Multiple state optimal design problems with explicit solution

Marko Vrdoljak

Department of Mathematics Faculty of Science University of Zagreb, Croatia

Krešimir Burazin

Department of Mathematics University of Osijek, Croatia

88th GAMM Annual Meeting, Weimar, March 2017

Multiple state problem optimizing energy

Fill $\Omega \subseteq \mathbf{R}^d$ with two isotropic materials with conductivity $0 < \alpha < \beta$, quantity q_α of the first material is given:

$$\begin{split} \mathbf{A} &= \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I}, \quad \chi \in \mathrm{L}^{\infty}(\Omega; \{0, 1\}) \\ &\int_{\Omega} \chi \, d\mathbf{x} = q_{\alpha} \end{split}$$

State equations

$$\begin{cases} -\operatorname{div} (\mathbf{A} \nabla u_i) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{cases} \quad i = 1, \dots, m,$$

Goal functional is a conic sum of energies $(\mu_i > 0)$

$$I(\chi) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i(\mathbf{x}) u_i(\mathbf{x}) d\mathbf{x} \longrightarrow \min / \max$$

Relaxation via homogenization theory:

$$\begin{array}{ll} \mbox{classical design} & \mbox{relaxed design} \\ \chi \in \mathrm{L}^{\infty}(\Omega; \{0,1\}) & \cdots & \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) \\ & \mathbf{A} \in \mathcal{K}(\theta) & \mbox{a.e. on } \Omega \\ & I(\chi) & J(\theta, \mathbf{A}) - \mbox{given by the same formula} \end{array}$$

Example – maximization

$$\begin{split} \Omega &:= B(\mathbf{0}, 1) \subseteq \mathbf{R}^2, \ q_\alpha := 0.8 |\Omega| \\ I(\chi) &= \sum_{i=1}^2 \int_\Omega f_i(\mathbf{x}) u_i(\mathbf{x}) d\mathbf{x} \longrightarrow \max \\ f_1 &= \chi_A + \varepsilon \chi_B \\ f_2 &= \chi_A - \varepsilon \chi_B \\ A &:= B\left(\mathbf{0}, \frac{1}{2}\right)^c, \ B := B\left(\mathbf{0}, \frac{1}{5}\right) \end{split}$$

Numerical solution, $\varepsilon = 0.01$

Numerical solution, $\varepsilon = 0$

Representation by a concave maximization problem

The space of admissible local fractions

$$\mathcal{T}:=\left\{ heta\in\mathrm{L}^\infty(\Omega;[0,1]):\int_\Omega heta\,d\mathbf{x}=q_lpha
ight\}$$

Admissible (relaxed) designs

 $\mathcal{A} = \{(\theta, \mathbf{A}) \in \mathcal{T} \times L^{\infty}(\Omega; \operatorname{Sym}) : \mathbf{A} \in \mathcal{K}(\theta) \text{ (a.e. on } \Omega)\}$

Maximization over \mathcal{B}

Murat and Tartar (1985), Casado-Díaz (2015) - one state equation.

Lemma

There exists a unique $\sigma^* \in S = \{\sigma \in L^2(\Omega; \mathbf{R}^d)^m : -\operatorname{div} \sigma_i = f_i, i = 1..m\}$ such that

$$\max_{(\theta,\mathbf{A})\in\mathcal{B}} J(\theta,\mathbf{A}) = \max_{(\theta,\mathbf{A})\in\mathcal{B}} \sum_{i=1}^{m} \mu_i \int_{\Omega} \mathbf{A}^{-1} \boldsymbol{\sigma}_i^* \cdot \boldsymbol{\sigma}_i^* \, d\mathbf{x} \,. \tag{1}$$

Moreover, if (θ^*, \mathbf{A}^*) is an optimal design for problem $\max_{\mathcal{B}} J$ and u^* the corresponding state function, then $\mathbf{A}^* \nabla u_i^* = \sigma_i^*$, i = 1, ..., m.

Above maximization problems is easily solved: Design (θ^*, \mathbf{A}^*) is optimal if and only if (almost everywhere in Ω)

$$\mathbf{A}^* \boldsymbol{\sigma}_i^* = \lambda_{\theta^*}^- \boldsymbol{\sigma}_i^*, \ i = 1..m.$$

If u^* is the corresponding state function, we have

$$\sigma_i^* = \lambda_{ heta^*}^-
abla u_i^*$$
 or equivalently $\mathbf{A}^*
abla u_i^* = \lambda_{ heta^*}^-
abla u_i^*$, $i = 1..m$.

Theorem

Let (θ^*, \mathbf{A}^*) be an optimal design for the problem $\max_{\mathcal{B}} J$. Then θ^* solves

$$I(\theta) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \max$$

$$\theta \in \mathcal{T} \quad \text{and u determined uniquely by}$$

$$\begin{cases} -\operatorname{div} \left(\lambda_{\theta}^- \nabla u_i\right) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{cases} \quad i = 1, \dots, m,$$

Conversely, if $\tilde{\theta}$ is a solution of optimal design problem (2), and \tilde{u} is the corresponding state function, then for any measurable $\tilde{\mathbf{A}} \in \mathcal{B}(\tilde{\theta})$ such that $\tilde{\mathbf{A}} \nabla \tilde{u}_i = \lambda_-(\tilde{\theta}) \nabla \tilde{u}_i$, e.g. for $\tilde{\mathbf{A}} = \lambda_-(\tilde{\theta}) \mathbf{I}$, $(\tilde{\theta}, \tilde{\mathbf{A}})$ is an optimal design for the problem $\max_{\mathcal{B}} J$.

(2)

Necessary and sufficient optimality conditions

Similar to Lemma above, one can rephrase the simpler relaxation problem (2): there exists a unique $\sigma^* \in S = \{\sigma \in L^2(\Omega; \mathbf{R}^d)^m : -\operatorname{div} \sigma_i = f_i, i = 1..m\}$ such that

$$\max_{\mathcal{T}} I = \max_{\theta \in \mathcal{T}} \sum_{i=1}^{m} \mu_i \int_{\Omega} \frac{\beta - \alpha}{\alpha \beta} \, \theta |\boldsymbol{\sigma}_i^*|^2 \, d\mathbf{x} \, .$$

Moreover, σ^* is the same as for max_{\mathcal{B}} J.

Lemma

The necessary and sufficient condition of optimality for solution $\theta^* \in \mathcal{T}$ of optimal design problem (2) simplifies to the existence of a Lagrange multiplier $c \ge 0$ such that

$$\begin{split} &\sum_{i=1}^m \mu_i |\boldsymbol{\sigma}_i^*|^2 > c \quad \Rightarrow \quad \theta^* = 1 \,, \\ &\sum_{i=1}^m \mu_i |\boldsymbol{\sigma}_i^*|^2 < c \quad \Rightarrow \quad \theta^* = 0 \,. \end{split}$$

Spherically symmetric case

Let $\Omega \subseteq \mathbf{R}^d$ be spherically symmetric (ball or annulus), and let the right-hand sides be radial functions: $f_i = f_i(r)$. Since σ^* is unique, it must be radial: $\sigma_i^* = \sigma_i^*(r)\mathbf{e}_r$.

Theorem

For any maximizer θ^* for max_T I, the radial function

$$\widetilde{\theta}(r) = \int_{\partial B(\mathbf{0},r)} \theta^* \, dS$$

is also a maximizer.

- If $\tilde{\theta}$ is a maximizer of I over \mathcal{T} , then for a simple laminate $\tilde{\mathbf{A}} \in \mathcal{K}(\tilde{\theta})$ with layers orthogonal to \mathbf{e}_r , $(\tilde{\theta}, \tilde{\mathbf{A}})$ is a maximizer of J over \mathcal{A} .
- For any maximizer (θ^*, \mathbf{A}^*) of J over \mathcal{A}, θ^* is a maximizer of I over \mathcal{T} .

For problems on a ball, σ^* is a unique (radial) solution od $-\text{div }\sigma_i = f_i, i = 1..m$, and so conditions of optimality easily determine optimal θ^* .

A. Single state equation: [Murat & Tartar, 1985]

$$\begin{split} I(\theta) &= \int_{\Omega} f u \, d\mathbf{x} \longrightarrow \min \\ \theta &\in \mathcal{T} \text{ , and } u \text{ determined uniquely by} \\ \begin{cases} -\operatorname{div} \left(\lambda_{\theta}^{+} \nabla u\right) = f \\ u &\in \operatorname{H}_{0}^{1}(\Omega) \end{split}$$

B. Multiple state equations:

$$\begin{split} I(\theta) &= \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \min\\ \theta &\in \mathcal{T} \text{, and } u_i \text{ determined uniquely by}\\ \begin{cases} -\mathsf{div} \left(\lambda_{\theta}^+ \nabla u_i\right) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{cases} \quad i = 1, \dots, m \end{split}$$

A: Holds always!
$$\begin{array}{ccc} \min_{\mathcal{A}} J & \Longleftrightarrow & \min_{\mathcal{T}} I \\ & & &$$

Theorem

If m < d then $\min_{\mathcal{A}} J = \min_{\mathcal{T}} I$ and:

- There is unique u^{*} ∈ H¹₀(Ω; ℝ^m) which is the state for every solution of min_A J and min_T I.
- If (θ*, A*) is an optimal design for the problem min_A J, then θ* is optimal design for min_T I.
- Conversely, if θ^* is a solution of optimal design problem $\min_{\mathcal{T}} I$, then any $(\theta^*, \mathbf{A}^*) \in \mathcal{A}$ satisfying $\mathbf{A}^* \nabla u_i^* = \lambda_{\theta^*}^+ \nabla u_i^*$, i = 1, ..., m (e.g. simple laminates) is an optimal design for the problem $\min_{\mathcal{A}} J$.

 $\Omega \subseteq \mathbf{R}^d$ is spherically symmetric and right-hand sides $f_i = f_i(r)$, i = 1, ..., m are radial functions.

Theorem

There is a unique radial u^* which is the state for any solution of $\min_A J$ and $\min_T I$. Moreover,

- If (θ*, A*) ∈ A is a solution of the relaxed problem min_A J then θ* is optimal for min_T I, and A*∇u^{*}_i = λ⁺_{θ*}∇u^{*}_i, i = 1,..., m.
- There exists a radial minimizer θ^* of I over \mathcal{T} and for any radial minimizer θ^* of I over \mathcal{T} there exists a simple laminate $\mathbf{A}^* \in \mathcal{K}(\theta^*)$ such that (θ^*, \mathbf{A}^*) is an optimal design for $\min_{\mathcal{A}} J$.

Optimality conditions for $\min_{\mathcal{T}} I$

$$\min_{\theta \in \mathcal{T}} I(\theta) = -\max_{\theta \in \mathcal{T}} \min_{\mathbf{v} \in \mathrm{H}_{0}^{1}(\Omega; \mathbf{R}^{m})} \sum_{i=1}^{m} \mu_{i} \int_{\Omega} \lambda_{\theta}^{+} |\nabla v_{i}|^{2} - 2f_{i} v_{i} d\mathbf{x}$$

Saddle points exist ... share the same v (aka u^*).

$$\min_{ heta \in \mathcal{T}} I(heta) = - \max_{ heta \in \mathcal{T}} \sum_{i=1}^m \mu_i \int_\Omega \lambda^+_ heta |
abla u^*_i|^2 - 2f_i u^*_i d\mathbf{x}$$

Lemma

 $\theta^* \in \mathcal{T}$ is a solution min $_{\mathcal{T}} I$ if and only if there exists a Lagrange multiplier $c \ge 0$ such that

$$\begin{split} \sum_{\substack{i=1\\m}}^{m} \mu_i |\nabla u_i^*|^2 > c \quad \Rightarrow \quad \theta^* = 0 \,, \\ \sum_{i=1}^{m} \mu_i |\nabla u_i^*|^2 < c \quad \Rightarrow \quad \theta^* = 1 \,. \end{split}$$

Example – energy minimization

$$\begin{aligned} & \Omega = B(\mathbf{0}, 2), \ f_1 = \chi_{B(\mathbf{0}, 1)}, \ f_2 \equiv 1, \\ & = \begin{cases} -\operatorname{div} \left(\lambda_{\theta}^+ \nabla u_i\right) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{cases} \quad i = 1, 2 \\ & = \mu \int_{\Omega} f_1 u_1 \, d\mathbf{x} + \int_{\Omega} f_2 u_2 \, d\mathbf{x} \to \min \end{cases} \end{aligned}$$

Solving state equation in polar coordinates

$$u_i'(r) = \frac{\sigma_i(r)}{\theta(r)\alpha + (1 - \theta(r))\beta}, \ i = 1, 2,$$

with

$$\sigma_1(r) = \begin{cases} -\frac{r}{2}, & 0 \le r < 1, \\ -\frac{1}{2r}, & 1 \le r \le 2, \end{cases} \text{ and } \sigma_2(r) = -\frac{r}{2}$$

Define $\psi := \mu \sigma_1^2 + \sigma_2^2$, $g_\alpha := \frac{\psi}{\alpha^2}$, $g_\beta := \frac{\psi}{\beta^2}$.

Geometric interpretation of optimality conditions

Optimal θ^* for case B

Optimal state u* is unknown but $\sum_{i=1}^{m} \mu_i |\nabla u_i^*|^2 = \mu |u_1^*|^2 + |u_2^*|^2 \in [g_\beta, g_\alpha]$. By necessary conditions of optimality, on a set where $c > g_\alpha$ we have $\theta^* = 1$, on a set where $c < g_\beta$ we have $\theta^* = 0$, and if $g_\beta < c < g_\alpha$ we have $\theta^* \in \langle 0, 1 \rangle$, and θ^* is uniquely determined from $\frac{\psi}{\lambda_+(\theta^*)^2} = c$.

