Microlocal defect functionals and applications Marin Mišur^{*a*}

^aUniversity of Zagreb, Croatia, mmisur@math.hr

Introduction and some tools

Div-rot lemma and Quadratic theorem Lemma. Assume that Ω is open and bounded subset of \mathbb{R}^3 , and that it holds: $\mathbf{u}_n \rightarrow \mathbf{u} \text{ in } \mathrm{L}^2(\Omega; \mathbf{R}^3), \ \mathbf{v}_n \rightarrow \mathbf{v} \text{ in } \mathrm{L}^2(\Omega; \mathbf{R}^3),$ rot \mathbf{u}_n bounded in $\mathrm{L}^2(\Omega; \mathbf{R}^3)$, div \mathbf{v}_n bounded in $\mathrm{L}^2(\Omega)$. Then

$$\mathbf{u}_n \cdot \mathbf{v}_n
ightarrow \mathbf{u} \cdot \mathbf{v}$$

in the sense of distributions.

Theorem. Assume that
$$\Omega \subseteq \mathbf{R}^d$$
 is open and that $\Lambda \subseteq \mathbf{R}^r$ is defined by

$$\Lambda := \left\{ oldsymbol{\lambda} \in \mathbf{R}^r \, : \, (\exists \, oldsymbol{\xi} \in \mathbf{R}^d \setminus \{ 0 \}) \quad \sum_{k=1}^d \xi_k \mathbf{A}^k oldsymbol{\lambda} = \mathbf{0} \,
ight\},$$

and that Q is a real quadratic form on \mathbb{R}^r , which is nonnegative on Λ , i.e.

 $(\forall \boldsymbol{\lambda} \in \Lambda) \quad Q(\boldsymbol{\lambda}) \ge 0.$

Furthermore, assume that the sequence of functions (\mathbf{u}_n) satisfies

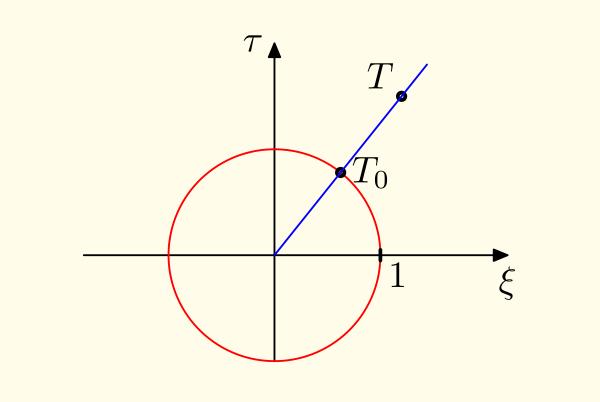
H-measures

H-measures are mathematical objects introduced by L. Tartar, who was motivated by possible applications in homogenisation, and independently by P. Gerard, who was motivated by problems in kinetic theory.

Theorem. If $u_n \rightarrow 0$ and $v_n \rightarrow 0$ in $L^2(\mathbf{R}^d)$, then there exist their subsequences and a complex valued Radon measure μ on $\mathbf{R}^d \times S^{d-1}$, such that for any $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^d)$ and $\psi \in C(S^{d-1})$ one has

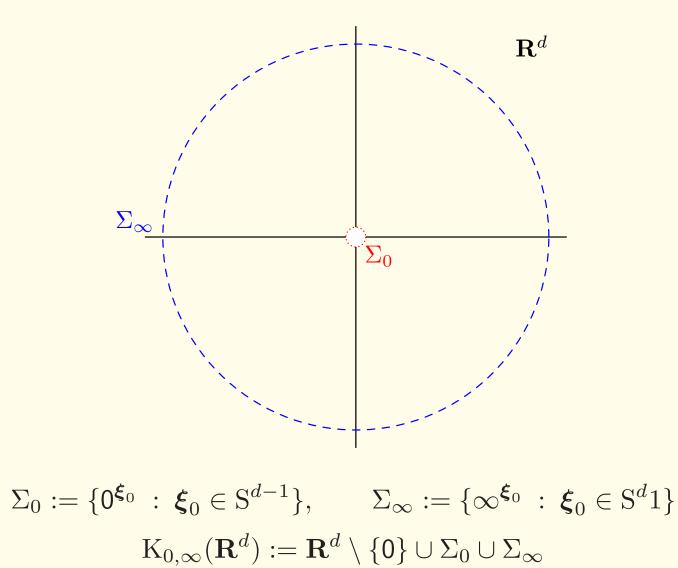
$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}} \overline{\widehat{\varphi_2 v_{n'}}} (\psi \circ \pi) d\boldsymbol{\xi} = \langle \mu, \varphi_1 \overline{\varphi_2} \boxtimes \psi \rangle,$$

where $\pi : \mathbb{R}^d \setminus \{0\} \longrightarrow \mathbb{S}^{d-1}$ is the projection along rays.



One-scale H-measures

Compactify $\mathbb{R}^d \setminus \{0\}$ by adding two spheres (around the origin, Σ_0 , and in the infinity, Σ_{∞}):



$$\mathbf{u}_n \longrightarrow \mathbf{u}$$
 weakly in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{R}^r)$,

$$\left(\sum_{k} \mathbf{A}^{k} \partial_{k} \mathbf{u}_{n}\right)$$
 relatively compact in $\mathrm{H}_{\mathrm{loc}}^{-1}(\Omega; \mathbf{R}^{q})$.

Then every subsequence of $(Q \circ \mathbf{u}_n)$ which converges in distributions to it's limit L, satisfies

 $L \geqslant Q \circ \mathbf{u}$

in the sense of distributions.

H-distributions

H-distributions were introduced by N. Antonić and D. Mitrović (2011) as an extension of H-measures to the $L^p - L^q$ context. Existing applications are related to the velocity averaging and $L^p - L^q$ compactness by compensation.

Theorem. If $u_n \longrightarrow 0$ in $L^p_{loc}(\mathbf{R}^d)$ and $v_n \xrightarrow{*} v$ in $L^q_{loc}(\mathbf{R}^d)$ for some $p \in \langle 1, \infty \rangle$ and $q \ge p'$, then there exist subsequences $(u_{n'})$, $(v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times \mathbf{S}^{d-1})$, such that, for every $\varphi_1, \varphi_2 \in \mathbf{C}^{\infty}_c(\mathbf{R}^d)$ and $\psi \in \mathbf{C}^{\kappa}(\mathbf{S}^{d-1})$, for $\kappa = [d/2] + 1$, one has:

> $\lim_{n'\to\infty}\int_{\mathbf{R}^d}\mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x})\overline{(\varphi_2 v_{n'})(\mathbf{x})}d\mathbf{x} =$ $\lim_{n'\to\infty}\int_{\mathbf{P}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} = \langle \mu, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \rangle,$

where $\mathcal{A}_{\psi} : L^p(\mathbf{R}^d) \longrightarrow L^p(\mathbf{R}^d)$ is the Fourier multiplier operator with symbol $\psi \in$ $\mathbf{C}^{\kappa}(\mathbf{S}^{d-1}).$

Theorem. If $u_n \xrightarrow{L^2_{loc}} u$, and $\varepsilon_n \to 0$, then there exist $(u_{n'})$ and $\mu_{K_{0,\infty}} \in \mathcal{M}(\Omega \times \mathbb{C})$ $\mathrm{K}_{0,\infty}(\mathbf{R}^d)$ such that $(\forall \varphi_1, \varphi_2 \in \mathrm{C}_c(\Omega))(\forall \psi \in \mathrm{C}(\mathrm{K}_{0,\infty}(\mathbf{R}^d)))$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 \mathsf{u}_{n'}}(\boldsymbol{\xi}) \otimes \overline{\widehat{\varphi_2 \mathsf{u}_{n'}}}(\boldsymbol{\xi}) \psi(\varepsilon_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle$$

A distribution of order zero $\mu_{K_{0,\infty}}$ we call the 1-scale H-measure with characteristic length (ε_n) corresponding to the (sub)sequence (u_n) .

Distributions of anisotropic order	Conjecture
Let X and Y be open sets in \mathbb{R}^d and \mathbb{R}^r (or \mathbb{C}^∞ manifolds of dimenions d and r) and $\Omega \subseteq X \times Y$ an open set. By $\mathbb{C}^{l,m}(\Omega)$ we denote the space of functions f on Ω , such that for any $\alpha \in \mathbb{N}_0^d$ and $\beta \in \mathbb{N}_0^r$, if $ \alpha \leq l$ and $ \beta \leq m$, $\partial^{\alpha,\beta} f = \partial_x^{\alpha} \partial_y^{\beta} f \in \mathbb{C}(\Omega)$. $\mathbb{C}^{l,m}(\Omega)$ becomes a Fréchet space if we define a sequence of seminorms	Conjecture. Let X, Y be C^{∞} manifolds and let u be a linear functional on $C_c^{l,m}(X \times Y)$. If $u \in \mathcal{D}'(X \times Y)$ and satisfies $(\forall K \in \mathcal{K}(X))(\forall L \in \mathcal{K}(Y)(\exists C > 0)(\forall \varphi \in C_K^{\infty}(X))(\forall \psi \in C_L^{\infty}(Y))$ $ \langle u, \varphi \boxtimes \psi \rangle \leq Cp_K^l(\varphi)p_L^m(\psi),$
$p_{K_n}^{l,m}(f) := \max_{ \boldsymbol{\alpha} \le l, \boldsymbol{\beta} \le m} \ \partial^{\boldsymbol{\alpha},\boldsymbol{\beta}} f\ _{\mathcal{L}^{\infty}(K_n)} ,$	then u can be uniquely extended to a continuous functional on $C_c^{l,m}(X \times Y)$ (i.e. it can be considered as an element of $\mathcal{D}'_{l,m}(X \times Y)$).
where $K_n \subseteq \Omega$ are compacts, such that $\Omega = \bigcup_{n \in \mathbb{N}} K_n$ and $K_n \subseteq \text{Int} K_{n+1}$, Consider the space $C_c^{l,m}(\Omega) := \bigcup_{n \in \mathbb{N}} C_{K_n}^{l,m}(\Omega)$,	If the conjecture were true, then the H-distribution μ from the preceeding theorem belongs to the space $\mathcal{D}'_{0,\kappa}(\mathbf{R}^d \times \mathbf{S}^{d-1})$, i.e. it is a distribution of order 0 in x and of order not more than κ in $\boldsymbol{\xi}$.
and equip it by the topology of strict inductive limit.	Indeed, we already have $\mu \in \mathcal{D}'(\mathbf{R}^d \times \mathbf{S}^{d-1})$ and the following bound with $\varphi := \varphi_1 \overline{\varphi_2}$:
Definition. A distribution of order l in x and order m in y is any linear functional on $C_c^{l,m}(\Omega)$, continuous in the strict inductive limit topology. We denote the space of such functionals by $\mathcal{D}'_{l,m}(\Omega)$.	$ \langle \mu, \varphi \boxtimes \psi \rangle \leq C \ \psi\ _{C^{\kappa}(S^{d-1})} \ \varphi\ _{C_{K_{l}}(\mathbf{R}^{d})} ,$ where C does not depend on φ and ψ .

Some properties and $L^p - L^q$ variant of compactness by compensation

Strong convergence, concentrations and defect measures	S	A variant of H-distributions
--	---	------------------------------

Localisation principle

We need multiplier operators with symbols defined on a manifold P determined by an For $\alpha \in \mathbf{R}^+$, we define $\partial_{x_k}^{\alpha}$ to be a pseudodifferential operator with a polyhomogeneous

Lemma. For a sequence (u_n) in $L^p_{loc}(\mathbf{R}^d)$, $p \in \langle 1, \infty \rangle$, the following are equivalent

• $u_n \to 0$ in $\mathcal{L}^p_{\text{loc}}(\mathbf{R}^d)$,

• for every sequence (v_n) satisfing conditions of the existence theorem, (u_n) and (v_n) form a pure pair and the corresponding H-distribution is zero.

Concentration example: Take $p \in \langle 1, \infty \rangle$. For $u \in L^p_c(\mathbf{R}^d)$, define a sequence $u_n(\mathbf{x}) = u_n(\mathbf{x})$ $n^{\frac{a}{p}}u(n(\mathbf{x}-\mathbf{z}))$ for some $\mathbf{z} \in \mathbf{R}^d$. A simple change of variables shows that $||u_n||_{\mathbf{L}^p(\mathbf{R}^d)} =$ $||u||_{L^p(\mathbf{R}^d)}$ and that it weakly converges to 0 in $L^p(\mathbf{R}^d)$.

The H-distribution corresponding to the whole sequences (u_n) and $(|u_n|^{p-2}u_n)$ is given by $\delta_{\mathbf{z}} \boxtimes \nu$, where ν is a distribution on $C^{\kappa}(S^{d-1})$ defined for $\psi \in C^{\kappa}(S^{d-1})$ by

 $\langle \nu, \psi \rangle = \int_{\mathbf{R}^d} u(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(|u|^{p-2}u)(\mathbf{x})} d\mathbf{x}.$

Connection with defect measures: Let (u_n) be a sequence weakly converging to 0 in $L^p_{loc}(\mathbf{R}^d)$. Then the sequence $(|u_n|^p)$ is bounded in $L^1_{loc}(\mathbf{R}^d)$, so $|u_n|^p \xrightarrow{*} \nu$ in $\mathcal{D}'(\mathbf{R}^d)$ (after passing to a subsequence).

Since all terms of $(|u_n|^p)$ are non-negative (in terms of distributions), the limit ν is a non-negative distributions, hence (unbounded) Radon measure.

Let μ be any H-distribution corresponding to the above chosen subsequence of (u_n) and $(\Phi_p(u_n))$. Taking ψ to be equal to one and test functions φ_1, φ_2 such that φ_2 is equal to one on the support of φ_1 , we get the following connection between μ and ν :

 $\langle \mu, \varphi_1 \boxtimes 1 \rangle = \lim_n \int_{\mathbf{P}^d} \varphi_1 |u_n|^p d\mathbf{x} = \langle \nu, \varphi_1 \rangle.$

Compactness by compensation result

Introduce the set

d-tuple $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbf{R}^d_+$ where $\alpha_k \in \mathbf{N}$ or $\alpha_k \geq d$:

$$\mathrm{P}=\left\{oldsymbol{\xi}\in\mathbf{R}^d:\;\sum_{k=1}^d|oldsymbol{\xi}_k|^{2lpha_k}=1
ight\}$$

In order to associate an L^p Fourier multiplier to a function defined on P, we extend it to $\mathbf{R}^d \setminus \{0\}$ by means of the projection $\pi_{\mathbf{P}}$. We need the following variant of H-distributions.

Theorem. Let (u_n) be a bounded sequence in $L^p(\mathbf{R}^d)$, p > 1, and let (v_n) be a bounded sequence of uniformly compactly supported functions in $L^q(\mathbf{R}^d)$, 1/q + 1/p < 1, weakly converging to 0 in the sense of distributions. Then, after passing to a subsequence (not relabelled), for any $\bar{s} \in (1, \frac{pq}{p+q})$ there exists a continuous bilinear functional B on $L^{\bar{s}'}(\mathbf{R}^d) \otimes C^d(\mathbf{P})$ such that for every $\varphi \in L^{\bar{s}'}(\mathbf{R}^d)$ and $\psi \in C^d(\mathbf{P})$, it holds

$$B(\varphi,\psi) = \lim_{n \to \infty} \int_{\mathbf{R}^d} \varphi(\mathbf{x}) u_n(\mathbf{x}) (\mathcal{A}_{\psi_{\mathrm{P}}} v_n)(\mathbf{x}) d\mathbf{x} \,,$$

where $\mathcal{A}_{\psi_{\mathrm{P}}}$ is the Fourier multiplier operator on \mathbf{R}^d associated to $\psi \circ \pi_{\mathrm{P}}$. The bilinear functional B can be continuously extended as a linear functional on $\mathrm{L}^{\bar{s}'}(\mathbf{R}^d;\mathrm{C}^d(\mathrm{P})).$

Application

Now, let us consider the following non-linear parabolic type equation

 $L(u) = \partial_t u - \operatorname{div} \operatorname{div} \left(g(t, \mathbf{x}, u) \mathbf{A}(t, \mathbf{x}) \right),$

- on $(0,\infty) \times \Omega$, where Ω is an open subset of \mathbb{R}^d . We assume that
 - $u \in L^p((0,\infty) \times \Omega), \ g(t, \mathbf{x}, u(t, \mathbf{x})) \in L^q((0,\infty) \times \Omega), \ 1 < p, q,$ $\mathbf{A} \in \mathcal{L}^s_{\mathrm{loc}}((0,\infty) \times \Omega)^{d \times d}$, where 1/p + 1/q + 1/s < 1,

and that the matrix \mathbf{A} is strictly positive definite, i.e.

symbol $(2\pi i\xi_k)^{\alpha}$, i.e.

 $\partial_{x_k}^{\alpha} u = ((2\pi i \xi_k)^{\alpha} \hat{u}(\boldsymbol{\xi}))^{\check{}}.$

In the sequel, we shall assume that sequences (\mathbf{u}_r) and (\mathbf{v}_r) are uniformly compactly supported. This assumption can be removed if the orders of derivatives $(\alpha_1, \ldots, \alpha_d)$ are natural numbers.

Lemma. Assume that sequences (\mathbf{u}_n) and (\mathbf{v}_n) are bounded in $L^p(\mathbf{R}^d;\mathbf{R}^r)$ and $L^{q}(\mathbf{R}^{d};\mathbf{R}^{r})$, respectively, and converge toward **0** and **v** in the sense of distributions. Furthermore, assume that sequence (\mathbf{u}_n) satisfies:

$$\mathbf{G}_{n} := \sum_{k=1}^{d} \partial_{k}^{\alpha_{k}} (\mathbf{A}^{k} \mathbf{u}_{n}) \to \mathbf{0} \text{ in } \mathbf{W}^{-\alpha_{1}, \dots, -\alpha_{d}, p} (\Omega; \mathbf{R}^{m}), \qquad (1$$

where either $\alpha_k \in \mathbf{N}$, $k = 1, \ldots, d$ or $\alpha_k > d$, $k = 1, \ldots, d$, and elements of matrices \mathbf{A}^k belong to $\mathbf{L}^{\overline{s}'}(\mathbf{R}^d), \overline{s} \in (1, \frac{pq}{p+q}).$ Finally, by μ denote a matrix H-distribution corresponding to subsequences of (\mathbf{u}_n) and $(\mathbf{v}_n - \mathbf{v})$. Then the following relation holds

$$\left(\sum_{k=1}^d (2\pi i\xi_k)^{\alpha_k} \mathbf{A}^k\right) \boldsymbol{\mu} = \mathbf{0}.$$

Theorem. Assume that sequences

- (u_r) and $g(\cdot, u_r)$ are such that $u_r, g(u_r) \in L^2(\mathbb{R}^+ \times \mathbb{R}^d)$ for every $r \in \mathbb{N}$;
- that they are bounded in $L^p(\mathbf{R}^+ \times \mathbf{R}^d)$, $p \in (1, 2]$, and $L^q(\mathbf{R}^+ \times \mathbf{R}^d)$, q > 2, respectively, where 1/p + 1/q < 1;
- $u_r \rightharpoonup u$ and, for some, $f \in W^{-1,-2;p}(\mathbf{R}^+ \times \mathbf{R}^d)$, the sequence
 - $L(u_r) = f_r \to f$ strongly in $W^{-1,-2;p}(\mathbf{R}^+ \times \mathbf{R}^d)$.

 $\Lambda_{\mathcal{D}} = \Big\{ \boldsymbol{\mu} \in \mathbf{L}^{\bar{s}}(\mathbf{R}^d; (\mathbf{C}^d(\mathbf{P}))')^r : \Big(\sum_{k=1}^n (2\pi i \xi_k)^{\alpha_k} \mathbf{A}^k \Big) \boldsymbol{\mu} = \mathbf{0}_m \Big\},\$

where the given equality is understood in the sense of $L^{\bar{s}}(\mathbf{R}^d; (C^d(P))')^m$.

Let us assume that coefficients of the bilinear form $q(\mathbf{x}, \lambda, \eta) = \mathbf{Q}(\mathbf{x}) \mathbf{\lambda} \cdot \boldsymbol{\eta}$ on \mathbf{C}^r belong to space $L_{loc}^{t}(\mathbf{R}^{d})$, where 1/t + 1/p + 1/q < 1.

Definition. We say that set $\Lambda_{\mathcal{D}}$, bilinear form q and matrix $\boldsymbol{\mu} = [\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_r], \boldsymbol{\mu}_j \in$ $L^{\bar{s}}(\mathbb{R}^d; (\mathbb{C}^d(\mathbb{P}))')^r$ satisfy the strong consistency condition if $(\forall j \in \{1, \ldots, r\}) \mu_j \in$ $\Lambda_{\mathcal{D}}$, and it holds

 $\langle \phi \mathbf{Q} \otimes 1, \boldsymbol{\mu} \rangle \geq \mathbf{0}, \ \phi \in \mathcal{L}^{\bar{s}}(\mathbf{R}^d; \mathbf{R}_0^+).$

Theorem. Assume that sequences (\mathbf{u}_n) and (\mathbf{v}_n) are bounded in $L^p(\mathbf{R}^d;\mathbf{R}^r)$ and $L^{q}(\mathbf{R}^{d};\mathbf{R}^{r})$, respectively, and converge toward **u** and **v** in the sense of distributions. Assume that (1) holds and that

 $q(\mathbf{x}; \mathbf{u}_n, \mathbf{v}_n) \rightharpoonup \omega$ in $\mathcal{D}'(\mathbf{R}^d)$.

If the set $\Lambda_{\mathcal{D}}$, the bilinear form q, and matrix H-distribution μ , corresponding to subsequences of $(\mathbf{u}_n - \mathbf{u})$ and $(\mathbf{v}_n - \mathbf{v})$, satisfy the strong consistency condition, then

 $q(\mathbf{x}; \mathbf{u}, \mathbf{v}) \leq \omega$ in $\mathcal{D}'(\mathbf{R}^d)$.

 $\mathbf{A}\boldsymbol{\xi} \cdot \boldsymbol{\xi} > 0, \ \boldsymbol{\xi} \in \mathbf{R}^d \setminus \{\mathbf{0}\}, \ (a.e.(t, \mathbf{x}) \in (0, \infty) \times \Omega).$

Furthermore, assume that g is a Carathèodory function and non-decreasing with respect to the third variable.

Under the assumptions given above, it holds

L(u) = f in $\mathcal{D}'(\mathbf{R}^+ \times \mathbf{R}^d)$.

References

[1] N. Antonić, D. Mitrović: *H*-distributions: An Extension of *H*-Measures to an $L^p - L^q$ Setting, Abstr. Appl. Anal. (2011), Article ID 901084, 12 pages.

[2] N. Antonić, M. Erceg, M. Mišur: On H-distributions, in preparation

[3] P. Gérard: *Microlocal Defect Measures*, Comm. Partial Differential Equations 16 (1991) 1761–1794.

[4] M. Lazar, D. Mitrović: Velocity averaging – a general framework, Dyn. Partial Differ. Equ. 9 (2012) 239–260.

[5] M. Mišur, D. Mitrović: On a generalization of compensated compactness in the $L^p - L^q$ setting, J. Funct. Anal. 268 (2015) 1904–1927

[6] F. Murat: A survey on compensated compactness in Contributions to modern calculus of variations (Bologna, 1985), 145–183, Pitman Res. Notes Math. Ser. 148, Longman Sci. Tech., Harlow, 1987.

[7] E. Yu. Panov: Ultraparabolic H-measures and compensated compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011) 47–62.

[8] L. Tartar: H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193–230.