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Parameter dependent problems

Real life processes depend on (a huge number of) parameters.

humidity

temperature

curvature
velocity

These parameters are variable, subject to uncertainty, undetermined ...
The study of a parameter dependent problems requires robust approach.
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Control of parametric dependent system

Consider the finite dimensional linear control system{
x′(t) = A(ν)x(t) +Bu(t), 0 < t < T,
x(0) = x0.

(1)

In (1):

I The (column) vector valued function
x(t, ν) =

(
x1(t, ν), . . . , xN (t, ν)

)
∈ RN is the state of the system,

I A(ν) is a N ×N−matrix,

I B is a N ×M control operator, M ≤ N ,

I uν = u(t, ν) is a M -component control vector in RM , M ≤ N .

I ν is a multi-parameter living in a compact set N of Rd,

We assume the system is (uniform) controllable for all ν ∈ N .



Controllability

The system (1) is controllable in time T > 0 if for any initial datum x0 there
exists a control uν such that x(T ) = 0 .
The control is not unique in general.
We restrict to a class of a minimal energy norm provided uniqueness.

By assumption the system is controllable for any ν ∈ N .
As the dynamics depends on ν, so it does the control uν .

What does it mean in practice?

You measure the parameter value, and you determine the control by some
standard methods.
And you repeat the process each time for any new value of ν.

Can we do it better?



Controllability

The system (1) is controllable in time T > 0 if for any initial datum x0 there
exists a control uν such that x(T ) = 0 .
The control is not unique in general.
We restrict to a class of a minimal energy norm provided uniqueness.

By assumption the system is controllable for any ν ∈ N .
As the dynamics depends on ν, so it does the control uν .

What does it mean in practice?

You measure the parameter value, and you determine the control by some
standard methods.
And you repeat the process each time for any new value of ν.

Can we do it better?



The averaged control
– the first attempt to study the control of parametric dependent problems in a
systematic manner.

The idea

– to find a parameter independent control such that∫
N

xν(T, ·)dν = xT .

Theorem

(E. Zuazua ’14)1

Averaged controllability holds if and only if the following rank condition is
satisfied:

rank
[
B,

∫ 1

0

[A(ν)]dνB,

∫ 1

0

[A(ν)]2dνB, . . .
]

= N.

1E. Zuazua, Averaged Control. Automatica 50(12) (2014) 3077–3087.

M.L. and E. Zuazua, Averaged control and observation of
parameter-depending wave equations. C. R. Acad. Sci. Paris, Ser. I 352(6)
(2014) 497–502.
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Greedy control

Fix a control time T > 0, an arbitrary initial data x0, and a final target
xT ∈ RN .

The controls
ν ∈ N ⊂ Rd → u(t, ν) ∈ [L2(0, T )]M

constitute a manifold U(N ) of dimension d in [L2(0, T )]M .

The idea:

– to determine a finite number of values of ν that yield the best possible
approximation of this “control manifold”.

We do not do it in a “naive” way by simply taking a uniform mesh on N and
then evaluating the control for each value ν corresponding to the nodes of this
mesh. This would be too expensive.

We look for a distinguished parameter values yielding the optimal
approximation by the smallest number of points.



Each control can be uniquely determined by the relation

uν = B∗e(T−t)A
∗
νϕ0

ν ,

where ϕ0
ν ∈ RN is the unique minimiser of a quadratic functional associated to

the adjoint problem.

This minimiser can be expressed as the solution of the system

Gνϕ
0
ν = xT − eTAνx0,

where Gν is the is the controllability Gramian

Gν =

∫ T

0

e(T−t)AνBνB
∗
νe

(T−t)A∗
νdt .



Greedy control

As we have 1− 1 correspondence

ϕ0
ν ←→ uν

it is sufficient to get a good approximation of the manifold ϕ0(N ):

ν ∈ N → ϕ0
ν ∈ RN .

Thus our problem can be formulated as:

The greedy control problem

Given ε > 0 determine a small family of parameters ν1, ..., , νn in N so that the
corresponding minimisers ϕ0

1, ..., ϕ
0
n, are such that for every ν ∈ N there exists

ϕ0∗
ν ∈ span{ϕ0

1, ..., ϕ
0
n} satisfying

||ϕ0
ν − ϕ0∗

ν || ≤ ε.



In order to achieve this goal we rely on greedy algorithms and reduced bases
methods for parameter dependent PDEs or abstract equations in Banach
spaces.

A.Cohen, R.DeVore, Kolmogorov widths under holomorphic
mappings, IMA Journal on Numerical Analysis, to appear

A.Cohen, R.DeVore, Approximation of high-dimensional parametric
PDEs, arXiv preprint, 2015.

Y.Maday, O.Mula, A.T. Patera, M.Yano, The generalized
Empirical Interpolation Method: stability theory on Hilbert spaces with an
application to the Stokes equation, submitted



The pure greedy method

X – a Banach space
K ⊂ X – a compact subset.

The method approximates K by a a series of finite dimensional linear spaces Vn
(a linear method).

The algorithm

The first step
Choose x1 ∈ K such that

‖x1‖X = max
x∈K
‖x‖X .

The general step
Having found x1..xn, denote Vn = span{x1, . . . , xn}.
Choose the next element

xn+1 := arg max
x∈K

dist(x, Vn) . (2)

The algorithm stops
when σn(K) := maxx∈K dist(x, Vn) becomes less than the given tolerance ε.



The greedy idea

Which one you are going to choose?

Sometimes it is hard to solve the maximisation problem (2).
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The weak greedy method

– a relaxed version of the pure one.

The algorithm

Fix a constant γ ∈ 〈0, 1].
The first step
Choose x1 ∈ K such that

‖x1‖X≥ γmax
x∈K
‖x‖X .

The general step
Having found x1..xn, denote Vn = span{x1, . . . , xn}.
Choose the next element

dist(xn+1, Vn)≥ γ max
x∈K

dist(x, Vn) . (3)

The algorithm stops
when σn(K) := maxx∈K dist(x, Vn) becomes less than the given tolerance ε.



Efficiency
In order to estimate the efficiency of the (weak) greedy algorithm we
compare its approximation rates σn(K) with the best possible one.

The Kolmogorov n width, dn(K)

– measures how well K can be approximated by a subspace in X of a fixed
dimension n.

dn(K) := inf
dimY=n

sup
x∈K

inf
y∈Y
‖x− y‖X .

Thus dn(K) represents optimal approximation performance that can be
obtained by a n-dimensional linear space.
The greedy approximation rates have same decay as the Kolmogorov widths.

Theorem

(Cohen, DeVore ’15) 3

For any α > 0, C0 > 0

dn(K) ≤ C0n
−α =⇒ σn(K) ≤ C1n

−α, k ∈ N,

where C1 := C1(α,C0, γ).

3A.Cohen, R.DeVore, Approximation of high-dimensional parametric
PDEs, arXiv preprint, 2015.



Performance obstacles

I The set K in general consists of infinitely many vectors.

Finite discretisation of K.

I In practical implementations the set K is often unknown (e.g. it
represents the family of solutions to parameter dependent problems).

One uses some surrogate value of an uniformly equivalent norm instead of
the exact distance appearing in (3).

Practical realisation depends crucially on an existence of an appropriate
surrogate .
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The vectors chosen by the greedy procedure are the snapshots.

Their computation can be time consuming
and computational expensive (offline part).

Los Alamos National Laboratory

Once having chosen the snapshots, one
should easily approximate any value x ∈ K
(online part).
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Greedy control

Recall

The greedy control problem

Given ε > 0 determine a small family of parameters ν1, ..., , νn in N so that the
corresponding minimisers ϕ0

1, ..., ϕ
0
n are such that for every ν ∈ N there exists

ϕ0∗
ν ∈ span{ϕ0

1, ..., ϕ
0
n} satisfying

||ϕ0
ν − ϕ0∗

ν || ≤ ε.

The greedy method choose the next snapshot by maximising

distν∈N (ϕ0
ν ,Φ

0
n),

where Φ0
n = span{ϕ0

1, . . . , ϕ
0
n}.

Thus one would have to find ϕ0
ν for every ν ∈ N , what is exactly what we

want to avoid.

One has to find an appropriate surrogate!



Surrogate choice

Suppose we have chosen ϕ0
1. How should we estimate distν∈N (ϕ0

ν , ϕ
0
1),

without knowing ϕ0
ν?

As
Gνϕ

0
ν = xT − eTAνx0, (4)

try ϕ0
1 as the solution to (4), i.e. compute

and check its distance from the
target

Gνϕ
0
1

−(xT − eTAνx0)

.

Thus

dist(ϕ0
ν , ϕ

0
1) ∼ dist(Gνϕ

0
ν ,Gνϕ

0
1) = dist(xT − e−TAνx0,Gνϕ

0
1)︸ ︷︷ ︸

surrogate

.

ϕ0
ν

ϕ0
1

xTx0

Gνϕ
0
1 + e−TAνx0

Surrogate
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Construction of the approximating space
Offline part

As the second snapshot, we choose the value for which ϕ0
1 gives the worst

approximation.
And so on ...

Theorem

The algorithm stops after the most n0 ≤ N steps, and it fulfils the
requirements of the weak greedy theory.

Corollary

The greedy control algorithm leads to an optimal approximation method.
More precisely, for all α > 0 there exists Cα > 0 such that for any ν the
minimiser φ0

ν can be approximated by linear combinations of the weak-greedy
ones as follows:

dist(φ0
ν ; span{φ0

j : j = 1, ..., n}) ≤ Cαn−α.

The same applies when N is infinite-dimensional provided its Kolmogorov
width decays polynomially.



Construction of the approximating control for a given parameter value
Online part

Having constructed the approximating space Φ0
n how do we construct an

approximative control u∗ν associated to an an arbitrary given value ν ∈ N .
The exact control is given by

uν = B∗e−(T−t)A∗
νϕ0

ν ,

We construct the approximative one as

u∗ν = B∗e−(T−t)A∗
ν

k∑
i

λiϕ
0
i , (5)

where the coefficients λi are determined by the projection of the vector
Gνφ

0
ν = xT − e−TAνx0 to the space GνΦ0

n = span{Gνϕ
0
1, . . . ,Gνϕ

0
n}.

N.B.

u∗ν 6∈ span{u1, ..., un}



The first example
We consider the system{

x′(t) = A(ν)x(t) +Bu(t), 0 < t < T,
x(0) = x0.

where

A =

(
0 −I

ν(N/2 + 1)2Ã 0

)
,

Ã =



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


, B =


0
0
...
0
1

 .

The system corresponds to the discretisation of the wave equation problem
with the control on the right boundary:

∂ttv − ν∂xxv = 0, (t, x) ∈ 〈0, T 〉 × 〈0, 1〉
v(t, 0) = 0, v(t, 1) = u(t)

v(0, x) = v0, ∂tv(x, 0) = v1 .



The wave equation

We take the following values:

T = 3, N = 20

v0 = sin(πx), v1 = 0

xT = 0

and we assume
ν ∈ [1, 10] = N

The system satisfies the Kalman’s rank condition for any ν.

The greedy control has been applied with ε = 0.5 and the uniform
discretisation of N in k = 100 values.

The offline algorithm stopped after 10 iterations.
10 values (out of 100) were chosen in the following order:

10.00 1.45 2.44 6.85 7.48 4.51 1.27 2.71 4.87 1.09

The corresponding minimisers have been calculated and saved.

The online part should us give an approximative control for any ν ∈ [1, 10].

Let us try!



The efficiency of the method

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Greedy (red) vs classical (blue) approximation rates for the wave eq.; 
 N=20, n=100, T=3, nt=100

Blue curve represent approximation rates obtained by choosing minimisers in a
naive way:
just by taking vectors of the canonical basis.

The greedy does much better!



The heat equation

For

A = ν(N + 1)2



2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2


, B =


0
0
...
0
1

 ,

the system corresponds to the discretisation of the heat equation problem with
the control on the right boundary:

∂tv − ν∂xxv = 0, (t, x) ∈ 〈0, T 〉 × 〈0, 1〉
v(t, 0) = 0, v(t, 1) = u(t)

v(0, x) = v0, .



Results

The greedy is applied with T = 0.1, ε = 0.001. The algorithm stops after only 4
iterations, choosing 4 (out of 100) parameter values.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−100

−50

0

50

evolution of the system (components 16 −− 20 ) for ν=0.70711
 N=20, n=100, T=0.1, nt=100, eps=0.001

t

x i(t
)
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0.8

1

0
0.02

0.04
0.06

0.08
0.1

−100

−50

0

50

x

solution to the heat eq.  for ν=0.70711
 N=20, n=100, T=0.1, nt=100, eps=0.001

t



Open problems and perspectives

I Our work can be extended to systems with the control operator and/or
initial conditions depending on the parameter as well.
Of special interest is the affine dependence case

B(ν) = B̄ +
∑
j

νjBj

with (‖Bj‖) ∈ lp for some p ≤ 1 which should significantly reduce the
computational cost.

I Our work can be extended to PDE but analyticity of controls with respect
to parameters has to be ensured. This typically holds for elliptic and
parabolic equations. But not for wave-like equations.
Indeed, solutions of

ytt − ν2yxx = 0

do not depend analytically on the coefficient ν.

I Alternative surrogates need to found so to make the recursive choice
process of the various ν′s (offline part) faster and cheaper.

Thanks for your attention!
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