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Compliance maximization

State equation (Ω ⊆ Rd open and bounded){
−div (A∇u) = 1 = f
u ∈ H1

0(Ω)

Two phases: 0 < α < β
A = χαI + (1− χ)βI, χ ∈ L∞(Ω; {0, 1}),

∫
Ω
χ dx = qα, for given 0 < qα < |Ω|

Cost functional:

J(χ) =

∫
Ω

u(x)dx −→ max

Interpretations:

Maximize the amount of heat kept inside body

Maximize the torsional rigidity of a rod made of two materials

Maximize the flow rate of two viscous immiscible fluids through pipe

In general, compliance functional

J(χ) =

∫
Ω

f (x)u(x) dx −→ max
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Classical vs. relaxed optimal design

Intuition for annulus? In general, there might exist no classical optimal
design. The relaxation is needed, introducing
composite materials

χ ∈ L∞(Ω; {0, 1}) · · · θ ∈ L∞(Ω; [0, 1])
A ∈ K(θ) a.e. on Ω

classical design relaxed design
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Effective conductivities – set K(θ)

K(θ) is given in terms of eigenvalues
(Murat & Tartar; Lurie & Cherkaev):

λ−θ ≤ λj ≤ λ+
θ j = 1, . . . , d

d∑
j=1

1

λj − α
≤ 1

λ−θ − α
+

d − 1

λ+
θ − α

d∑
j=1

1

β − λj
≤ 1

β − λ−θ
+

d − 1

β − λ+
θ

,

where

λ+
θ = θα + (1− θ)β

1

λ−θ
=

θ

α
+

1− θ
β

2D:

O λ1

λ2

α
θ = 1

α

β
θ = 0

β

λ+θ

λ+θ

λ−θ

λ−θ

K(θ)

3D:

λ1

λ2

λ3
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Compliance minimization

Murat and Tartar, 1985 Lurie and Cherkaev, 1986
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Multiple state optimal design problem

State equations {
−div (A∇ui ) = fi
ui ∈ H1

0(Ω)
i = 1, . . . ,m

State function u = (u1, . . . , um)
I (χ) =

∑m
i=1 µi

∫
Ω

fiui dx→ max

u = (u1, . . . , um) state function for A = χαI + (1− χ)βI

χ ∈ L∞(Ω; {0, 1}) ,
∫

Ω

χ dx = qα ,

for some given weights µi > 0. Relaxed designs:

A :=

{
(θ,A) ∈ L∞(Ω; [0, 1]×Md(R)) :

∫
Ω

θ dx = qα , A(x) ∈ K(θ(x)) a.e. on Ω

}

Relaxation [Allaire, 2002] . . .

 J(θ,A) =
∑m

i=1 µi

∫
Ω

fiui dx→ max

(θ,A) ∈ A
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Single vs. multiple state problems

A. Single state equation
[Murat & Tartar, 1985] There exists relaxed solution (θ∗,A∗) among simple
laminates . . . conductivity λ−θ in one direction (∇u), and λ+

θ in orthogonal
directions. As a consequence, θ∗ is also a solution of

I (θ) =
∫

Ω
fu dx→ max

θ ∈ L∞(Ω; [0, 1]) ,

∫
Ω

θ dx = qα , −div (λ−θ ∇u) = f

u ∈ H1
0(Ω) can be rewritten as a convex minimization problem

B. Multiple state equations
It is not enough to use only simple laminates, but composite materials that
correspond to a non-affine boundary of K(θ) . . . higher order sequential laminates.
The above simpler relaxation fails.
The aim of this talk

in spherically symmetric case, simpler relaxation is correct

present some problems with classical optimal design
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Motivation: random right-hand side

Let (S ,M, µ) be a probability space.
Suppose that f ∈ L1(S ;H−1(Ω)), and denote f :=

∫
S

f dµ.
In other words we consider s ∈ S to be a parameter in boundary value problem{

−div (A∇u) = f (s, ·)
u ∈ H1

0(Ω)
(1)

A priori estimate for the solution implies that solution u belongs to L1(S ;H1
0(Ω)).

We consider the following optimal design problem [Buttazzo, Maestre 2011]:
Given f ∈ L1(S ;H−1(Ω)), one seeks for a characteristic function χ on Ω that
optimizes

J(χ) =

∫
S

∫
Ω

f (s, x)u(s, x) dx dµ→ min /max ,

where u ∈ L1(S ;H1
0(Ω)) is determined by (1) with A = χαI + (1− χ)βI.

Moreover, we assume that quantity of the first material is given:

∫
Ω

θ dx = qα.
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Discrete probability space

S := {s1, s2, . . . , sm}, µ(si ) = µi ≥ 0,
∑

i µi = 1.
Then f ∈ L1(S ;H−1(Ω)) is characterized by functionals fi := f (si , ·) ∈ H−1(Ω),
which uniquely determine state functions ui :{

−div (A∇ui ) = fi
ui ∈ H1

0(Ω)
i = 1, . . . ,m .

Finally, the goal functional becomes

J(θ,A) =
∑
i

µi

∫
Ω

fiui dx→ max ,

Therefore, we can use any method for numerical solution of this new multiple
state optimal design problem.
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Example

We consider Ω := B(0, 1) ⊆ R2, qα := 0.8|Ω|, S = {1, 2}, µ1 = µ2 = 1
2 .

1ε

B(0, 1)

1−ε

B(0, 1)

f1 = χA + εχB

f2 = χA − εχB , where

A := B
(
0, 1

2

)c
, B := B

(
0, 1

5

)

Numerical solution, ε = 0.01 Numerical solution, ε = 0
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We shall enlarge the set A of admissible designs

A =

{
(θ,A) ∈ L∞(Ω; [0, 1]× Sym) :

∫
Ω

θ dx = qα , A ∈ K(θ) (a.e. on Ω)

}

λ1

λ2

λ−θ

λ+θ

λ−θ λ+θ

K(θ)

λ1

λ2

λ−θ

λ+θ

λ−θ λ+θ

B(θ)

B =

{
(θ,A) ∈ L∞(Ω; [0, 1]× Sym) :

∫
Ω

θ dx = qα , A ∈ B(θ) (a.e. on Ω)

}
C :=

{
(θ,B) ∈ L∞(Ω; [0, 1]× Sym) : (θ,B−1) ∈ B

}
.

A is not convex: e.g. isotropic materials
(θ, γI) ∈ A can be easily characterised: α

β

10 θ

γ
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Extended set of admissible designs

B and C are convex sets: e.g. B can be rewritten as

λmin(A) ≥ λ−θ , λmax(A) ≤ λ+
θ , a.e. on Ω ,

where λmin and λ+
· are concave, and λmax and λ−· are convex functions.

−J(θ,A) = −
m∑
i=1

µi

∫
Ω

fiui dx

= −
m∑
i=1

µi

∫
Ω

A∇ui · ∇ui − 2fiui dx

= − min
v∈H1

0(Ω;Rm)

m∑
i=1

µi

∫
Ω

A∇vi · ∇vi − 2fivi dx

= −max
σ∈S

(
−

m∑
i=1

µi

∫
Ω

A−1σi · σi dx

)
,

where S = {σ ∈ L2(Ω; Rd)
m

: −div σi = fi , i = 1, . . . ,m}.
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Representation by a convex optimization problem

Lemma

There exists a unique σ∗ ∈ S = {σ ∈ L2(Ω; Rd)
m

: −divσi = fi , i = 1..m} such
that

max
(θ,A)∈B

J(θ,A) = max
(θ,A)∈B

m∑
i=1

µi

∫
Ω

A−1σ∗i · σ∗i dx = max
(θ,B)∈C

m∑
i=1

µi

∫
Ω

Bσ∗i · σ∗i dx .

(2)
Moreover, if (θ∗,A∗) is an optimal design for problem maxB J and u∗ the
corresponding state function, then A∗∇u∗i = σ∗i , i = 1, . . . ,m .

Above maximization problems are easily solved:
Design (θ∗,A∗) is optimal if and only if (almost everywhere in Ω)

A∗σ∗i = λ−θ∗σ
∗
i i = 1..m .

If u∗ is the corresponding state function, we have

σ∗i = λ−θ∗∇u∗i or equivalently A∗∇u∗i = λ−θ∗∇u∗i , i = 1..m .
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Simpler relaxation problem

... in terms of only local fraction θ belonging to the set

T :=

{
θ ∈ L∞(Ω; [0, 1]) :

∫
Ω

θ dx = qα

}
Theorem

Let (θ∗,A∗) be an optimal design for the problem maxB J. Then θ∗ solves

I (θ) =
m∑
i=1

µi

∫
Ω

fiui dx −→ max

θ ∈ T and u determined uniquely by −div (λ−θ ∇ui ) = fi

ui ∈ H1
0(Ω)

i = 1, . . . ,m ,

(3)

Conversely, if θ̃ is a solution of optimal design problem (3), and ũ is the

corresponding state function, then for any measurable Ã ∈ B(θ̃) such that

Ã∇ũi = λ−(θ̃)∇ũi almost everywhere on Ω, e.g. for Ã = λ−(θ̃)I, (θ̃, Ã) is an
optimal design for the problem maxB J.
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Necessary and sufficient optimality conditions

Similar to Lemma above, one can rephrase the simpler relaxation problem (3):
there exists a unique σ∗ ∈ S = {σ ∈ L2(Ω; Rd)

m
: −divσi = fi , i = 1..m} such

that

max
T

I = max
θ∈T

m∑
i=1

µi

∫
Ω

β − α
αβ

θ|σ∗i |2 dx .

Moreover, σ∗ is the same as for the problem maxB J.

Lemma

The necessary and sufficient condition of optimality for solution θ∗ ∈ T of optimal
design problem (3) simplifies to the existence of a Lagrange multiplier c ≥ 0 such
that

m∑
i=1

µi |σ∗i |2 > c ⇒ θ∗ = 1 ,

m∑
i=1

µi |σ∗i |2 < c ⇒ θ∗ = 0 .
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Spherically symmetric case

Let Ω ⊆ Rd be spherically symmetric: in spherical coordinates given by r ∈ ω (an
interval), and the right-hand side f = f(r), r ∈ ω be a radial function.
Since σ∗ is unique, it must be radial: σ∗i = σ∗i (r)er .

Theorem

For any maximizer (θ∗,A∗) for the problem maxB J, there exist a radial maximizer

(θ̃, Ã) ∈ B where

θ̃(r) = −
∫
∂B(0,r)

θ∗ dS .

Corollary

For any radial solution θ∗ for maxT I , there exist a radial conductivity A∗ ∈ K(θ∗)
such that (θ∗,A∗) is maximizer for maxA J.
Conversely, if (θ∗,A∗) ∈ A is a radial maximizer for maxA J then θ∗ is a
maximizer for problem maxT I .
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Back to the example ε > 0

1ε

B(0, 1)

1−ε

B(0, 1)

f1,2(r) =


±ε, 0 ≤ r ≤ 1

5

0, 1
5 < r ≤ 1

2

1, 1
2 < r ≤ 1 .

−divσi = fi , i = 1, 2 in polar coordinates: −1

r
(rσi )

′ = fi . Due to regularity at

r=0, we can calculate unique solutions σ∗1 and σ∗2 :

11
2

1
5

0 r

σ∗1
2 + σ∗2

2

c

σ∗1
2 + σ∗2

2 > c ⇒ θ∗ = 1 ,
σ∗1

2 + σ∗2
2 < c ⇒ θ∗ = 0 .

For any c , the solution θ∗ is unique
and classical (more precisely, the
uniqueness of solution for maxB J fol-
lows).
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How to determine Lagrange multiplier c?

11
2

1
5

0 r

σ∗1
2 + σ∗2

2

c

β α β α

σ∗1
2 + σ∗2

2 > c ⇒ θ∗ = 1 ,
σ∗1

2 + σ∗2
2 < c ⇒ θ∗ = 0 .

Quantity of given materials uniquely
determines c (as usual).
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The case ε = 0

Small qα: unique classical solution

11
2

0 r

σ∗2

c

β α

σ∗2 > c ⇒ θ∗ = 1 ,
σ∗2 < c ⇒ θ∗ = 0 .

If qα >
3
4π then c have to be zero. Now, solution is not unique – it is only

important to put α in annulus B
(
0, 1

2

)c
.
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Example 2

Two state equations on a ball Ω = B(0, 2)

f1 = χB(0,1) , f2 = χB(0,1)c ,{
−div (λ−θ ∇ui ) = fi
ui ∈ H1

0(Ω)
i = 1, 2

µ1

∫
Ω

f1u1 dx +

∫
Ω

f2u2 dx→ max

For studying conditions of optimality, we introduce

ψ(r) = µ1 (σ∗1 (r))2 + (σ∗2 (r))2
.

The case 0 < µ1 <
49
3 :

1 20

r

ψ

c

β α

1 20

r

ψ

c

β α β α

1 20

r

ψ

c

β α
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Example 2

The case 49
3 ≤ µ1 < 119:

1 20

r

ψ

c

β α

1 20

r

ψ

c

β α β α

1 20

r

ψ

c

β α β

The case µ1 ≥ 119:

1 20

r

ψ

c

β α

1 20

r

ψ

c

β α β
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Multiple states

Three optimal configurations, depending on µ1 and qα:

α β

Radii are solutions of some algebraic equations (solved numerically).
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Conclusion

General strategy for solving maxA J in spherically symmetric case:

1 Solve −divσi = fi , i = 1..m – candidates for σ∗ (in case of ball there is only
one candidate).

2 Study conditions of optimality (they usually give unique solution θ∗ – radial,
but also classical).

3 Construct solution to maxA J (commonly, it would be classical solution; for
minimization problem the situation is quite different).

4 It is also possible to comment the possible non-uniqueness of relaxation
problem.

Thank you for your attention!
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