On the Dirichlet-Neumann boundary problem for scalar conservation laws

Marin Mišur
email: mmisur@math.hr
University of Zagreb
Joint work with Darko Mitrović and Andrej Novak.

$1^{\text {st }}$ of August 2016.

Problem statement

- $\Omega \subseteq[0, \infty\rangle \times \mathbf{R}$ open bounded domain
- boundary $\partial \Omega=\Gamma_{N} \dot{\cup} \Gamma_{D}$ of class C $\mathrm{C}^{0,1}$, where $\Gamma_{D} \subset\{t=0\}$
- consider the following mixed boundary problem:

$$
\begin{align*}
\partial_{t} u+\partial_{x}(f(t, x, u)) & =0 \text { in } \Omega \tag{1}\\
\nabla_{(t, x)} u \cdot \nu & =0 \text { on } \Gamma_{N} \tag{2}\\
u(0, .) & =u^{0}(.) \in \mathrm{L}^{\infty}(\mathbf{R}) \text { on } \Gamma_{D}, \tag{3}
\end{align*}
$$

- $f(t, x, \lambda)$ is a Caratheodory type function i.e. it is of bounded variation with respect to the variables (t, x) and differentiable with respect to the third variable λ.

An example of domain $\Omega \subseteq[0, \infty\rangle \times \mathbf{R}$

Additional assumptions on f

Take $p \in\langle 2, \infty\rangle$ fixed.

A1: $\quad(\forall \Lambda \subset \mathbf{R}$ compact $)(\forall K \subset \Omega$ compact $)\left(\exists C_{1}=C_{1}(K, \Lambda)>0\right)(\forall \xi \in \Lambda)$

$$
\left\|\chi_{K} \int_{0}^{\xi} f(t, x, \lambda) d \lambda\right\|_{L^{p}(\Omega)}<C_{1},
$$

A2: $(\forall \Lambda \subset \mathbf{R}$ compact $)(\forall K \subset \Omega$ compact $)\left(\exists C_{2}=C_{2}(K, \Lambda)>0\right)(\forall \xi \in \Lambda)$

$$
\left\|\chi_{K} \int_{0}^{\xi} f_{x}^{\prime}(t, x, \lambda) d \lambda\right\|_{\mathrm{L}^{1}(\Omega)}<C_{2},
$$

A3: $(\forall \Lambda \subset \mathbf{R}$ compact $)(\forall K \subset \Omega$ compact $)\left(\exists C_{3}=C_{3}(K, \Lambda)>0\right)(\forall \lambda \in \Lambda)$

$$
\left\|\chi_{K} f(t, x, \lambda)\right\|_{L^{p}(\Omega)}<C_{3} .
$$

Assumptions A1 and A3, due to the boundedness of Ω, imply that for every $\Lambda \subset \mathbf{R}$ compact and every $\varphi \in \mathrm{C}_{c}(\Omega)$, the following holds for positive constants $C_{1, p, K, \Lambda}$ and $C_{3, p, K, \Lambda}$ with $K=\operatorname{supp} \varphi$:

C1: $\quad(\forall \xi \in \Lambda) \quad\left\|\varphi(t, x) \int_{0}^{\xi} f(t, x, \lambda) d \lambda\right\|_{\mathrm{L}^{1}(\Omega)}<C_{1, p, K, \Lambda}\|\varphi\|_{\mathrm{L}^{\infty}(\Omega)}$,
C3: $\quad(\forall \lambda \in \Lambda) \quad\|\varphi(t, x) f(t, x, \lambda)\|_{\mathrm{L}^{1}(\Omega)}<C_{3, p, K, \Lambda}\|\varphi\|_{\mathrm{L}^{\infty}(\Omega)}$.

Approximation ${ }^{1}$ of the problem

$$
\begin{align*}
\partial_{t} u_{n}+\partial_{x}\left(f_{n}\left(t, x, u_{n}\right)\right) & =\frac{1}{n} \triangle_{(t, x)} u_{n} \text { in } \Omega \\
\nabla_{(t, x)} u_{n} \cdot \nu & =0 \text { on } \Gamma_{N} \tag{4}\\
u_{n}(0, .) & =u_{n}^{0}(.) \text { on } \Gamma_{D},
\end{align*}
$$

- $f_{n}(t, x, \lambda)=f(\cdot, \cdot, \lambda) \star n^{2} \omega(n t, n x)$ is a regularization of the flux f via the standard non-negative mollifier $\omega \in \mathrm{C}_{c}^{\infty}\left((-1,1)^{2}\right)$,
- $\left(u_{n}^{0}\right)$ is a bounded sequence of functions converging strongly in $\mathrm{L}_{l o c}^{1}(\mathbf{R})$ toward u_{0}.

Problem: what is the appropriate solution concept?

[^0]
Concept of solution

Multiplying equation

$$
\partial_{t} u_{n}+\partial_{x}\left(f_{n}\left(t, x, u_{n}\right)\right)=(1 / n) \triangle_{(t, x)} u_{n}
$$

by $\operatorname{sgn}\left(u_{n}(t, x)-\lambda\right)$, we get:

$$
\begin{aligned}
\partial_{t}\left|u_{n}-\lambda\right|+\partial_{x} & \left(\operatorname{sgn}\left(u_{n}-\lambda\right)\left(f_{n}\left(u_{n}\right)-f_{n}(\lambda)\right) \leq\right. \\
& \leq \frac{1}{n} \Delta_{(t, x)}\left|u_{n}-\lambda\right|-\operatorname{sgn}\left(u_{n}-\lambda\right) f_{n, x}^{\prime}(t, x, \lambda) \text { in } \Omega .
\end{aligned}
$$

Multiply by $\varphi \in \mathrm{C}^{2}(\Omega)$ supported away from $\{t=0\}$ and integrate over Ω. After taking into account (2), we get:

$$
\begin{align*}
& -\int_{\Omega}\left(\left|u_{n}-\lambda\right| \partial_{t} \varphi+\operatorname{sgn}\left(u_{n}-\lambda\right)\left(f_{n}\left(u_{n}\right)-f_{n}(\lambda)\right) \partial_{x} \varphi\right) d x d t+ \tag{5}\\
& \quad+\int_{\partial \Omega}\left(\left|u_{n}-\lambda\right|, \operatorname{sgn}\left(u_{n}-\lambda\right)\left(f_{n}\left(u_{n}\right)-f_{n}(\lambda)\right)\right) \cdot \nu \varphi d s \leq \\
& \quad \leq \frac{1}{n} \int_{\Omega} \nabla_{(t, x)}\left|u_{n}-\lambda\right| \cdot \nabla_{(t, x)} \varphi d x d t-\int_{\Omega} \varphi \operatorname{sgn}\left(u_{n}-\lambda\right) f_{n, x}^{\prime}(t, x, \lambda) d \lambda d x d t
\end{align*}
$$

Concept of solution - continued

Using the idea from the recent article by Andreianov \& Mitrović ${ }^{2}$, we introduce the following definition:

Definition

The function $u \in \mathrm{~L}^{2}(\Omega)$ is called a solution to (1), (2), (3) if there exists a function $p \in \mathrm{~L}^{1}\left(\Gamma_{N}\right)$ such that for every $\varphi \in \mathrm{C}_{c}\left(\bar{\Omega} \backslash \Gamma_{D}\right)$ the following holds:

$$
\begin{gather*}
\int_{\Omega}\left(|u-\lambda| \partial_{t} \varphi+\operatorname{sgn}(u-\lambda)(f(t, x, u)-f(t, x, \lambda)) \partial_{x} \varphi\right) d x d t- \tag{6}\\
-\int_{\partial \Omega}(|p-\lambda|, \operatorname{sgn}(p-\lambda)(f(t, x, p)-f(t, x, \lambda))) \cdot \nu \varphi d s \geq \\
\geq \int_{\Omega} \varphi \operatorname{sgn}(u-\lambda) f_{x}^{\prime}(t, x, \lambda) d \lambda d x d t
\end{gather*}
$$

- Initial data are satisfied in the strong sense i.e. for almost every $x \in \Gamma_{D}$ it holds $\lim _{t \rightarrow 0}\left|u(t, x)-u_{0}(x)\right|=0$.

[^1]
The main result

Theorem

Assume that the sequence (u_{n}) of solutions to (4) is uniformly bounded by a constant M. If the flux f satisfies the assumptions A1, A2 and A3, then the weak $\mathrm{L}^{2}(\Omega)$-limit of $\left(u_{n}\right)$ along a subsequence satisfies the equation (1) in Ω.

Outline (of the proof):

$$
\partial_{t} u_{n}+\partial_{x}\left(f\left(t, x, u_{n}\right)\right) \longrightarrow 0 \quad \text { in } \mathrm{H}_{l o c}^{-1}(\Omega)
$$

- for all entropy-entropy flux pairs $\left(\Phi(\lambda), \Psi_{n}(t, x, \lambda)\right)$:

$$
\partial_{t}\left(\Phi\left(u_{n}\right)\right)+\partial_{x}\left(\Psi_{n}\left(t, x, u_{n}\right)\right) \text { is precompact in } \mathrm{H}_{l o c}^{-1}(\Omega)
$$

- for all $k \in \mathbf{R}$:
$\partial_{t}\left|u_{n}-k\right|+\partial_{x}\left(\operatorname{sgn}\left(u_{n}-k\right)\left(f\left(t, x, u_{n}\right)-f(t, x, k)\right)\right)$ is precompact in $\mathrm{H}_{l o c}^{-1}(\Omega)$

Case when $f \in \mathrm{C}^{1}$

A corollary of the proof of the theorem and Panov's result ${ }^{3}$ in the case when the flux is continuously differentiable with respect to all variables is the fact that the limiting function u satisfies the Kruzhkov admissibility conditions. However, we do not have a working solution concept for (1), (3), (2) so we cannot say anything about uniqueness.

Corollary

Assume that the flux $f \in \mathrm{C}^{1}(\Omega \times(-M, M))$. The distributional limit u of the sequence (u_{n}) of solutions to (4) satisfies for every entropy-entropy flux pair (Φ, Ψ)

$$
\partial_{t}(\Phi(u))+\partial_{x}(\Psi(t, x, u)) \leq-\int_{0}^{u} f_{x}^{\prime}(t, x, \lambda) \Phi^{\prime \prime}(\lambda) d \lambda \text { in } \mathcal{D}^{\prime}(\Omega)
$$

[^2]
Lighthill-Whitham-Richards model for traffic flow

$$
\partial_{t} \rho+\partial_{x}(\rho v(\rho))=0,
$$

where the velocity is assumed to have linear dependence upon density of the cars

$$
v(\rho)=v_{\max }\left(1-\frac{\rho}{\rho_{\max }}\right), \quad 0 \leq \rho \leq \rho_{\max }
$$

Let L and τ be a typical length and time, respectively, such that $v_{\max }=L / \tau$. Introducing new variables

$$
\bar{x}=\frac{x}{L}, \quad \bar{t}=\frac{x}{L}, \quad u=1-\frac{2 \rho}{\rho_{\max }}
$$

we obtain the inviscid Burgers equation

$$
\partial_{t} \rho+\partial_{x}\left[\rho\left(1-\frac{\rho}{\rho_{\max }}\right)\right]=-\frac{\rho_{\max }}{2 \tau} \partial_{\bar{t}} u-\frac{\rho_{\max }}{2 \tau} \partial_{\bar{x}}\left(\frac{u^{2}}{2}\right)=0
$$

Examples

Let $\Omega=\left\{(t, x) \in \mathbf{R}^{2}: 0 \leq x \leq 1,0 \leq t \leq-4 x(x-1)\right\}$. We focus on solving the (regularized) Burgers equation

$$
\begin{aligned}
\partial_{t} u+\partial_{x}\left(u^{2} / 2\right) & =\epsilon \Delta_{(t, x)} u \quad \text { in } \Omega, \\
\nabla_{(t, x)} u \cdot \nu & =0 \quad \text { on } \Gamma_{N}, \\
u(0, x) & =u_{D} \quad \text { on } \Gamma_{D}
\end{aligned}
$$

where $\Gamma_{D}=\{(t, x) \in \partial \Omega: t=0\}$ and $\Gamma_{N}=\partial \Omega \backslash \Gamma_{D}$.
Let $V_{D}(\Omega)=\left\{v \in \mathrm{H}^{1}(\Omega):\left.v\right|_{\Gamma_{D}}=u_{D}\right\}$ and $\mathrm{H}_{D}^{1}(\Omega)=\left\{v \in \mathrm{H}^{1}(\Omega):\left.v\right|_{\Gamma_{D}}=0\right\}$.
We use the following numerical scheme:
For given initial guess u_{0}, construct sequence $u_{n} \in V_{D}, n \geq 1$, that are solutions of

$$
\begin{equation*}
\int_{\Omega}\left(\partial_{t} u_{n}+u_{n-1} \partial_{x} u_{n}\right) \psi d t d x+\epsilon \int_{\Omega} \nabla_{(t, x)} u_{n} \cdot \nabla_{(t, x)} \psi d t d x=0, \quad \forall \psi \in \mathrm{H}_{D}^{1}(\Omega) \tag{7}
\end{equation*}
$$

Example 1

Two scenarios: in the first one $\epsilon=1 / N$ and in the second one $\epsilon=1 / N^{2}$ with $u_{D}=-2 x(x-1)$ in both.
We performed two convergence tests, where referent solution u_{R} has been computed on $N \times N=640^{2}$ grid.

$N=1 / \epsilon$	$\left\\|u_{N}-u_{R}\right\\|_{2} /\left\\|u_{R}\right\\|_{2}$	$N=1 / \sqrt{\epsilon}$	$\left\\|u_{N}-u_{R}\right\\|_{2} /\left\\|u_{R}\right\\|_{2}$
10	0.179448	10	0.0539613
20	0.130928	20	0.0137841
40	0.076787	40	0.0038117
80	0.038821	80	0.0010069
160	0.0167232	160	0.00029879
320	0.0054824	320	0.000093223

Example $1-N=160$ and $\epsilon=1 / 160^{2}$

Example $1-N=160$ and $\epsilon=1 / 160^{2}$, iso-values of the solution

Example 2

$$
u_{D}=H(0.5-x), \text { where } H \text { is Heaviside function }
$$

Example 3

$$
u_{D}=H(x-0.5), \text { where } H \text { is Heaviside function }
$$

[^0]: ${ }^{1}$ Chapter 3 of J. L. Lions, E. Magenes: Non-homogeneous Boundary value Problems and Applications I, Springer-Verlag, 1972.

[^1]: ${ }^{2}$ Formula 7 of B. Andreianov, D. Mitrović: Entropy conditions for scalar conservation laws with discontinuous flux revisited, Annales Inst. Henry Poincare - Analyse Nonlineaire 32 (2015) 1307-1335

[^2]: ${ }^{3}$ Remark 1 of E. Yu. Panov: On weak completeness of the set of entropy solutions to a scalar conservation law, SIAM J. Math. Anal. 41 (2009) 26-36

