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Introduction

If we have u,, — 0 in L% (), @ C R? open, what we can say about |u,|*?

It is bounded in Li, . (£2) < M(), so
tn | = v
v is called the defect measure.

Of course, we have
L2
Un=80 <= v=0.

If the defect measure is not trivial we need another objects to determine all the
properties of the sequence:

e H-measures

e semiclassical measures
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H-measures

QCR? open.

Theorem

If up, — 0 in L2(9; CT), then there exist a subsequence (u,’) and
Wy € Myp(Q x ST71: M, (C)) such that for any o1, p2 € Co(Q) and
Y € C(8")

im [ (@@ ® m(s))w(%) d = (puyy, o152 B 1)

n’ JRd

Measure p,; we call the H-measure corresponding to the (sub)sequence (u,).
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H-measures

QCR? open.

Theorem

If u, — 0 in LE _(£; C"), then there exist a subsequence (u,) and
py € M(Q x S M, (C)) such that for any 1, p2 € Cc(Q) and
¥ eC(5)

i [ (@00 © 7207 (€)) 0 (i) d6 = (122 2.

The distribution of the zero order py we call the H-measure corresponding to
the (sub)sequence (uy,).
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H-measures

QCR? open.

Theorem

If u, — 0 in LE(£; C"), then there exist a subsequence (u,) and
ty € M(Q x S M, (C)) such that for any 1, p2 € Cc(Q) and
¥ eC(5)

lim | (77 () © Fai (©) ) v (

) ) d = (0172 B 0).
n Rd

£
13
The distribution of the zero order puy we call the H-measure corresponding to
the (sub)sequence (uy,).

Theorem

| \

L2
Un—%0 <= py =0.
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H-measures

QCR? open.

If u, — 0 in LE(£; C"), then there exist a subsequence (u,) and
ty € M(Q x S M, (C)) such that for any 1, p2 € Cc(Q) and
¥ eC(5)

lim | (77 () © Fai (©) ) v (

) ) d = (0172 B 0).
n Rd

£
€]
The distribution of the zero order puy we call the H-measure corresponding to
the (sub)sequence (uy,).

v
Theorem

L2
Un—%0 <= py =0.

[T1] Luc TARTAR: H-measures, a new approach for studying homogenisation,
oscillations and concentration effects in partial differential equations,
Proceedings of the Royal Society of Edinburgh, 115A (1990) 193-230.

[G1] PATRICK GERARD: Microlocal defect measures, Comm. Partial Diff. Eq., 16

(1991) 1761-1794.
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Semiclassical measures

Theorem

If u, — 0 in L*(Q;C"), w, — 0T, then there exist a subsequence (u,) and
p“n) e My (Q x R M, (C)) such that for any o1, 2 € C(Q) and
¥ € S(RY)

tip [ (750 © G (€)) 0l ) d = (e o120

Measure ") we call the semiclassical measure with characteristic length
(wn) corresponding to the (sub)sequence (uy,).
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Semiclassical measures

Theorem

If u, — 0 in L% (;C"), w, — 07, then there exist a subsequence (u,) and
p“n) e M(Q x R M, (C)) such that for any @1, p2 € C°(Q) and
¥ € S(RY)

tip [ (750 © G (€)) 0l ) d = (e o122 00

The distribution of the zero order p“™) we call the semiclassical measure with
characteristic length (wy,) corresponding to the (sub)sequence (uy).
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Semiclassical measures

Theorem

If u, — 0 in LY. (; C"), w, — 0T, then there exist a subsequence (u,) and
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¥ € S(RY)
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Semiclassical measures

Theorem

If u, — 0 in LY. (; C"), w, — 0T, then there exist a subsequence (u,) and
p“n) e M(Q x R M, (C)) such that for any @1, p2 € C°(Q) and
¥ € S(RY)

tip [ (750 © G (€)) 0l ) d = (e o122 00

The distribution of the zero order u'“™) we call the semiclassical measure with
characteristic length (wy,) corresponding to the (sub)sequence (uy).

Definition

| A\

(un) is (wn)-oscillatory if
(Ve e C2(R2) limp—oo limsup, fl£|>% |pun (€)% d€ = 0.

Theorem

| A\

L2
U= 0 <= p“ =0 & (un) is (wn) — oscillatory .
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The Wigner transform

(up) from L*(R% C"), w, — 0T,

Wai(x,§) := / e Y Ey (x + WZJ) R Un (x _ ﬂ) dy

R4

If u, — u in L?(Q; C"), then there exists (u,) such that

Wn' L\Mg":n’) .

[G2] PaTRICK GERARD: Mesures semi-classiques et ondes de Bloch, Sem. EDP
1990-91 (exp. 16), (1991)

[LP] PiERRE Louis LIONS, THIERRY PAUL: Sur les measures de Wigner, Revista
Mat. Iberoamericana 9, (1993) 553-618
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Example: Oscillations - one characteristic length

a>0 keZ\ {0},

2
2min“k-x L
Up(x) := e ™" 2N 0 n— o0
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Example: Oscillations - one characteristic length

a>0 keZ\ {0},

v=AA
pwr = AKX (5%
do lim, n“w, =0
,ug‘:“) =A< b, lim,n%w, =c € (0,00)
0o , lim,, n®w, = oo
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Example: Oscillations - one characteristic length

a>0 keZ\ {0},

2
27in%k-x Lloc

Un(x) :=e —=0,n— o
v=2A
pwr = AKX 6ﬁ
do lim,, n%w, = 0
,ug“c’“) =A< b, lim,n%w, =c € (0,00)
0o , lim,, n®w, = oo
n=2

= sin(/nmx)
= sin(nmz)

2

= sin(nmx)

7123



Compatification of R\ {0}

/ ", 00®
// \\
/ \
! \
d—1
Eoo./ 106 e ! Yo:={0° : eSS}
: Il 5
| E ! Yoo := {00 : eS8}
\ 0 /
\ ) Kowo(R?) :=R\ {0} Uy USu
\\ //
N\ /
\ //
o L R

a) Co(R%) C C(Ko,o0(RY)).
b) v € C(S?1), o m € C(Ko,oo(R?)

), where (&) = £/1].
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One-scale H-measures

Theorem

If u, — 0 in L*(Q; C"), w, — 0T, then there exist a subsequence (u,’) and
pm) e My, (Q x R M, (C)) such that for any o1, s € C2°(2) and
¥ € S(RY)

tim [ ((21un)(€) ® (22un) (€)) ¥ (&) dE = (procr 012 D)

Measure 1) we call the semiclassical measure with characteristic length
(wn) corresponding to the (sub)sequence (uy).
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One-scale H-measures

Theorem

If u, — 0 in L?(Q; C"), w, — 0, then there exist a subsequence (u,) and
uK ) My (2 x Koo (R?); My (C)) such that for any 1, p2 € Co(Q) and
P e C(K().’oo(R ))

lim [ (Grn)(©) © o) ©)) 9l ) d = (b . 152 B

Measure pé( “n) e call 1-scale H-measure with characteristic length (w,)

correspond/ng to the (sub)sequence (uy).
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One-scale H-measures

If U, — 0 in LY (Q; C"), wn, — 0T, then there exist a subsequence (u,/) and
uK ) M(Q x Koo (R%); M, (C)) such that for any o1, 02 € Cc(Q) and

Ve C(Ko,oo(R )

lim [ (Grn)(©) @ o) (©)) 9l ) d = (b . 152 B0

The distribution of the zero order yé( “n) e call 1-scale H-measure with

characteristic length (w.,) correspondlng to the (sub)sequence (uy,).

[T2] Luc TARTAR: The general theory of homogenization: A personalized
introduction, Springer (2009)

[T3] Luc TARTAR: Multi-scale H-measures, Discrete and Continuous Dynamical
Systems, S 8 (2015) 77-90.
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One-scale H-measures

If U, — 0 in LY (Q; C"), wn, — 0T, then there exist a subsequence (u,/) and
uK ) M(Q x Koo (R%); M, (C)) such that for any o1, 02 € Cc(Q) and

Ve C(Ko,oo(R )

lim [ (Grn)(©) @ o) (©)) 9l ) d = (b . 152 B0

The distribution of the zero order yé( “n) e call 1-scale H-measure with

characteristic length (w.,) correspondlng to the (sub)sequence (uy,).

[T2] Luc TARTAR: The general theory of homogenization: A personalized
introduction, Springer (2009)
[T3] Luc TARTAR: Multi-scale H-measures, Discrete and Continuous Dynamical
Systems, S 8 (2015) 77-90.
[AEL] NENAD ANTONIC, M.E., MARTIN LAZAR: Localisation principle for one-scale
H-measures, submitted (arXiv).
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Idea of the proof

Tartar's approach:

dl 2migdtl . 9
o v (x, 2 i=up(x)e” @n —0in LY (2 x R;C")
o vy € M(Q xR x S%M,(C))

. u&‘;”o)o is obtained from vy (suitable projection in z%*! and £441)
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Idea of the proof

Tartar's approach:

2migdtl
Vi (%, 24 == up(x)e” @n - —=0in L (2 x R; C")
ve € M(Q x R x S%: M,(C))

. uﬁfo"o)o is obtained from vy (suitable projection in z%*! and £441)

Our approach:
e commutation lemma

Lemma

Let ¢ € C(Ko,oo (R%)), € Co(R?Y), wy — 07, and denote 1, (€) := (wn).
Then the commutator can be expressed as a sum

Ch = [BWAwn] = é’ﬂ + K,

where K is a compact operator on L2(R%), while C,, — 0 in the operator
norm on L(L?(R%)).

e standard procedure ((a variant of) kernel lemma, separability...)

10123



Some properties of py,

a) Pio oo = Pio oo s Hicg o 20
2
c) unIﬂiO = Bk oo :0.
d)  trpg, (22X X)) =0 = (un) is (wn) — oscillatory

11123



Some properties of py,

a) Pio oo = MKy oo+ MK =0
LZ
c) un—2% 0 = Mg, .. =0
d) trpg, (2% o) =0 = (un) is (wn) — oscillatory

N,

01,02 € Ce(Q), ¥ € Co(RY), ¢ € C(ST7Y), wn, — 0F,

a) (i) e ®Y) = (ul), o1 BY),
b) (M%ﬁ”;,sms@@?l)wr) = (pw, pr92 B9),

where 7 (§) = £/[€].

N
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Example revisited

b lim, n“w, =0
pm) = AR Suc , limn,n®wn =c € (0, 00)

0o lim,, n%w, = 0o
1 T lim,, n%w, =0
0
per =R dac, limgn®w, = c € (0,00)
é T lim,, n“w, = 0o
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Motivation (localisation principle for H-measures)

Let @ C R open, m € N, u, — 0in L2 (2 C"), A* € C(Q; M,(C)) and
Pu, := Z Oa(A%u,) — 0in H,' (4 CT).
|a|=m
Then we have
-
puy =0,
where p(x, &) = Zlalzm £*A™(x) is the principle simbol of P.
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Motivation (localisation principle for H-measures)
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|a|=m
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Let Q@ C R open, m € N, u,, — 0in L2 (Q; C"), A* € C(Q; M,(C)) and

Pu, = Y 9a(A%u,) — 0in H (% C).

|a|=m
Then we have
supp gy C {(x,€) € Q x SR det p(x, &) = 0},
where p(x,&) = 3|, |=,, §¥A%(x) is the principle simbol of P.

Idea: If d =1 and p is nowhere zero (e.g. elliptic operator of the second order),
we know pg = 0, and that implies u,, — 0 in LY _(Q; C").
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Motivation (localisation principle for H-measures)

Let Q@ C R open, m € N, u,, — 0in L2 (Q; C"), A* € C(Q; M,(C)) and
Pu, = Y 9a(A%u,) — 0in H (% C).
|a|=m

Then we have

supp gy C {(x,€) € Q x SR det p(x, &) = 0},
where p(x,&) = 3|, |=,, §¥A%(x) is the principle simbol of P.

Idea: If d =1 and p is nowhere zero (e.g. elliptic operator of the second order),
we know pg = 0, and that implies u,, — 0 in LY _(Q; C").

Applications:

compactness by compensation
small amplitude homogenisation
velocity averaging

averaged control
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Motivation (localisation principle for semiclassical measures)

Let @ C R? open, m € N, u, — 0 in L (9;C") and

Poup = Y & 0a(A%,) =f, inQ,

lal<m

where
o c, — 07"
o A% € C(; M, (C))
o f, — 0in L% (Q;C").
Then we have
PH,. =0,
where p(x, &) = 3_ <, §¥A(x), and p,, is semiclassical measure with
characteristic length (g,), corresponding to (uy).
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Motivation (localisation principle for semiclassical measures)

Let @ C R open, m € N, u,, — 0in LL.(2;C") and

Poup = Y e 0a(A%,) =f, inQ,

le|<m

where

e ¢, »0F

e A% € C(;M,(0C))

o f, — 0in LY _(Q;C").
Then we have

supp g1, C {(x,€) € @ x R : detp(x, &) = 0},

where p(x,£) = 3|, <, §¥A%(x), and p,, is semiclassical measure with
characteristic length (e,), corresponding to (uy).
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Motivation (localisation principle for semiclassical measures)

Let @ C R open, m € N, u,, — 0in LL.(2;C") and

Poup = Y e 0a(A%,) =f, inQ,

le|<m

where

e ¢, »0F

e A% € C(;M,(0C))

o f, — 0in LY _(Q;C").
Then we have

supp p,. C {(x,€) € @ x R? : detp(x,£&) = 0},

where p(x,£) = 3|, <, §¥A%(x), and p,, is semiclassical measure with
characteristic length (e,), corresponding to (uy).

Problem: p . = 0 is not enough for the strong convergence!

14123



Localisation principle

Let @ C R? open, m € N, u,, — 0in L2 _(Q; C") and
> T 0a(A ) =, in Q,

i<]al<m

where

l€0.m

en — 01

A% € C(;M,(Q))

f, € H_ " (Q; C") such that

loc

(Vo e CZ(Q) o e 0 L2R%CT)  (Clen))

I

s=

15123



Localisation principle

Let @ C R? open, m € N, u,, — 0in L2 _(Q; C") and
> T 0a(A ) =, in Q,

I<|al<m

where

l€0.m

en — 0T

A% € C(;M,(Q))

fn € H 7" (©; C") such that

loc

ofn

VeeCl(Y) —=m s
14+ 30 en gl

0 in L*R%CY)  (Clen))

a) (C(en)) is equivalent to

oo E . 2 d T
VpeCl(Q —0 in L°(R%C").

b) 3k el.m)f, — 0inH_ *(Q;C") = (ek!f,,) satisfies (C(en)).

loc

15123



Localisation principle

Z e 9 (A%,) =, in 9,

I<]a<m
o E . 2 d T
(Ve eCl(Q)  —n g —0 in LY(R5CY. (Clen))
T4+ en l‘£|5

Theorem (Tartar (2009))

Under previous assumptions and | = 1, 1-scale H-measure py  _ with
characteristic length (e,,) corresponding to (u,) satisfies

supp (pﬂﬁo,m) CQxXo,

where

x, &) = ) ol &% pa x) .

1<al<m

16123



Localisation principle - final generalisation

Theorem

en > 0 bounded u, — 0 in L} (Q; C") and

S e Oa(AT ) =fa,

1<]al<m

where A5y € C(; M;(C)), Ay — A< uniformly on compact sets, and
fn € H 7" (Q; C") satisfies (C(en)).

Then for w, — 0T such that ¢ := lim n 5% € [0,00], corresponding 1-scale
H-measure py, _ with characteristic length (w,) satisfies

Pk, . =0,
where
£ o _
2lal=t e e A% (%) ,  ¢=0
p(x,§) = Zz<|a‘<m(2m<3)' ‘WAQ(X) , ¢ €(0,00)
Y almm E e A% () , =00

17123



Localisation principle - final generalisation

Theorem (cont.)

Moreover, if there exists eg > 0 such that €, > €0, n € N, we can take

px8)i= T AT().

lee|=
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Localisation principle - final generalisation

Theorem (cont.)

Moreover, if there exists eg > 0 such that €, > €0, n € N, we can take

pOE)i= X EAT).

lec|=m

As a corollary from the previous theorem we can derive localisation principles
for H-measures and semiclassical measures.
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Example: equations with characteristic length (1/2)

Let © C R? be open, and let u, := (ul,u2) — 0 in L (Q; C?) satisfies
Uy, + En0a, (a1y) = fr

2 2 2

Uy, + 6”74812 (aQun) = fn

where e, — 07, f, := (f, f2) € H;,1(Q; C?) satisfies (C(en)) (with
Il =0,m =1), while a1,a2 € C(;R), a1,a2 # 0 everywhere.
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Example: equations with characteristic length (1/2)
Let © C R? be open, and let u, := (ul,u2) — 0 in L (Q; C?) satisfies
Un + €n00y (a1un) = fr
Up + enOay (a2uy) = fr

where e, — 07, f, := (f, f2) € H;,1(Q; C?) satisfies (C(en)) (with
Il =0,m =1), while a1,a2 € C(;R), a1,a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py _ with characteristic
length (g5,) (i.e. ¢ = 1) associated to (u,) we get the relation

1 10 2mié1 [ai(x) O 2mi&; [0 0 .
(Lo 1) 7% [0 o)+ T [0 wbol) w0
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Example: equations with characteristic length (1/2)
Let 2 C R? be open, and let u,, := (uh,u2) — 0 in L, .(Q; C?) satisfies
Uib + Enam(alu:z) = f7lz
2 2\ 42
Uy, + En0sy (a2uy) = fr

where e, — 0, f, := (£, f2) € H;,L(Q; C?) satisfies (C(en)) (with
l=0,m=1), while a1,a2 € C(;R), a1, a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py _ with characteristic
length (e,,) (i.e. ¢ = 1) associated to (u,) we get the relation

1 J1 0 2mi€1 |a1(x) O 2mi&s [0 0 _—
<1+\£| {0 1}+1+|£|[ 0 o}+1+|g| [0 ag(x)D“Ko,w—Ov

whose (1,1) component reads

1 . 21& 11
+1 a1 (x =0
(i 15 00) o =0
hence
1 P - &1 uld =0
L+ g0 70 T [g] o
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Example: equations with characteristic length (1/2)
Let 2 C R? be open, and let u,, := (uh,u2) — 0 in L, .(Q; C?) satisfies
Uib + Enam(alu:z) = f7lz
2 2\ 42
Uy, + En0sy (a2uy) = fr

where e, — 0, f, := (£, f2) € H;,L(Q; C?) satisfies (C(en)) (with
l=0,m=1), while a1,a2 € C(;R), a1, a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py _ with characteristic
length (e,,) (i.e. ¢ = 1) associated to (u,) we get the relation

1 J1 0 2mi€1 |a1(x) O 2mi&s [0 0 _—
<1+\£| {0 1}+1+|£|[ 0 o}+1+|g| [0 ag(x)D“Ko,w—Ov

whose (1,1) component reads

1 . 21& 11
+1 a1 (X =0
<1+|§| T g ))“K“‘” ’
hence
supp piy .. € QX Seo, 1 f1|£|li11<10,oo =0
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Example: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0 in L .(©; C?) satisfies

ns Un loc

{ Un + enday (a1un) = fr

b
ui + EnaxQ (a2ui) - fTQL

where e, — 07, f, := (f, f2) € H,1(Q; C?) satisfies (C(en)) (with
Il =0,m =1), while a1,a2 € C(;R), a1,a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py  with characteristic
length (g,,) (i.e. ¢ = 1) associated to (u,) we get the relation

_ 1 1 0], 2mi& [ai(x) O]  2mi& [0 0 __
(1+\£| {0 1}+1+|£|[ 0 0}+1+|5| [0 az(x)D“Ko,w—Ov

whose (1,1) component reads

1 . 21& 11
:07
<1 T |s|‘“"‘)) D o

hence

supp pity .. € QX oo, supp s, . C Q2 x (S0 U{& = 0})
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Example: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0 in L .(©; C?) satisfies

ns Un loc

{ Un + enday (a1un) = fr

b
ui + EnaxQ (a2ui) - fTQL

where e, — 07, f, := (f, f2) € H,1(Q; C?) satisfies (C(en)) (with
Il =0,m =1), while a1,a2 € C(;R), a1,a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py  with characteristic
length (g,,) (i.e. ¢ = 1) associated to (u,) we get the relation

_ 1 1 0], 2mi& [ai(x) O]  2mi& [0 0 __
(1+\£| {0 1}+1+|£|[ 0 0}+1+|5| [0 az(x)D“Ko,w—Ov

whose (1,1) component reads

1 . 21& 11
:07
<1 T |s|‘“"‘)) D o

hence

supp piiy . © QX Boo,  supp i, . C 2 x (T U{& =0})
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Example: equations with characteristic length (1/2)
Let © C R? be open, and let u, := (ul,u2) — 0 in L (Q; C?) satisfies
Un + €n00y (a1un) = fr
Up + enOay (a2uy) = fr

where e, — 07, f, := (f, f2) € H;,1(Q; C?) satisfies (C(en)) (with
Il =0,m =1), while a1,a2 € C(;R), a1,a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py _ with characteristic
length (g5,) (i.e. ¢ = 1) associated to (u,) we get the relation

1 10 2mié1 [ai(x) O 2mi&; [0 0 .
(Lo 1) 7% [0 o)+ T [0 wbol) w0

whose (1,1) component reads

1 . 27w€ 11
+ —0,
(1 e |5|‘“(X)) o,

hence
supp,u,%goy00 CQx {oo(o’_l), oo(o"l)}
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Example: equations with characteristic length (1/2)
Let © C R? be open, and let u, := (ul,u2) — 0 in L (Q; C?) satisfies
Un + €n00y (a1un) = fr
Up + enOay (a2uy) = fr

where e, — 07, f, := (f, f2) € H;,1(Q; C?) satisfies (C(en)) (with
Il =0,m =1), while a1,a2 € C(;R), a1,a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py _ with characteristic
length (g5,) (i.e. ¢ = 1) associated to (u,) we get the relation

1 10 2mié1 [ai(x) O 2mi&; [0 0 .
(Lo 1) 7% [0 o)+ T [0 wbol) w0

whose (1,1) component reads

1 . 27w€ 11
+ —0,
(1 e |5|‘“(X)) o,

hence
supp il € 2 x {00V, 00V}
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Example: equations with characteristic length (2/2)

Analogously, from the (2,2) component we get
supp M%(ZO,OO CQ x {00710 0ot}

hence supp g, _ N supp pig, . = 0 which implies uil) = pi, . =0.
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Example: equations with characteristic length (2/2)

Analogously, from the (2,2) component we get
supp pigy .. C Q2 x {00l 71, 000}
hence supp g, _ N supp pig, . = 0 which implies uil) = pi, . =0.

e . 5 *
The very definition of one-scale H-measures gives u}:u2 —— 0.

This approach can be systematically generalised by introducing a variant of
compensated compactness suitable for problems with characteristic length.
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Compactness by compensation with a characteristic length

Let u, — uin L _(Q; C") satisfy

al|—1 o
> e 0a (AT ) = fa,
I<|algm

—m

where AT — A% in C(2;Mgx:(C)), let &, — 0T, and f, € H;;7*(2; C?) be
such that for any ¢ € C°(Q)
ofn
1+kn
is precompact in L2(R%; CY). Furthermore, let Q(x; A) := Q(x)\ - A, where
Q € C(Q;M,(C)), Q" = Q, is such that Q(-;u,)——v in M(Q).

Then we have
a) (3c€[0,00))(V(x,€) € QX KoooRNVAE Auixg) QBGA) 20 =

vz Q(v u),
b) (Fc € [0,00))(V(x,€) € QX Kooo(R)(VA € Aiixg) Q;A) =0 =

v=Q(,u),

where

Ac;x,g = {A S CT : I)c()i7 £)A = 0}7

and p. is given as before.
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One-scale H-distributions

Theorem

If w, — 0 in LP(R%), v, — 0 in LY(RY), ¢ > p/, and w, — 0%, then there
exist (1), (vnr) and p € D' (R x Ko,00(R?)) such that for any
@1, 2 € CP(R?) and ¢ € C" (Ko, (RY))

lirln/ Ay, (1Un ) P2 dx:lim/ (P1un) Ay, (P20,) dx

n Rd n’ JRd "

:<M7 p1p2 X ’d}> )
where Ay, (u) = (Y 0)" and Pp: (€) := p(en€).
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One-scale H-distributions

Theorem

If w, — 0 in LP(R%), v, — 0 in LY(RY), ¢ > p/, and w, — 0%, then there
exist (1), (vnr) and p € D' (R x Ko,00(R?)) such that for any
@1,92 € CZ(R?) and ¢ € C*(Ko,o(R?))

lim/ Ay, (prun ) Pav, dx:lim/ (P1un) Ay, (P20,) dx

n’ JRd " n’ JRd "

:<M7 p1p2 X ’d}> )
where Ay, (u) = (Y 0)" and Pp: (€) := p(en€).

Technical difficulties:
o differential structure on Ko, o (R%)
e Hdrmander-Mihlin condition for 1) € C* (Ko o (R%))
e distributions on compact set (manifold with boundary)
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Tha ' you

atten -n! :)
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