$
\begin{gathered}
\mathbf{u}_{n} \longrightarrow \mathbf{u} \quad \text { weakly in } \quad \mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{R}^{r}\right) \\
\left(\sum_{k} \mathbf{A}^{k} \partial_{k} \mathbf{u}_{n}\right) \quad \text { relatively compact in } \quad \mathrm{H}_{\mathrm{loc}}^{-1}\left(\Omega ; \mathbf{R}^{q}\right)
\end{gathered}
$$

Then every subsequence of $\left(Q \circ \mathbf{u}_{n}\right)$ which converges in distributions to it's limit L, satisfies

$$
L \geqslant Q \circ \mathbf{u}
$$

in the sense of distributions.

The most general version of the classical L^{2} results has recently been proved by E. Yu. Panov (2011):

Assume that the sequence $\left(\mathbf{u}_{n}\right)$ is bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right), 2 \leq p<\infty$, and converges weakly in $\mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right)$ to a vector function \mathbf{u}.
Let $q=p^{\prime}$ if $p<\infty$, and $q>1$ if $p=\infty$. Assume that the sequence

$$
\sum_{k=1}^{\nu} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right)+\sum_{k, l=\nu+1}^{d} \partial_{k l}\left(\mathbf{B}^{k l} \mathbf{u}_{n}\right)
$$

is precompact in the anisotropic Sobolev space $\mathrm{W}_{\text {loc }}^{-1,-2 ; q}\left(\mathbf{R}^{d} ; \mathbf{R}^{m}\right)$, where $m \times r$ matrices \mathbf{A}^{k} and $\mathbf{B}^{k l}$ have variable coefficients belonging to $\mathrm{L}^{2 \bar{q}}\left(\mathbf{R}^{d}\right)$, $\bar{q}=\frac{p}{p-2}$ if $p>2$, and to the space $\mathrm{C}\left(\mathbf{R}^{d}\right)$ if $p=2$.

We introduce the set $\Lambda(\mathbf{x})$

$$
\begin{align*}
\Lambda(\mathbf{x})=\left\{\boldsymbol{\lambda} \in \mathbf{C}^{r} \mid\right. & \left(\exists \boldsymbol{\xi} \in \mathbf{R}^{d} \backslash\{0\}\right): \tag{1}\\
& \left.\left(i \sum_{k=1}^{\nu} \xi_{k} \mathbf{A}^{k}(\mathbf{x})-2 \pi \sum_{k, l=\nu+1}^{d} \xi_{k} \xi_{l} \mathbf{B}^{k l}(\mathbf{x})\right) \boldsymbol{\lambda}=\mathbf{0}_{m}\right\}
\end{align*}
$$

and consider the bilinear form on \mathbf{C}^{r}

$$
\begin{equation*}
q(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\eta})=\mathbf{Q}(\mathbf{x}) \boldsymbol{\lambda} \cdot \boldsymbol{\eta} \tag{2}
\end{equation*}
$$

where $\mathbf{Q} \in \mathrm{L}_{l o c}^{\bar{q}}\left(\mathbf{R}^{d} ; \operatorname{Sym}_{r}\right)$ if $p>2$ and $\mathbf{Q} \in \mathbf{C}\left(\mathbf{R}^{d} ; \operatorname{Sym}_{r}\right)$ if $p=2$.
Finally, let $q\left(\mathbf{x}, \mathbf{u}_{n}, \mathbf{u}_{n}\right) \rightharpoonup \omega$ weakly in the space of distributions.

Result by Panov

The following theorem holds

Theorem 3. [P, 2011] Assume that $(\forall \boldsymbol{\lambda} \in \Lambda(\mathbf{x})) q(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\lambda}) \geq 0$ (a.e. $\mathbf{x} \in \mathbf{R}^{d}$) and $\mathbf{u}_{n} \rightharpoonup \mathbf{u}$, then $q(\mathbf{x}, \mathbf{u}(\mathbf{x}), \mathbf{u}(\mathbf{x})) \leq \omega$.

The connection between q and Λ given in the previous theorem, we shall call the consistency condition.

H-distributions

H-distributions were introduced by N. Antonić and D. Mitrović (2011) as an extension of H -measures to the $\mathrm{L}^{p}-\mathrm{L}^{q}$ context.
M. Lazar and D. Mitrović (2012) extended and applied them on a velocity averaging problem.

We need Fourier multiplier operators with symbols defined on a manifold P determined by d-tuple $\boldsymbol{\alpha} \in\left(\mathbf{R}^{+}\right)^{d}$:

$$
\mathrm{P}=\left\{\boldsymbol{\xi} \in \mathbf{R}^{d}: \sum_{k=1}^{d}\left|\xi_{k}\right|^{2 \alpha_{k}}=1\right\}
$$

where $\alpha_{k} \in \mathbf{N}$ or $\alpha_{k} \geq d$. In order to associate an L^{p} Fourier multiplier to a function defined on P , we extend it to $\mathbf{R}^{d} \backslash\{0\}$ by means of the projection

$$
\left(\pi_{\mathrm{P}}(\boldsymbol{\xi})\right)_{j}=\xi_{j}\left(\left|\xi_{1}\right|^{2 \alpha_{1}}+\cdots+\left|\xi_{d}\right|^{2 \alpha_{d}}\right)^{-1 / 2 \alpha_{j}}, \quad j=1, \ldots, d
$$

We need the following extension of the results given above.

Theorem 4. Let $\left(u_{n}\right)$ be a bounded sequence in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), p>1$, and let $\left(v_{n}\right)$ be a bounded sequence of uniformly compactly supported functions in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, $1 / q+1 / p<1$. Then, after passing to a subsequence (not relabelled), for any $\bar{s} \in\left(1, \frac{p q}{p+q}\right)$ there exists a continuous bilinear functional B on $\mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d}\right) \otimes \mathrm{C}^{d}(\mathrm{P})$ such that for every $\varphi \in \mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{d}(\mathrm{P})$, it holds

$$
B(\varphi, \psi)=\lim _{n \rightarrow \infty} \int_{\mathbf{R}^{d}} \varphi(\mathbf{x}) u_{n}(\mathbf{x})\left(\mathcal{A}_{\psi_{\mathbf{P}}} v_{n}\right)(\mathbf{x}) d \mathbf{x}
$$

where $\mathcal{A}_{\psi_{\mathrm{P}}}$ is the Fourier multiplier operator on \mathbf{R}^{d} associated to $\psi \circ \pi_{\mathrm{P}}$. The bilinear functional B can be continuously extended as a linear functional on $\mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d} ; \mathrm{C}^{d}(\mathrm{P})\right)$.

Localisation principle

Lemma

Assume that sequences $\left(\mathbf{u}_{n}\right)$ and $\left(\mathbf{v}_{n}\right)$ are bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ and $L^{q}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, respectively, and converge toward $\mathbf{0}$ and \mathbf{v} in the sense of distributions.
Furthermore, assume that sequence (\mathbf{u}_{n}) satisfies:

$$
\begin{equation*}
\mathbf{G}_{n}:=\sum_{k=1}^{d} \partial_{k}^{\alpha_{k}}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right) \rightarrow \mathbf{0} \text { in } \mathrm{W}^{-\alpha_{1}, \ldots,-\alpha_{d} ; p}\left(\Omega ; \mathbf{R}^{m}\right) \tag{3}
\end{equation*}
$$

where either $\alpha_{k} \in \mathbf{N}, k=1, \ldots, d$ or $\alpha_{k}>d, k=1, \ldots, d$, and elements of matrices \mathbf{A}^{k} belong to $\mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d}\right), \bar{s} \in\left(1, \frac{p q}{p+q}\right)$.
Finally, by $\boldsymbol{\mu}$ denote a matrix H-distribution corresponding to subsequences of $\left(\mathbf{u}_{n}\right)$ and $\left(\mathbf{v}_{n}-\mathbf{v}\right)$. Then the following relation holds

$$
\left(\sum_{k=1}^{d}\left(2 \pi i \xi_{k}\right)^{\alpha_{k}} \mathbf{A}^{k}\right) \boldsymbol{\mu}=\mathbf{0}
$$

Strong consistency condition

Introduce the set

$$
\Lambda_{\mathcal{D}}=\left\{\boldsymbol{\mu} \in \mathrm{L}^{\bar{s}}\left(\mathbf{R}^{d} ;\left(\mathrm{C}^{d}(\mathrm{P})\right)^{\prime}\right)^{r}:\left(\sum_{k=1}^{n}\left(2 \pi i \xi_{k}\right)^{\alpha_{k}} \mathbf{A}^{k}\right) \boldsymbol{\mu}=\mathbf{0}_{m}\right\}
$$

where the given equality is understood in the sense of $\mathrm{L}^{\bar{s}}\left(\mathbf{R}^{d} ;\left(\mathrm{C}^{d}(\mathrm{P})\right)^{\prime}\right)^{m}$.
Let us assume that coefficients of the bilinear form q from (2) belong to space $\mathrm{L}_{l o c}^{t}\left(\mathbf{R}^{d}\right)$, where $1 / t+1 / p+1 / q<1$.

Definition

We say that set $\Lambda_{\mathcal{D}}$, bilinear form q from (2) and matrix $\boldsymbol{\mu}=\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{r}\right], \boldsymbol{\mu}_{j} \in \mathrm{~L}^{\bar{s}}\left(\mathbf{R}^{d} ;\left(\mathrm{C}^{d}(\mathrm{P})\right)^{\prime}\right)^{r}$ satisfy the strong consistency condition if $(\forall j \in\{1, \ldots, r\}) \boldsymbol{\mu}_{j} \in \Lambda_{\mathcal{D}}$, and it holds

$$
\langle\phi \mathbf{Q} \otimes 1, \boldsymbol{\mu}\rangle \geq \mathbf{0}, \quad \phi \in \mathrm{L}^{\bar{s}}\left(\mathbf{R}^{d} ; \mathbf{R}_{0}^{+}\right)
$$

Compactness by compensation

Theorem 5. Assume that sequences $\left(\mathbf{u}_{n}\right)$ and $\left(\mathbf{v}_{n}\right)$ are bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ and $\mathrm{L}^{q}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, respectively, and converge toward \mathbf{u} and \mathbf{v} in the sense of distributions.
Assume that (3) holds and that

$$
q\left(\mathbf{x} ; \mathbf{u}_{n}, \mathbf{v}_{n}\right) \rightharpoonup \omega \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right) .
$$

If the set $\Lambda_{\mathcal{D}}$, the bilinear form (2), and matrix H-distribution μ, corresponding to subsequences of $\left(\mathbf{u}_{n}-\mathbf{u}\right)$ and $\left(\mathbf{v}_{n}-\mathbf{v}\right)$, satisfy the strong consistency condition, then

$$
q(\mathbf{x} ; \mathbf{u}, \mathbf{v}) \leq \omega \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right)
$$

Application to the parabolic type equation

Now, let us consider the non-linear parabolic type equation

$$
L(u)=\partial_{t} u-\operatorname{div} \operatorname{div}(g(t, \mathbf{x}, u) \mathbf{A}(t, \mathbf{x}))
$$

on $(0, \infty) \times \Omega$, where Ω is an open subset of \mathbf{R}^{d}. We assume that

$$
\begin{array}{r}
u \in \mathrm{~L}^{p}((0, \infty) \times \Omega), \quad g(t, \mathbf{x}, u(t, \mathbf{x})) \in \mathrm{L}^{q}((0, \infty) \times \Omega), \quad 1<p, q \\
\mathbf{A} \in \mathrm{~L}_{l o c}^{s}((0, \infty) \times \Omega)^{d \times d}, \quad \text { where } 1 / p+1 / q+1 / s<1
\end{array}
$$

and that the matrix \mathbf{A} is strictly positive definite, i.e.

$$
\mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi}>0, \quad \boldsymbol{\xi} \in \mathbf{R}^{d} \backslash\{\mathbf{0}\}, \quad(\text { a.e. }(t, \mathbf{x}) \in(0, \infty) \times \Omega)
$$

Furthermore, assume that g is a Carathèodory function and non-decreasing with respect to the third variable.

Then we have the following theorem.

Theorem 6. Assume that sequences $\left(u_{r}\right)$ and $g\left(\cdot, u_{r}\right)$ are such that $u_{r}, g\left(u_{r}\right) \in \mathrm{L}^{2}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$ for every $r \in \mathbf{N}$; assume that they are bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right), p \in(1,2]$, and $\mathrm{L}^{q}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right), q>2$, respectively, where $1 / p+1 / q<1$; furthermore, assume $u_{r} \rightharpoonup u$ and, for some, $f \in \mathrm{~W}^{-1,-2 ; p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$, the sequence

$$
L\left(u_{r}\right)=f_{r} \rightarrow f \quad \text { strongly in } \mathrm{W}^{-1,-2 ; p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)
$$

Under the assumptions given above, it holds

$$
L(u)=f \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)
$$

References

[AM] N. Antonić, D. Mitrović, H-distributions: An Extension of H-Measures to an $\mathrm{L}^{p}-\mathrm{L}^{q}$ Setting, Abstr. Appl. Anal. Volume 2011, Article ID 901084, 12 pages.
[LM] M. Lazar, D. Mitrović, Velocity averaging - a general framework, Dynamics of PDEs 9 (2012) 239-260.
[P] E. J. Panov, Ultraparabolic H-measures and compensated compactness, Annales Inst. H.Poincaré 28 (2011) 47-62.

