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Energy maximization problem

State equation (Ω ⊆ Rd open and bounded){
−div (A∇u) = 1

= f

u ∈ H1
0(Ω)

Two phases: 0 < α < β
A = χαI + (1− χ)βI, χ ∈ L∞(Ω; {0, 1}),

∫
Ω
χ dx = qα, for given 0 < qα < |Ω|

Cost functional:

J(χ) =

∫
Ω

u(x)dx −→ max

Interpretations:

Maximize the amount of heat kept inside body

Maximize the torsional rigidity of a rod made of two materials

Maximize the flow rate of two viscous immiscible fluids through pipe

In general, energy functional

J(χ) =

∫
Ω

f (x)u(x) dx −→ max
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Classical vs. relaxed optimal design

Intuition for annulus? In general, there might exist no classical optimal
design. The relaxation is needed, introducing
composite materials.

classical design relaxed design
χ ∈ L∞(Ω; {0, 1}) · · · θ ∈ L∞(Ω; [0, 1])

A ∈ K(θ) a.e. on Ω
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Multiple state optimal design problem

State equations {
−div (A∇ui ) = fi
ui ∈ H1

0(Ω)
i = 1, . . . ,m

State function u = (u1, . . . , um)


I (χ) =

∑m
i=1 µi

∫
Ω
fiui dx→ max

u = (u1, . . . , um) state function for A = χαI + (1− χ)βI

χ ∈ L∞(Ω; {0, 1}) ,
∫

Ω

χ dx = qα ,

for some given weights µi > 0. Relaxed designs:

A :=

{
(θ,A) ∈ L∞(Ω; [0, 1]×Md(R)) :

∫
Ω

θ dx = qα , A(x) ∈ K(θ(x)) a.e. on Ω

}
However, if Ω is a ball and fi are radial functions, solution is usually classical.
Minimization of the same functional - classical optimal designs are rare exceptions
(Juan Casado-D́ıaz); for multiple state problems – joint works with Krešimir
Burazin and Ivana Crnjac.
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Single vs. multiple state problems

A. Single state equation
[Murat & Tartar, 1985]

There exists relaxed solution (θ∗,A∗) among simple
laminates . . . conductivity λ−θ in one direction (∇u), and λ+

θ in orthogonal
directions. As a consequence, θ∗ is also a solution of the simpler relaxation
problem

I (θ) =
∫

Ω
fu dx→ max

θ ∈ L∞(Ω; [0, 1]) ,

∫
Ω

θ dx = qα ,{
−div (λ−θ ∇u) = f
u ∈ H1

0(Ω)

1

λ−θ
=
θ

α
+

1− θ
β

λ+
θ = θα + (1− θ)β

can be rewritten as
a convex minimization problem

B. Multiple state equations
It is not enough to use only simple laminates, but composite materials that
correspond to a non-affine boundary of K(θ) . . . higher order sequential laminates.
The analogous simpler relaxation fails.

In spherically symmetric case (fi are radial functions), simpler relaxation problem
is equivalent to the true relaxation problem (simple laminates are enough).
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Simpler relaxation problem

... in terms of only local fraction θ belonging to the set

T :=

{
θ ∈ L∞(Ω; [0, 1]) :

∫
Ω

θ dx = qα

}

I (θ) =
m∑
i=1

µi

∫
Ω

fiui dx −→ max

θ ∈ T and u determined uniquely by −div (λ−θ ∇ui ) = fi

ui ∈ H1
0(Ω)

i = 1, . . . ,m ,

(1)
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Minimax formulation

I (θ) =
m∑
i=1

µi

∫
Ω

fiui dx

= −
m∑
i=1

µi

∫
Ω

λ−θ |∇ui |
2 − 2fiui dx

= − min
v∈H1

0(Ω;Rm)

m∑
i=1

µi

∫
Ω

λ−θ |∇vi |
2 − 2fivi dx

= −max
σ∈S

(
−

m∑
i=1

µi

∫
Ω

|σi |2

λ−θ
dx

)

= min
σ∈S

(
m∑
i=1

µi

∫
Ω

|σi |2

λ−θ
dx

)
,

where S = {σ ∈ L2(Ω; Rd)
m

: −div σi = fi , i = 1, . . . ,m}.
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Necessary and sufficient optimality conditions

By minimax theorem there exists a unique
σ∗ ∈ S = {σ ∈ L2(Ω; Rd)

m
: −divσi = fi , i = 1..m} such that

max
T

I = max
θ∈T

m∑
i=1

µi

∫
Ω

β − α
αβ

θ|σ∗i |2 dx .

Lemma

The necessary and sufficient condition of optimality for solution θ∗ ∈ T of optimal
design problem (1) simplifies to the existence of a Lagrange multiplier c ≥ 0 such
that

m∑
i=1

µi |σ∗i |2 > c ⇒ θ∗ = 1 ,

m∑
i=1

µi |σ∗i |2 < c ⇒ θ∗ = 0 .
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Spherically symmetric case – uniqueness

Conditions of optimality:

m∑
i=1

µi |σ∗i |2 > c ⇒ θ∗ = 1 ,

m∑
i=1

µi |σ∗i |2 < c ⇒ θ∗ = 0 .

In case of spherical symmetry σ∗i = σ∗i (r)er , where σ∗i solves −1

r
(rσi )

′ = fi .

Let us denote

ψ(r) :=
m∑
i=1

µi |σ∗i |2 =
m∑
i=1

µi (σ
∗
i )2 .

Corollary

For spherically symmetric case, if ψ is piecewise strictly monotone on ω then the
problem maxT I has a unique solution θ∗, which is a radial characteristic function.
Consequently, the solution of the true relaxation problem is unique, classical and
radial.
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Optimal design problem on annulus

Ω

r2r1

Single state equation:{
−div (λ−θ ∇u) = 1 in Ω

u = 0 on ∂Ω
(2)

where λ−θ(x) =
(
θ(x)
α + 1−θ(x)

β

)−1

.

Optimization problem:
I (θ) =

∫
Ω

u dx→ max

s.t. θ ∈ L∞(Ω, [0, 1]),

∫
Ω

θ = qα, where u satisfies (2)

(3)
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Single state optimal design problem

One can rewrite (2) in polar coordinates :

− 1

rd−1
(rd−1 λ−θ u

′(r)︸ ︷︷ ︸
σ

)′ = 1 in 〈r1, r2〉 , u(r1) = u(r2) = 0.

Observe that σ satisfies

σ = − r

d
+

γ

rd−1
, γ > 0

σ(r) : 〈0,∞〉 → R is a strictly decreasing function, for any γ.

=⇒ Optimal design is unique, classical and radial.
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0
r

σ

−c

c
r−

r+

The necessary and sufficient condition of
optimality for θ∗ states

|σ∗| > c ⇒ θ∗ = 1 ,
|σ∗| < c ⇒ θ∗ = 0 .

There are only three possible candidates
for optimal design:

1) θ∗(r) =

 1, r ∈ [r1, r+〉
0, r ∈ [r+, r−〉
1, r ∈ [r−, r2]

2) θ∗(r) =

{
1, r ∈ [r1, r+〉
0, r ∈ [r+, r2〉

3) θ∗(r) =

{
0, r ∈ [r1, r−〉
1, r ∈ [r−, r2〉
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Simplification to a non-linear system

From condition of optimality a non-linear system (with unknowns γ, c , r+, r−) is
created: 

Sd

r2∫
r1

θ(ρ)ρd−1 dρ = qα

u(r2) = 0 ⇐⇒ γ

r2∫
r1

(
1

a(ρ)ρd−1

)
dρ =

r2∫
r1

ρ

a(ρ)
dρ

σ(r+) = c , σ(r−) = −c , where c > 0

(NS)

where

σ(r) =
γ

rd−1
− r

d
, & a(r) =

(
θ(r)

α
+

1− θ(r)

β

)−1

.

Marko Vrdoljak Classical Optimal Design on Annulus and Shape Derivative Method 12



Theorem (Optimal design for annulus d = 2, 3, f = 1)

With previous assumptions the problem admits classical solution with two
possible designs:

1) θ∗(r) =

 1, r ∈ [r1, r+〉
0, r ∈ [r+, r−〉
1, r ∈ [r−, r2]

alpha-beta-alpha

2) θ∗(r) =

{
1, r ∈ [r1, r+〉
0, r ∈ [r+, r2〉

alpha-beta

More precisely, if qα is small enough, design 2) is optimal.

alpha-beta
(qα < critical value)

alpha-beta-alpha
(qα > critical value)
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Shape derivative

Perturbation of the set Ω is given
with

Ωt = (Id +tψ)Ω

where ψ ∈W k,∞(Rd ,Rd).

Ω
D

Definition (Shape derivative)

Let J = J(Ω) be a shape functional. J is said to be shape differentiable at Ω in
direction ψ if

J ′(Ω, ψ) := lim
t↘0

J(Ωt)− J(Ω)

t

exists and the mapping ψ 7→ J ′(Ω, ψ) is linear and continuous.
J ′(Ω, ψ) is called the shape derivative.
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Single state problem (general f )

In case of our single state optimal design problem:
J(Ωα) =

∫
Ω

fu dx→ max

u is determined by A = χαI + (1− χ)βI

χ ∈ L∞(Ω, {0, 1}) is a characteristic function of Ωα, |Ωα| = qα

(4)

The shape derivative is given by:

J ′(Ωα, ψ) =

∫
Ω

A(−div (ψ) +∇ψ +∇ψτ )∇u0 · ∇u0 dx

+

∫
Ω

2(div (ψ)f +∇f · ψ)u0 dx

where u0 is the corresponding state function. The construction of ψ:∫
Ω

∇ψ : ∇ϕ+

∫
Ω

ψ · ϕ = L′(Ωα, ϕ), ∀ϕ ∈ H1
0 (Ω).
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Gradient method, Lagrange approach

Algorithm 1: k-th step of gradient method

1 Input : Γk - interface is discretized in points (it is used to create new mesh Tk)

2 Construct vector spaces Vh on mesh Tk (Vh=P1, P2 . . . )

3 Determine vector field ψ ∈ Vh

4 Determine t0 > 0 (if too small, increase of J is insignificant; upper bound is
dictated by mesh Tk )

5 Move mesh: Tk+1 = (Id +t0ψ)Tk
6 Output: Γk+1 = (Id +t0ψ)Γk

Upper bound in part 4 is calculated by checkmovemesh. This ensures that moving
of a mesh doesn’t create wrong ordering of elements (volume of triangle should
not be negative). Part 5 is implemented using movemesh. At the end of the step it
is recommended to use adaptmesh.
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Numerical results
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The end

Thank you for your attention!
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