Classical Optimal Design on Annulus and Numerical Solution by Shape Derivative Method

Marko Vrdoljak Joint work with Petar Kunštek

Department of Mathematics Faculty of Science University of Zagreb, Croatia

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

89th GAMM Annual Meeting,

München, March 2018

State equation ($\Omega \subseteq \mathbf{R}^d$ open and bounded)

$$\left\{egin{array}{l} -{\sf div}\left({f A}
abla u
ight)=1\ u\in {
m H}^1_0(\Omega) \end{array}
ight.$$

문제 제품 제

3

A B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

State equation ($\Omega \subseteq \mathbf{R}^d$ open and bounded)

$$\left\{ egin{array}{l} -{\sf div}\left({f A}
abla u
ight)=1\ u\in {
m H}^1_0(\Omega) \end{array}
ight.$$

Two phases: $0 < \alpha < \beta$ $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I}$, $\chi \in L^{\infty}(\Omega; \{0, 1\})$, $\int_{\Omega} \chi \, d\mathbf{x} = q_{\alpha}$, for given $0 < q_{\alpha} < |\Omega|$

< 日 > < 同 > < 三 > .

State equation ($\Omega \subseteq \mathbf{R}^d$ open and bounded)

$$\left\{egin{array}{l} -{\sf div}\left({f A}
abla u
ight)=1\ u\in {
m H}^1_0(\Omega) \end{array}
ight.$$

Two phases: $0 < \alpha < \beta$ $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I}$, $\chi \in L^{\infty}(\Omega; \{0, 1\})$, $\int_{\Omega} \chi \, d\mathbf{x} = q_{\alpha}$, for given $0 < q_{\alpha} < |\Omega|$ Cost functional:

$$J(\chi) = \int_{\Omega} u(\mathbf{x}) d\mathbf{x} \longrightarrow \max$$

《曰》《聞》《臣》《臣》

State equation ($\Omega \subseteq \mathbf{R}^d$ open and bounded)

$$\left\{ egin{array}{l} -{\sf div}\left({f A}
abla u
ight)=1\ u\in {
m H}^1_0(\Omega) \end{array}
ight.$$

Two phases: $0 < \alpha < \beta$ $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi)\beta \mathbf{I}, \ \chi \in L^{\infty}(\Omega; \{0, 1\}), \ \int_{\Omega} \chi \, d\mathbf{x} = q_{\alpha}, \text{ for given } 0 < q_{\alpha} < |\Omega|$ Cost functional:

$$J(\chi) = \int_{\Omega} u(\mathbf{x}) d\mathbf{x} \longrightarrow \max$$

Interpretations:

- Maximize the amount of heat kept inside body
- Maximize the torsional rigidity of a rod made of two materials
- Maximize the flow rate of two viscous immiscible fluids through pipe

・ロト ・四ト ・ヨト ・ヨト

State equation ($\Omega \subseteq \mathbf{R}^d$ open and bounded)

$$\left\{ \begin{array}{l} -\mathsf{div}\left(\mathbf{A}\nabla u\right)=1\\ u\in \mathrm{H}_{0}^{1}(\Omega) \end{array} \right.$$

Two phases: $0 < \alpha < \beta$ $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi)\beta \mathbf{I}, \ \chi \in L^{\infty}(\Omega; \{0, 1\}), \ \int_{\Omega} \chi \, d\mathbf{x} = q_{\alpha}, \text{ for given } 0 < q_{\alpha} < |\Omega|$ Cost functional:

$$J(\chi) = \int_{\Omega} u(\mathbf{x}) d\mathbf{x} \longrightarrow \max$$

Interpretations:

Maximize the amount of heat kept inside body

2

- Maximize the torsional rigidity of a rod made of two materials
- Maximize the flow rate of two viscous immiscible fluids through pipe In general, energy functional

$$J(\chi) = \int_{\Omega} f(\mathbf{x}) u(\mathbf{x}) \, d\mathbf{x} \longrightarrow \max$$

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

State equation ($\Omega \subseteq \mathbf{R}^d$ open and bounded)

$$\begin{cases} -\operatorname{div} \left(\mathbf{A} \nabla u \right) = 1 = \mathbf{f} \\ u \in \mathrm{H}^{1}_{0}(\Omega) \end{cases}$$

Two phases: $0 < \alpha < \beta$ $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I}$, $\chi \in L^{\infty}(\Omega; \{0, 1\})$, $\int_{\Omega} \chi \, d\mathbf{x} = q_{\alpha}$, for given $0 < q_{\alpha} < |\Omega|$ Cost functional:

$$J(\chi) = \int_{\Omega} u(\mathbf{x}) d\mathbf{x} \longrightarrow \max$$

Interpretations:

- Maximize the amount of heat kept inside body
- Maximize the torsional rigidity of a rod made of two materials
- Maximize the flow rate of two viscous immiscible fluids through pipe In general, energy functional

$$J(\chi) = \int_{\Omega} f(\mathbf{x}) u(\mathbf{x}) \, d\mathbf{x} \longrightarrow \max$$

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

æ

・ロト ・聞 ト ・ ヨト ・ ヨト …

Intuition for annulus?

Ξ.

ヘロト ヘ部ト ヘヨト ヘヨト

ヘロト ヘ部ト ヘヨト ヘヨト

Intuition for annulus?

Ξ.

Intuition for annulus?

In general, there might exist no classical optimal design. The relaxation is needed, introducing composite materials.

classical design relaxed design $\chi \in L^{\infty}(\Omega; \{0, 1\}) \cdots \theta \in L^{\infty}(\Omega; [0, 1])$

 $\mathbf{A} \in \mathcal{K}(\theta)$ a.e. on Ω

・ロト ・聞ト ・ヨト ・ヨト

æ

State equations

$$\begin{cases} -\operatorname{div} \left(\mathbf{A} \nabla u_i \right) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{cases} \qquad \qquad i = 1, \dots, m$$

State function $u = (u_1, \ldots, u_m)$

3

State equations

$$\begin{cases} -\operatorname{div} \left(\mathbf{A} \nabla u_i \right) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{cases} \qquad \qquad i = 1, \dots, m$$

State function $u = (u_1, \ldots, u_m)$

$$\begin{cases} I(\chi) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \to \max\\ \mathsf{u} = (u_1, \dots, u_m) \text{ state function for } \mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I} \\ \chi \in \mathrm{L}^{\infty}(\Omega; \{0, 1\}) \,, \ \int_{\Omega} \chi \, d\mathbf{x} = q_{\alpha} \,, \end{cases}$$

for some given weights $\mu_i > 0$.

3

・ロト ・聞 ト ・ ヨト ・ ヨト

State equations

$$\begin{cases} -\operatorname{div} \left(\mathbf{A} \nabla u_i \right) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{cases} \qquad \qquad i = 1, \dots, m$$

State function $u = (u_1, \ldots, u_m)$

$$\begin{cases} I(\chi) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \to \max\\ \mathbf{u} = (u_1, \dots, u_m) \text{ state function for } \mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I}\\ \chi \in \mathrm{L}^{\infty}(\Omega; \{0, 1\}), \ \int_{\Omega} \chi \, d\mathbf{x} = q_\alpha \,, \end{cases}$$

for some given weights $\mu_i > 0$. Relaxed designs:

$$\mathcal{A} := \left\{ (\theta, \mathbf{A}) \in \mathrm{L}^\infty(\Omega; [0, 1] \times \mathrm{M}_d(\mathbf{R})) : \int_\Omega \theta \, d\mathbf{x} = q_\alpha \,, \; \mathbf{A}(\mathbf{x}) \in \mathcal{K}(\theta(\mathbf{x})) \; \text{a.e. on} \; \Omega \right\}$$

Image: A matrix and a matrix

문▶ ★ 문▶

State equations

$$\begin{cases} -\mathsf{div}\left(\mathbf{A}\nabla u_{i}\right)=f_{i}\\ u_{i}\in\mathrm{H}_{0}^{1}(\Omega) \end{cases} \qquad \qquad i=1,\ldots,m$$

State function $u = (u_1, \ldots, u_m)$

$$\begin{cases} I(\chi) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \to \max \\ u = (u_1, \dots, u_m) \text{ state function for } \mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I} \\ \chi \in \mathrm{L}^{\infty}(\Omega; \{0, 1\}), \ \int_{\Omega} \chi \, d\mathbf{x} = q_{\alpha} \,, \end{cases}$$

for some given weights $\mu_i > 0$. Relaxed designs:

$$\mathcal{A} := \left\{ (heta, \mathbf{A}) \in \mathrm{L}^\infty(\Omega; [0, 1] imes \mathrm{M}_d(\mathbf{R})) : \int_\Omega heta \, d\mathbf{x} = q_lpha \,, \; \mathbf{A}(\mathbf{x}) \in \mathcal{K}(heta(\mathbf{x})) \; ext{a.e. on } \Omega
ight\}$$

However, if Ω is a ball and f_i are radial functions, solution is usually classical. Minimization of the same functional - classical optimal designs are rare exceptions (**Juan Casado-Díaz**); for multiple state problems – joint works with **Krešimir Burazin** and **Ivana Crnjac**.

A. Single state equation [Murat & Tartar, 1985]

э

◆ロト ◆聞ト ◆臣ト ◆臣ト

A. Single state equation

[**Murat & Tartar, 1985**] There exists relaxed solution (θ^*, \mathbf{A}^*) among simple laminates ... conductivity λ_{θ}^- in one direction (∇u) , and λ_{θ}^+ in orthogonal directions.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

A. Single state equation

[Murat & Tartar, 1985] There exists relaxed solution (θ^*, \mathbf{A}^*) among simple laminates ... conductivity λ_{θ}^- in one direction (∇u) , and λ_{θ}^+ in orthogonal directions. As a consequence, θ^* is also a solution of the simpler relaxation problem

$$egin{aligned} &I(heta) = \int_\Omega f u \, d \mathbf{x} o \max \ & heta \in \mathrm{L}^\infty(\Omega; [0,1])\,, \ \int_\Omega heta \, d \mathbf{x} = q_lpha\,, \ &iggl\{ egin{aligned} &-\mathsf{div}\,(\lambda_ heta^-
abla u) = f \ & u \in \mathrm{H}_0^1(\Omega) \end{aligned}$$

$$rac{1}{\lambda_{ heta}^-} = rac{ heta}{lpha} + rac{1- heta}{eta} \ \lambda_{ heta}^+ = heta lpha + (1- heta)eta$$

can be rewritten as a convex minimization problem

< □ > < A > >

A. Single state equation

[Murat & Tartar, 1985] There exists relaxed solution (θ^*, \mathbf{A}^*) among simple laminates ... conductivity λ_{θ}^- in one direction (∇u) , and λ_{θ}^+ in orthogonal directions. As a consequence, θ^* is also a solution of the simpler relaxation problem

$$egin{aligned} & I(heta) = \int_\Omega f u \, d \mathbf{x} o \max \ & heta \in \mathrm{L}^\infty(\Omega; [0,1]) \,, \ \int_\Omega heta \, d \mathbf{x} = q_lpha \,, \ & \left\{ egin{aligned} & -\mathsf{div} \, (\lambda_ heta^-
abla u) = f \ & u \in \mathrm{H}^1_0(\Omega) \end{aligned}
ight. \end{aligned}$$

$$egin{aligned} &rac{1}{\lambda_{ heta}^-} = rac{ heta}{lpha} + rac{1- heta}{eta} \ & \lambda_{ heta}^+ = heta lpha + (1- heta)eta \end{aligned}$$

can be rewritten as a convex minimization problem

ヘロト ヘヨト ヘヨト

B. Multiple state equations

It is not enough to use only simple laminates, but composite materials that correspond to a non-affine boundary of $\mathcal{K}(\theta)$... higher order sequential laminates. The analogous simpler relaxation fails.

A. Single state equation

[Murat & Tartar, 1985] There exists relaxed solution (θ^*, \mathbf{A}^*) among simple laminates ... conductivity λ_{θ}^- in one direction (∇u) , and λ_{θ}^+ in orthogonal directions. As a consequence, θ^* is also a solution of the simpler relaxation problem

$$egin{aligned} & I(heta) = \int_\Omega f u \, d \mathbf{x} o \max \ & heta \in \mathrm{L}^\infty(\Omega; [0,1]) \,, \ \int_\Omega heta \, d \mathbf{x} = q_lpha \,, \ & \left\{ egin{aligned} & - \mathrm{div} \, (\lambda_ heta^-
abla u) = f \ & u \in \mathrm{H}^1_0(\Omega) \end{aligned}
ight. \end{aligned}$$

$$egin{aligned} &rac{1}{\lambda_{ heta}^{-}} = rac{ heta}{lpha} + rac{1- heta}{eta} \ &rac{1}{eta} = heta lpha + (1- heta)eta \end{aligned}$$

can be rewritten as a convex minimization problem

B. Multiple state equations

It is not enough to use only simple laminates, but composite materials that correspond to a non-affine boundary of $\mathcal{K}(\theta)$... higher order sequential laminates. The analogous simpler relaxation fails.

In spherically symmetric case (f_i are radial functions), simpler relaxation problem is equivalent to the true relaxation problem (simple laminates are enough).

 \ldots in terms of only local fraction θ belonging to the set

$$\mathcal{T}:=\left\{ heta\in\mathrm{L}^\infty(\Omega;[0,1]):\int_\Omega heta\,d\mathbf{x}=q_lpha
ight\}$$

$$\begin{split} I(\theta) &= \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \max \\ \theta &\in \mathcal{T} \text{ and } u \text{ determined uniquely by} \\ \begin{cases} -\operatorname{div} \left(\lambda_{\theta}^- \nabla u_i\right) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{cases} \quad i = 1, \dots, m \,, \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Minimax formulation

$$\begin{split} I(\theta) &= \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \\ &= -\sum_{i=1}^{m} \mu_i \int_{\Omega} \lambda_{\theta}^{-} |\nabla u_i|^2 - 2f_i u_i \, d\mathbf{x} \\ &= -\min_{\mathbf{v} \in \mathrm{H}_0^1(\Omega; \mathbf{R}^m)} \sum_{i=1}^{m} \mu_i \int_{\Omega} \lambda_{\theta}^{-} |\nabla v_i|^2 - 2f_i v_i \, d\mathbf{x} \\ &= -\max_{\boldsymbol{\sigma} \in \mathcal{S}} \left(-\sum_{i=1}^{m} \mu_i \int_{\Omega} \frac{|\sigma_i|^2}{\lambda_{\theta}^{-}} \, d\mathbf{x} \right) \\ &= \min_{\boldsymbol{\sigma} \in \mathcal{S}} \left(\sum_{i=1}^{m} \mu_i \int_{\Omega} \frac{|\sigma_i|^2}{\lambda_{\theta}^{-}} \, d\mathbf{x} \right) , \end{split}$$

where $S = \{ \boldsymbol{\sigma} \in L^2(\Omega; \mathbf{R}^d)^m : -\operatorname{div} \sigma_i = f_i, i = 1, \dots, m \}.$

Necessary and sufficient optimality conditions

By minimax theorem there exists a unique $\sigma^* \in S = \{ \sigma \in L^2(\Omega; \mathbf{R}^d)^m : -\operatorname{div} \sigma_i = f_i, i = 1..m \}$ such that

$$\max_{\mathcal{T}} I = \max_{\theta \in \mathcal{T}} \sum_{i=1}^{m} \mu_i \int_{\Omega} \frac{\beta - \alpha}{\alpha \beta} \, \theta |\boldsymbol{\sigma}_i^*|^2 \, d\mathbf{x} \, .$$

< □ ▶ < 🗇 ▶

Necessary and sufficient optimality conditions

By minimax theorem there exists a unique $\sigma^* \in S = \{ \sigma \in L^2(\Omega; \mathbf{R}^d)^m : -\operatorname{div} \sigma_i = f_i, i = 1..m \}$ such that

$$\max_{\mathcal{T}} I = \max_{\theta \in \mathcal{T}} \sum_{i=1}^{m} \mu_i \int_{\Omega} \frac{\beta - \alpha}{\alpha \beta} \, \theta |\boldsymbol{\sigma}_i^*|^2 \, d\mathbf{x} \, .$$

Lemma

The necessary and sufficient condition of optimality for solution $\theta^* \in \mathcal{T}$ of optimal design problem (1) simplifies to the existence of a Lagrange multiplier $c \ge 0$ such that

$$\begin{split} &\sum_{\substack{i=1\\m}}^{m} \mu_i |\boldsymbol{\sigma}_i^*|^2 > c \quad \Rightarrow \quad \theta^* = 1 \,, \\ &\sum_{\substack{i=1\\m}}^{m} \mu_i |\boldsymbol{\sigma}_i^*|^2 < c \quad \Rightarrow \quad \theta^* = 0 \,. \end{split}$$

< □ > < 同 > < 三

Spherically symmetric case – uniqueness

Conditions of optimality:

$$\begin{split} &\sum_{i=1}^m \mu_i |\boldsymbol{\sigma}_i^*|^2 > c \quad \Rightarrow \quad \theta^* = 1 \,, \\ &\sum_{i=1}^m \mu_i |\boldsymbol{\sigma}_i^*|^2 < c \quad \Rightarrow \quad \theta^* = 0 \,. \end{split}$$

æ

◆ロト ◆聞ト ◆臣ト ◆臣ト

Spherically symmetric case – uniqueness

Conditions of optimality:

$$\sum_{i=1}^{m} \mu_i |\boldsymbol{\sigma}_i^*|^2 > c \quad \Rightarrow \quad \theta^* = 1,$$
$$\sum_{i=1}^{m} \mu_i |\boldsymbol{\sigma}_i^*|^2 < c \quad \Rightarrow \quad \theta^* = 0.$$

In case of spherical symmetry $\sigma_i^* = \sigma_i^*(r)\mathbf{e}_r$, where σ_i^* solves $-\frac{1}{r}(r\sigma_i)' = f_i$. Let us denote

$$\psi(\mathbf{r}) := \sum_{i=1}^{m} \mu_i |\sigma_i^*|^2 = \sum_{i=1}^{m} \mu_i (\sigma_i^*)^2.$$

イロト 不得 トイヨト イヨト

Spherically symmetric case – uniqueness

Conditions of optimality:

$$\sum_{\substack{i=1\\m}}^{m} \mu_i |\boldsymbol{\sigma}_i^*|^2 > c \quad \Rightarrow \quad \theta^* = 1,$$
$$\sum_{\substack{i=1\\i=1}}^{m} \mu_i |\boldsymbol{\sigma}_i^*|^2 < c \quad \Rightarrow \quad \theta^* = 0.$$

In case of spherical symmetry $\sigma_i^* = \sigma_i^*(r)\mathbf{e}_r$, where σ_i^* solves $-\frac{1}{r}(r\sigma_i)' = f_i$. Let us denote

$$\psi(\mathbf{r}) := \sum_{i=1}^{m} \mu_i |\boldsymbol{\sigma}_i^*|^2 = \sum_{i=1}^{m} \mu_i (\sigma_i^*)^2.$$

Corollary

For spherically symmetric case, if ψ is piecewise strictly monotone on ω then the problem max_T I has a unique solution θ^* , which is a radial characteristic function. Consequently, the solution of the true relaxation problem is unique, classical and radial.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Optimal design problem on annulus

Single state equation:

$$\left\{ egin{array}{ll} -{\sf div}\,(\lambda_{ heta}^-
abla u)=1 & {
m in}\,\,\Omega\ u=0 & {
m on}\,\,\partial\Omega \end{array}
ight.$$

A I > A I + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

where
$$\lambda_{\theta(\mathbf{x})}^{-} = \left(\frac{\theta(\mathbf{x})}{\alpha} + \frac{1-\theta(\mathbf{x})}{\beta}\right)^{-1}$$
.

Optimization problem:

$$\begin{cases} I(\theta) = \int_{\Omega} u \, \mathrm{d} \mathbf{x} \to \max \\ s.t. \quad \theta \in \mathrm{L}^{\infty}(\Omega, [0, 1]), \quad \int_{\Omega} \theta = q_{\alpha}, \text{ where } u \text{ satisfies (2)} \end{cases}$$
(3)

3

글 눈 옷 글 눈

(2)

One can rewrite (2) in polar coordinates :

$$-\frac{1}{r^{d-1}}(r^{d-1}\underbrace{\lambda_{\theta}^{-}u'(r)}_{\sigma})'=1 \text{ in } \langle r_1,r_2\rangle, \quad u(r_1)=u(r_2)=0.$$

Observe that σ satisfies

$$\sigma = -\frac{r}{d} + \frac{\gamma}{r^{d-1}}, \quad \gamma > 0$$

 $\sigma(\mathbf{r}): \langle \mathbf{0}, \infty \rangle \to \mathbb{R}$ is a strictly decreasing function, for any γ .

 \implies Optimal design is unique, classical and radial.

・ロト ・聞ト ・ヨト ・ヨト

The necessary and sufficient condition of optimality for θ^* states

$$egin{array}{ccc} |\sigma^*| > c &\Rightarrow& heta^* = 1\,, \ |\sigma^*| < c &\Rightarrow& heta^* = 0\,. \end{array}$$

<ロ> <部> < き> < き> < 。</p>

æ

The necessary and sufficient condition of optimality for θ^* states

$$egin{array}{ccc} |\sigma^*| > c &\Rightarrow& heta^* = 1\,, \ |\sigma^*| < c &\Rightarrow& heta^* = 0\,. \end{array}$$

There are only three possible candidates for optimal design:

1)
$$\theta^{*}(r) = \begin{cases} 1, & r \in [r_{1}, r_{+}) \\ 0, & r \in [r_{+}, r_{-}) \\ 1, & r \in [r_{-}, r_{2}] \end{cases}$$

2) $\theta^{*}(r) = \begin{cases} 1, & r \in [r_{1}, r_{+}) \\ 0, & r \in [r_{+}, r_{2}) \end{cases}$
3) $\theta^{*}(r) = \begin{cases} 0, & r \in [r_{1}, r_{-}) \\ 1, & r \in [r_{-}, r_{2}) \end{cases}$

- ∢ ∩ 🖓 🕨

From condition of optimality a non-linear system (with unknowns γ , c, r_+ , r_-) is created:

$$\begin{cases} S_d \int_{r_1}^{r_2} \theta(\rho) \rho^{d-1} d\rho = q_\alpha \\ u(r_2) = 0 \iff \gamma \int_{r_1}^{r_2} \left(\frac{1}{a(\rho)\rho^{d-1}}\right) d\rho = \int_{r_1}^{r_2} \frac{\rho}{a(\rho)} d\rho \\ \sigma(r_+) = c, \quad \sigma(r_-) = -c, \quad \text{where } c > 0 \end{cases}$$
(NS)

where

$$\sigma(r) = \frac{\gamma}{r^{d-1}} - \frac{r}{d}, \quad \& \quad a(r) = \left(\frac{\theta(r)}{\alpha} + \frac{1 - \theta(r)}{\beta}\right)^{-1}$$

3

・ロト ・聞 ト ・ ヨト ・ ヨト …

Theorem (Optimal design for annulus d = 2, 3, f = 1)

With previous assumptions the problem admits classical solution with two possible designs:

eta-alpha

1)
$$\theta^{*}(r) = \begin{cases} 1, & r \in [r_{1}, r_{+}) \\ 0, & r \in [r_{+}, r_{-}) \\ 1, & r \in [r_{-}, r_{2}] \end{cases}$$
 alpha-beta-alpha-beta-alpha-beta-alpha-beta alpha-beta alpha-beta

More precisely, if q_{α} is small enough, design 2) is optimal.

Shape derivative

Perturbation of the set $\boldsymbol{\Omega}$ is given with

$$\Omega_t = (\mathsf{Id} + t\psi)\Omega$$

where $\psi \in W^{k,\infty}(\mathbf{R}^d, \mathbf{R}^d)$.

A B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ∢ ⊒ →

Perturbation of the set $\boldsymbol{\Omega}$ is given with

$$\Omega_t = (\mathsf{Id} + t\psi)\Omega$$

where $\psi \in W^{k,\infty}(\mathbf{R}^d, \mathbf{R}^d)$.

< □ > < 同 > < 三

Definition (Shape derivative)

Let $J = J(\Omega)$ be a shape functional. J is said to be shape differentiable at Ω in direction ψ if

$$J'(\Omega,\psi):=\lim_{t\searrow 0}rac{J(\Omega_t)-J(\Omega)}{t}$$

exists and the mapping $\psi \mapsto J'(\Omega, \psi)$ is linear and continuous. $J'(\Omega, \psi)$ is called the **shape derivative**.

Single state problem (general f)

In case of our single state optimal design problem:

$$J(\Omega_{lpha}) = \int_{\Omega} \mathit{fu} \, \mathrm{d} \mathbf{x} o \mathsf{max}$$

u is determined by $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I}$ $\chi \in L^{\infty}(\Omega, \{0, 1\})$ is a characteristic function of Ω_{α} , $|\Omega_{\alpha}| = q_{\alpha}$

・ロト ・四ト ・ヨト ・ヨト

(4)

Single state problem (general f)

In case of our single state optimal design problem:

$$J(\Omega_{lpha}) = \int_{\Omega} f u \, \mathrm{d} \mathbf{x} o \mathsf{max}$$

u is determined by $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I}$ $\chi \in L^{\infty}(\Omega, \{0, 1\})$ is a characteristic function of Ω_{α} , $|\Omega_{\alpha}| = q_{\alpha}$

The shape derivative is given by:

$$\begin{split} J'(\Omega_{\alpha},\psi) &= \int_{\Omega} \mathbf{A}(-\mathsf{div}\,(\psi) + \nabla\psi + \nabla\psi^{\tau}) \nabla u_{0} \cdot \nabla u_{0} \,\mathrm{d}\mathbf{x} \\ &+ \int_{\Omega} 2(\mathsf{div}\,(\psi)f + \nabla f \cdot \psi) u_{0} \,\mathrm{d}\mathbf{x} \end{split}$$

where u_0 is the corresponding state function.

・ロト ・四ト ・ヨト ・ ヨト

(4)

Single state problem (general f)

In case of our single state optimal design problem:

$$J(\Omega_{lpha}) = \int_{\Omega} f u \, \mathrm{d} \mathbf{x} o \max$$

u is determined by $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I}$ $\chi \in L^{\infty}(\Omega, \{0, 1\})$ is a characteristic function of Ω_{α} , $|\Omega_{\alpha}| = q_{\alpha}$

The shape derivative is given by:

$$\begin{split} J'(\Omega_{\alpha},\psi) &= \int_{\Omega} \mathbf{A}(-\mathsf{div}\,(\psi) + \nabla\psi + \nabla\psi^{\tau}) \nabla u_0 \cdot \nabla u_0 \,\mathrm{d}\mathbf{x} \\ &+ \int_{\Omega} 2(\mathsf{div}\,(\psi)f + \nabla f \cdot \psi) u_0 \,\mathrm{d}\mathbf{x} \end{split}$$

where u_0 is the corresponding state function. The construction of ψ :

$$\int_{\Omega} \nabla \psi : \nabla \varphi + \int_{\Omega} \psi \cdot \varphi = \mathcal{L}'(\Omega_{\alpha}, \varphi), \quad \forall \varphi \in H^1_0(\Omega).$$

(4)

Algorithm 1: k-th step of gradient method

- 1 Input : Γ_k interface is discretized in points (it is used to create new mesh \mathcal{T}_k)
- 2 Construct vector spaces Vh on mesh \mathcal{T}_k (Vh=P1, P2 ...)
- 3 Determine vector field $\psi \in \mathtt{Vh}$
- 4 Determine $t_0 > 0$ (if too small, increase of J is insignificant; upper bound is dictated by mesh T_k)
- 5 Move mesh: $\mathcal{T}_{k+1} = (\mathsf{Id} + t_0 \psi) \mathcal{T}_k$
- 6 Output: $\Gamma_{k+1} = (\mathsf{Id} + t_0 \psi) \Gamma_k$

Upper bound in part 4 is calculated by checkmovemesh. This ensures that moving of a mesh doesn't create wrong ordering of elements (volume of triangle should not be negative). Part 5 is implemented using movemesh. At the end of the step it is recommended to use adaptmesh.

(日) (個) (E) (E) (E)

æ

◆ロト ◆部 ト ◆注 ト ◆注 ト

æ

◆□▶ ◆圖▶ ◆注▶ ◆注▶

æ

< □ > < □ > < □ > < □ > < □ > .

æ

◆□▶ ◆圖▶ ◆注▶ ◆注▶

æ

◆□▶ ◆圖▶ ◆注▶ ◆注▶

æ

< □ > < □ > < □ > < □ > < □ > .

æ

▲口→ ▲圖→ ▲臣→ ▲臣→

æ

< □ > < □ > < □ > < □ > < □ > .

Ξ.

◆ロト ◆部 ト ◆注 ト ◆注 ト

Ξ.

ヘロン 人間 とくほと 人ほとう

æ

・ロト ・ 四ト ・ モト ・ モト

æ

ヘロト 人間ト 人目ト 人目下

æ

・ロト ・聞ト ・ヨト ・ヨト

æ

ヘロト 人間ト 人団ト 人団ト

æ

ヘロト 人間ト 人目ト 人目下

≡ ∽ ९ ୯

・ロト ・聞ト ・ヨト ・ヨト

Ξ.

▲ロト ▲圖ト ▲屋ト ▲屋ト

Ξ.

▲ロト ▲圖ト ▲屋ト ▲屋ト

Ξ.

◆ロト ◆部 ト ◆注 ト ◆注 ト

æ

・ロト ・ 四ト ・ モト ・ モト

æ

・ロト ・ 四ト ・ モト ・ モト

Ð.

ヘロト 人間ト 人目ト 人目下

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Ð.

ヘロト 人間ト 人目ト 人目下

Ð.

ヘロト 人間ト 人目ト 人目下

Ð.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Ð.

ヘロト 人間ト 人目ト 人目下

Ð.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Thank you for your attention!

æ

◆ロト ◆聞ト ◆臣ト ◆臣ト