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Multiple state problem optimizing energy

Fill @ C RY with two isotropic materials with conductivity 0 < o < /3, quantity qa
of the first material is given:

A=xal+(1-x)8l, xeL>(Q2{0,1})

. Jax dx = qa
State equations

—div(AVuy;) = f; .
{U,EH(Q) i=1,....,m,

Goal functional is a conic sum of energies (u; > 0)

Z,u,/ x)ui(x)dx — min / max

Relaxation via homogenization theory:

classical design relaxed design
x € L>(2;{0,1}) --- 0eL>(2;[0,1])
AcK(f) ae on Q
1(x) J(0,A) — given by the same formula
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Example — maximization

:mOQCR%%_n&m

= ,lfQ x)dx — max
f_ €

1=XA+ XB,where
fr=xa—€XB

A:=B(0,3), B:=8B(0,1)

theta theta
0.75 0.75
0.5 :0.5
éo.zs 025
G 5
Numerical solution, € = 0.01 Numerical solution, e =0
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Representation by a concave maximization problem

The space of admissible local fractions
T = {9 € L™ (Q;[0,1]) : / 0dx = Qa}
Q

Admissible (relaxed) designs

A={(0,A) € T x L>(Q; Sym) : A € K£(0) (a.e. on Q)}
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B={(0,A) e T x L=(;Sym) : A € B(0) (a.e. on Q)}
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Maximization over B

Murat and Tartar (1985), Casado-Diaz (2015) — one state equation.

Lemma

|

There exists a unique 0* € S = {o € L?(Q;RY)" : —dive; = f;,i = 1..m} such
that

max J(6,A) = max Z /A o; - o dx. (1)

(6,A)EB (9 A)eB “

Moreover, if (6, A*) is an optimal design for problem maxg J and u* the
corresponding state function, then A*Vui =07, i=1,...,m

1

Above maximization problems is easily solved:
Design (6%, A*) is optimal if and only if (almost everywhere in Q)

Aol =X.o;,i=1.m.

If u* is the corresponding state function, we have

o; = A, Vu; or equivalently A*Vui = A\, Vu/, i =1.m.
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Simpler relaxation problem

Let (0*, A*) be an optimal design for the problem maxp J. Then 6* solves

9):Z,u,-/9f,~u,-dx—> max
i=1

0 € T and u determined uniquely by (2)
—div (A, Vuj) =f; :
v (A Vui) i=1...,m,
u; € H(IJ(Q)

Conversely, if 0 is a solution of optimal design problem (2) and U is the
corresponding state function, then for any measurable Ac 8(9) such that
AV, = A_(0)Vi;, eg. for A= A_(A)l, (0,A) is an optimal design for the
problem maxg J. )
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Necessary and sufficient optimality conditions

Similar to Lemma above, one can rephrase the simpler relaxation problem (2):
there exists a unique o* € S = {o € L2(;RY)" : —dive; = f;,i = 1..m} such

that
I E ]
I |aX nax ‘U, / 9|(7 | dx

Moreover, o* is the same as for maxg J.

Lemma

The necessary and sufficient condition of optimality for solution 6* € T of optimal
design problem (2) simplifies to the existence of a Lagrange multiplier ¢ > 0 such
that

Marko Vrdoljak Optimal design problems with explicit solution



Spherically symmetric case

Let © C RY be spherically symmetric (ball or annulus), and let the right-hand
sides be radial functions: f; = fi(r).
Since o* is unique, it must be radial: o} = o¥(r)e,.

Theorem

For any maximizer 8* for maxy I, the radial function

i(r) = ][ 0" ds
2B(0,r)

is also a maximizer.

m If0 is a maximizer of | over T, then for a simple laminate A € IC(@) with
layers orthogonal to e,, (6, A) is a maximizer of J over A.

m fFor any maximizer (6%, K*) of J over A, 6* is a maximizer of | over T.

For problems on a ball, o* is a unique (radial) solution od —dive; = f;,i = 1..m,
and so conditions of optimality easily determine optimal 6*.
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Energy minimization

A. Single state equation:

[Murat & Tartar, 1985] B. Multiple state equations:
1(6) = / fu dx — min 1(0) = Zw/ﬂ fiuj dx — min
Q2 i=1
0 € T, and u determined uniquely by 0 € T , and u; determined uniquely by
—div(A\jVu) =f —div(\gVu)=f )
i=1,...,m
u € Hy(Q) u; € HY(Q)
min J — min /
A T

B: Holds in spherically symmetric case or

. |
A: Holds always! when m < d.

Marko Vrdoljak Optimal design problems with explicit solution



m< d

If m < d then min4 J = miny | and:

m There is unique u* € H}(Q; R™) which is the state for every solution of
min 4 J and miny /.

m If (6%, A*) is an optimal design for the problem min 4 J, then 6* is optimal
design for miny /.

m Conversely, if 0* is a solution of optimal design problem miny I, then any
(6, A*) € A satisfying AV uf = \J.Vu?, i=1,...,m (eg. simple
laminates) is an optimal design for the problem min 4 J.
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Spherical symmetry

Q C RY is spherically symmetric and right-hand sides f; = f;(r), i = 1,...,m are
radial functions.

Theorem

There is a unique radial u* which is the state for any solution of min4 J and
mins . Moreover,

m If (0%, A") € A is a solution of the relaxed problem min 4 J then 0* is optimal
for miny I, and A*Vu} = A;&Vu}", i=1....,m.
m There exists a radial minimizer 0* of | over T and for any radial minimizer 0*

of | over T there exists a simple laminate A* € IC(0*) such that (0*,A*) is
an optimal design for min_4 J.
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Optimality conditions for mins /

min /() = —ma min i | AV vi2 = 2fividx
QEIT() ee%(veHllssz ZH/ 0| v| ’

Saddle points exist . ..share the same v (aka u*).

0T

inl(9) = — i ANIVur]? = 2fuid
min /(6) ngZu/Q 51V 2 — 267 dx

Lemma

0* € T is a solution miny | if and only if there exists a Lagrange multiplier ¢ > 0
such that

m
Zu;|Vu}“|2>c = 0*=0,
i=1
m
Y ouilVuiP<c = 6*=1.
i=1
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Example — energy minimization

m Q=B(0,2), i =xpo1, =1,
—div ()\;’Vu,-) =f ‘19
u; € H(Q) =0

u/ﬂuldx—i—/l‘zuzdx—)min
Q Q

Solving state equation in polar coordinates

(T,'(r)

ui(r) = 0(N)a + (1 — 0(r)B

with
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Geometric interpretation of optimality conditions

B:l<p<4

D:16 < p
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Optimal 6* for case B

Optimal state u* is unknown but > 7 w;|Vu?|? = pluf]? + |u3? € [gs, 8al-

By necessary conditions of optimality, on a set where ¢ > g, we have §* =1, on a
set where ¢ < gz we have §* =0, and if gg < ¢ < g, we have 6* € (0,1), and 6*
is uniquely determined from % =c.

c 0"
Yo

@ ¢ q 2 0 s @ 6 6 2

All possible optimal configurations (for

various gq):
e
B o — mix

m o — mix— o — mix

VH 2 r Ba—-mix—[
B:l<pu<4 . .
moa—mix—0—-mix—-p
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