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Multiple state problem optimizing energy

Fill Ω ⊆ Rd with two isotropic materials with conductivity 0 < α < β, quantity qα
of the first material is given:

A = χαI + (1− χ)βI, χ ∈ L∞(Ω; {0, 1})∫
Ω
χ dx = qα

State equations {
−div (A∇ui ) = fi
ui ∈ H1

0(Ω)
i = 1, . . . ,m ,

Goal functional is a conic sum of energies (µi > 0)

I (χ) =
m∑
i=1

µi

∫
Ω

fi (x)ui (x)dx −→ min /max

Relaxation via homogenization theory:

classical design relaxed design
χ ∈ L∞(Ω; {0, 1}) · · · θ ∈ L∞(Ω; [0, 1])

A ∈ K(θ) a.e. on Ω
I (χ) J(θ,A) – given by the same formula
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Example – maximization

Ω := B(0, 1) ⊆ R2, qα := 0.8|Ω|
I (χ) =

∑2
i=1

∫
Ω
fi (x)ui (x)dx −→ max

f1 = χA + εχB

f2 = χA − εχB

, where

A := B
(
0, 1

2

)c
, B := B

(
0, 1

5

)
1±ε

B(0, 1)

Numerical solution, ε = 0.01 Numerical solution, ε = 0
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Representation by a concave maximization problem

The space of admissible local fractions

T :=

{
θ ∈ L∞(Ω; [0, 1]) :

∫
Ω

θ dx = qα

}
Admissible (relaxed) designs

A = {(θ,A) ∈ T × L∞(Ω;Sym) : A ∈ K(θ) (a.e. on Ω)}

λ1

λ2

λ−θ

λ+θ

λ−θ λ+θ

K(θ)

λ1

λ2

λ−θ

λ+θ

λ−θ λ+θ

B(θ)
λ+
θ = θα + (1− θ)β
1

λ−θ
=
θ

α
+

1− θ
β

B = {(θ,A) ∈ T × L∞(Ω;Sym) : A ∈ B(θ) (a.e. on Ω)}
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Maximization over B
Murat and Tartar (1985), Casado-D́ıaz (2015) – one state equation.

Lemma

There exists a unique σ∗ ∈ S = {σ ∈ L2(Ω;Rd)
m

: −divσi = fi , i = 1..m} such
that

max
(θ,A)∈B

J(θ,A) = max
(θ,A)∈B

m∑
i=1

µi

∫
Ω

A−1σ∗i · σ∗i dx . (1)

Moreover, if (θ∗,A∗) is an optimal design for problem maxB J and u∗ the
corresponding state function, then A∗∇u∗i = σ∗i , i = 1, . . . ,m .

Above maximization problems is easily solved:
Design (θ∗,A∗) is optimal if and only if (almost everywhere in Ω)

A∗σ∗i = λ−θ∗σ
∗
i , i = 1..m .

If u∗ is the corresponding state function, we have

σ∗i = λ−θ∗∇u
∗
i or equivalently A∗∇u∗i = λ−θ∗∇u

∗
i , i = 1..m .
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Simpler relaxation problem

Theorem

Let (θ∗,A∗) be an optimal design for the problem maxB J. Then θ∗ solves

I (θ) =
m∑
i=1

µi

∫
Ω

fiui dx −→ max

θ ∈ T and u determined uniquely by −div (λ−θ ∇ui ) = fi

ui ∈ H1
0(Ω)

i = 1, . . . ,m ,

(2)

Conversely, if θ̃ is a solution of optimal design problem (2), and ũ is the

corresponding state function, then for any measurable Ã ∈ B(θ̃) such that

Ã∇ũi = λ−(θ̃)∇ũi , e.g. for Ã = λ−(θ̃)I, (θ̃, Ã) is an optimal design for the
problem maxB J.
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Necessary and sufficient optimality conditions

Similar to Lemma above, one can rephrase the simpler relaxation problem (2):
there exists a unique σ∗ ∈ S = {σ ∈ L2(Ω;Rd)

m
: −divσi = fi , i = 1..m} such

that

max
T

I = max
θ∈T

m∑
i=1

µi

∫
Ω

β − α
αβ

θ|σ∗i |2 dx .

Moreover, σ∗ is the same as for maxB J.

Lemma

The necessary and sufficient condition of optimality for solution θ∗ ∈ T of optimal
design problem (2) simplifies to the existence of a Lagrange multiplier c ≥ 0 such
that

m∑
i=1

µi |σ∗i |2 > c ⇒ θ∗ = 1 ,

m∑
i=1

µi |σ∗i |2 < c ⇒ θ∗ = 0 .
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Spherically symmetric case

Let Ω ⊆ Rd be spherically symmetric (ball or annulus), and let the right-hand
sides be radial functions: fi = fi (r).
Since σ∗ is unique, it must be radial: σ∗i = σ∗i (r)er .

Theorem

For any maximizer θ∗ for maxT I , the radial function

θ̃(r) = −
∫
∂B(0,r)

θ∗ dS

is also a maximizer.

If θ̃ is a maximizer of I over T , then for a simple laminate Ã ∈ K
(
θ̃
)

with

layers orthogonal to er , (θ̃, Ã) is a maximizer of J over A.

For any maximizer (θ∗,A∗) of J over A, θ∗ is a maximizer of I over T .

For problems on a ball, σ∗ is a unique (radial) solution od −divσi = fi , i = 1..m,
and so conditions of optimality easily determine optimal θ∗.
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Energy minimization

A. Single state equation:
[Murat & Tartar, 1985]

I (θ) =

∫
Ω

fu dx −→ min

θ ∈ T , and u determined uniquely by −div (λ+
θ∇u) = f

u ∈ H1
0(Ω)

B. Multiple state equations:

I (θ) =
m∑
i=1

µi

∫
Ω

fiui dx −→ min

θ ∈ T , and ui determined uniquely by −div (λ+
θ∇ui ) = fi

ui ∈ H1
0(Ω)

i = 1, . . . ,m

min
A

J ⇐⇒ min
T

I

A: Holds always!
B: Holds in spherically symmetric case or
when m < d .
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m < d

Theorem

If m < d then minA J = minT I and:

There is unique u∗ ∈ H1
0(Ω;Rm) which is the state for every solution of

minA J and minT I .

If (θ∗,A∗) is an optimal design for the problem minA J, then θ∗ is optimal
design for minT I .

Conversely, if θ∗ is a solution of optimal design problem minT I , then any
(θ∗,A∗) ∈ A satisfying A∗∇u∗i = λ+

θ∗∇u∗i , i = 1, . . . ,m (e.g. simple
laminates) is an optimal design for the problem minA J.
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Spherical symmetry

Ω ⊆ Rd is spherically symmetric and right-hand sides fi = fi (r), i = 1, . . . ,m are
radial functions.

Theorem

There is a unique radial u∗ which is the state for any solution of minA J and
minT I . Moreover,

If (θ∗,A∗) ∈ A is a solution of the relaxed problem minA J then θ∗ is optimal
for minT I , and A∗∇u∗i = λ+

θ∗∇u∗i , i = 1, . . . ,m.

There exists a radial minimizer θ∗ of I over T and for any radial minimizer θ∗

of I over T there exists a simple laminate A∗ ∈ K(θ∗) such that (θ∗,A∗) is
an optimal design for minA J.
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Optimality conditions for minT I

min
θ∈T

I (θ) = −max
θ∈T

min
v∈H1

0(Ω;Rm)

m∑
i=1

µi

∫
Ω

λ+
θ |∇vi |

2 − 2fividx

Saddle points exist . . . share the same v (aka u∗).

min
θ∈T

I (θ) = −max
θ∈T

m∑
i=1

µi

∫
Ω

λ+
θ |∇u

∗
i |2 − 2fiu

∗
i dx

Lemma

θ∗ ∈ T is a solution minT I if and only if there exists a Lagrange multiplier c ≥ 0
such that m∑

i=1

µi |∇u∗i |2 > c ⇒ θ∗ = 0 ,

m∑
i=1

µi |∇u∗i |2 < c ⇒ θ∗ = 1 .
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Example – energy minimization

Ω = B(0, 2) , f1 = χB(0,1) , f2 ≡ 1 ,{
−div (λ+

θ∇ui ) = fi
ui ∈ H1

0(Ω)
i = 1, 2

µ

∫
Ω

f1u1 dx +

∫
Ω

f2u2 dx→ min

Solving state equation in polar coordinates

u′i (r) =
σi (r)

θ(r)α + (1− θ(r))β
, i = 1, 2 ,

with

σ1(r) =


− r

2
, 0 ≤ r < 1 ,

− 1

2r
, 1 ≤ r ≤ 2 ,

and σ2(r) = − r

2
.

Define ψ := µσ2
1 + σ2

2 , gα := ψ
α2 , gβ := ψ

β2 .
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Geometric interpretation of optimality conditions

20 r

c

gβ

gα

A: 0 < µ ≤ 1
20 r

c

4
√
µ

gβ

gα

B: 1 < µ ≤ 4

20 r

c

4
√
µ

gβ

gα

C: 4 < µ ≤ 16
20 r

c

gβ

gα

D: 16 < µ
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Optimal θ∗ for case B

Optimal state u∗ is unknown but
∑m

i=1 µi |∇u∗i |2 = µ|u∗1 |2 + |u∗2 |2 ∈ [gβ , gα].
By necessary conditions of optimality, on a set where c > gα we have θ∗ = 1, on a
set where c < gβ we have θ∗ = 0, and if gβ < c < gα we have θ∗ ∈ 〈0, 1〉, and θ∗

is uniquely determined from ψ
λ+(θ∗)2 = c .

2
0

r

c

c

gβ

gα

pc1 qc1 qc2 qc3

α

β β

gβ

2
0

r

θ∗

1

pc1 qc1 qc2 qc3

20 r

c

4
√
µ

gβ

gα

B: 1 < µ ≤ 4

All possible optimal configurations (for
various qα):

α

α – mix

α – mix – α – mix

α – mix – β

α – mix – β – mix – β
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