One-scale H-distributions

Marko Erceg
Department of Mathematics, Faculty of Science
University of Zagreb

International conference on generalised functions - GF2016
Dubrovnik, $5^{\text {th }}$ September, 2016

Joint work with Nenad Antonić

One-scale H-measures

Existence of one-scale H-distributions
Space of test function in the Fourier space Commutation lemma

Localisation principle

One-scale H-measures

$$
\Omega \subseteq \mathbf{R}^{d} \text { open }
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\widehat{\varphi_{1} u_{n^{\prime}}}}(\boldsymbol{\xi}) \widehat{\widehat{\varphi_{2} v_{n^{\prime}}}(\boldsymbol{\xi})} \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The measure $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.

Luc Tartar: The general theory of homogenization: A personalized introduction, Springer (2009)
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77-90.

$\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

$\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$ is a compactification of \mathbf{R}_{*}^{d} homeomorphic to a spherical layer (i.e. an annulus in \mathbf{R}^{2}):

One-scale H-measures

$$
\Omega \subseteq \mathbf{R}^{d} \text { open }
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)^{\prime}} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{ } \widehat{\varphi_{1} u_{n^{\prime}}}(\boldsymbol{\xi}) \overline{\overline{\varphi_{2} v_{n^{\prime}}}(\boldsymbol{\xi})} \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The measure $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.

Luc Tartar: The general theory of homogenization: A personalized introduction, Springer (2009)
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77-90.

One-scale H-measures

$$
\Omega \subseteq \mathbf{R}^{d} \text { open }
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)^{\prime}} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x}=\left\langle\mu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The measure $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.
$\mathcal{A}_{\psi}(u)=(\psi \hat{u})^{\vee}, \psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$
Luc Tartar: The general theory of homogenization: A personalized introduction, Springer (2009)
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77-90.

One-scale H-measures

$$
\Omega \subseteq \mathbf{R}^{d} \text { open }
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)^{\prime}} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x}=\left\langle\mu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The measure $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.
$\mathcal{A}_{\psi}(u)=(\psi \hat{u})^{\vee}, \psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$
Luc Tartar: The general theory of homogenization: A personalized introduction, Springer (2009)
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77-90.

One-scale H-

$$
\Omega \subseteq \mathbf{R}^{d} \text { open, } p \in\langle 1, \infty\rangle, \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p^{\prime}}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in E$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x}=\left\langle\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-distribution with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.
$\mathcal{A}_{\psi}(u)=(\psi \hat{u})^{\vee}, \psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$

One-scale H-distributions

$\Omega \subseteq \mathbf{R}^{d}$ open, $p \in\langle 1, \infty\rangle, \frac{1}{p}+\frac{1}{p^{\prime}}=1$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p^{\prime}}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in E$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x}=\left\langle\nu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-distribution with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.
$\mathcal{A}_{\psi}(u)=(\psi \hat{u})^{\vee}, \psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$

One-scale H-distributions

$$
\Omega \subseteq \mathbf{R}^{d} \text { open, } p \in\langle 1, \infty\rangle, \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p^{\prime}}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in E$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x}=\left\langle\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The distribution $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-distribution with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.
$\mathcal{A}_{\psi}(u)=(\psi \hat{u})^{\vee}, \psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$

Determine E such that

- $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ is continuous
- The First commutation lemma is valid

$\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

$\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$ is a compactification of \mathbf{R}_{*}^{d} homeomorphic to a spherical layer (i.e. an annulus in \mathbf{R}^{2}):

We shall need a differential structure on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$.

Precise description of $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) 1 / 3$

For fixed $r_{0}>0$ let us define $r_{1}=\frac{r_{0}}{\sqrt{r_{0}^{2}+1}}$, and denote by

$$
A\left[0, r_{1}, 1\right]:=\left\{\boldsymbol{\zeta} \in \mathbf{R}^{d}: r_{1} \leqslant|\boldsymbol{\zeta}| \leqslant 1\right\}
$$

closed d-dimensional spherical layer equipped with the standard topology (inherited from \mathbf{R}^{d}). In addition let us define $A\left(0, r_{1}, 1\right):=\operatorname{lnt} A\left[0, r_{1}, 1\right]$, and by $A_{0}\left[0, r_{1}, 1\right]:=\mathrm{S}^{d-1}\left(0 ; r_{1}\right)$ and $A_{\infty}\left[0, r_{1}, 1\right]:=\mathrm{S}^{d-1}$ we denote boundary spheres.
We want to construct a homeomorphism $\mathcal{J}: \mathbf{R}_{*}^{d} \longrightarrow A\left(0, r_{1}, 1\right)$.

Precise description of $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) 2 / 3$

From the previous construction we get that $\mathcal{J}: \mathbf{R}_{*}^{d} \longrightarrow A\left(0, r_{1}, 1\right)$ is given by

$$
\mathcal{J}(\boldsymbol{\xi})=\frac{\boldsymbol{\xi}}{\sqrt{|\boldsymbol{\xi}|^{2}+\left(\frac{|\boldsymbol{\xi}|}{|\boldsymbol{\xi}|+r_{0}}\right)^{2}}}=\frac{|\boldsymbol{\xi}|+r_{0}}{|\boldsymbol{\xi}| K(\boldsymbol{\xi})} \boldsymbol{\xi}
$$

where $K(\boldsymbol{\xi})=K(|\boldsymbol{\xi}|):=\sqrt{1+\left(|\boldsymbol{\xi}|+r_{0}\right)^{2}}$.
$\boldsymbol{\xi}$ and $\mathcal{J}(\boldsymbol{\xi})$ lie on the same line:

$$
\frac{\mathcal{J}(\boldsymbol{\xi})}{|\mathcal{J}(\boldsymbol{\xi})|}=\frac{\frac{|\boldsymbol{\xi}|+r_{0}}{|\boldsymbol{\xi}| K(\boldsymbol{\xi}} \boldsymbol{\xi}}{\frac{\boldsymbol{\xi} \mid+r_{0}}{|\boldsymbol{\xi}| K(\boldsymbol{\xi})}|\boldsymbol{\xi}|}=\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}
$$

\mathcal{J} is homeomorphism and its inverse $\mathcal{J}^{-1}: A\left(0, r_{1}, 1\right) \longrightarrow \mathbf{R}_{*}^{d}$ is given by

$$
\mathcal{J}^{-1}(\boldsymbol{\zeta})=\frac{|\boldsymbol{\zeta}|-r_{0} \sqrt{1-|\boldsymbol{\zeta}|^{2}}}{|\boldsymbol{\zeta}| \sqrt{1-|\boldsymbol{\zeta}|^{2}}} \boldsymbol{\zeta}=\boldsymbol{\zeta}\left(1-|\boldsymbol{\zeta}|^{2}\right)^{-\frac{1}{2}}-r_{0} \boldsymbol{\zeta}|\boldsymbol{\zeta}|^{-1},
$$

resulting that $\left(A\left[0, r_{1}, 1\right], \mathcal{J}\right)$ is a compactification of \mathbf{R}_{*}^{d}.

Precise description of $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) 3 / 3$

Now we define

$$
\Sigma_{0}:=\left\{0^{\mathrm{e}}: \mathrm{e} \in \mathrm{~S}^{d-1}\right\} \quad \text { and } \quad \Sigma_{\infty}:=\left\{\infty^{\mathrm{e}}: \mathrm{e} \in \mathrm{~S}^{d-1}\right\}
$$

and $K_{0, \infty}\left(\mathbf{R}^{d}\right):=\mathbf{R}_{*}^{d} \cup \Sigma_{0} \cup \Sigma_{\infty}$.
Let us extend \mathcal{J} to the whole $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$ by $\mathcal{J}\left(0^{\mathrm{e}}\right):=r_{1} \mathrm{e}$ and $\mathcal{J}\left(\infty^{\mathrm{e}}\right)=\mathrm{e}$, which gives $\mathcal{J}^{\rightarrow}\left(\Sigma_{0}\right)=A_{0}\left[0, r_{1}, 1\right]$ and $\mathcal{J} \rightarrow\left(\Sigma_{\infty}\right)=A_{\infty}\left[0, r_{1}, 1\right]$.
$d_{*}\left(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}\right):=\left|\mathcal{J}\left(\boldsymbol{\xi}_{1}\right)-\mathcal{J}\left(\boldsymbol{\xi}_{2}\right)\right|$ is a metric on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$, so $\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right), d_{*}\right)$ is a metric space isomorphic to $A\left[0, r_{1}, 1\right]$.

$$
\lim _{|\boldsymbol{\xi}| \rightarrow 0}\left|\mathcal{J}(\boldsymbol{\xi})-\mathcal{J}\left(0^{\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}}\right)\right|=0, \quad \lim _{|\boldsymbol{\xi}| \rightarrow \infty}\left|\mathcal{J}(\boldsymbol{\xi})-\mathcal{J}\left(\infty^{\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}}\right)\right|=0
$$

$$
\lim _{|\zeta| \rightarrow r_{1}}\left|\mathcal{J}^{-1}(\boldsymbol{\zeta})\right|=0, \quad \lim _{|\boldsymbol{\zeta}| \rightarrow 1}\left|\mathcal{J}^{-1}(\boldsymbol{\zeta})\right|=+\infty
$$

Continuous functions on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

Lemma

For $\psi: \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) \longrightarrow \mathbf{C}$ the following is equivalent:
a) $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$,
b) $\left(\exists \tilde{\psi} \in \mathrm{C}\left(A\left[0, r_{1}, 1\right]\right)\right) \psi=\tilde{\psi} \circ \mathcal{J}$,
c) $\psi_{\left.\right|_{\mathbf{R}_{*}^{d}}} \in \mathrm{C}\left(\mathbf{R}_{*}^{d}\right)$, and

$$
\lim _{|\boldsymbol{\xi}| \rightarrow 0}\left|\psi(\boldsymbol{\xi})-\psi\left(0^{\frac{\boldsymbol{\xi}}{\boldsymbol{\xi} \mid}}\right)\right|=0 \quad \text { and } \quad \lim _{|\boldsymbol{\xi}| \rightarrow \infty}\left|\psi(\boldsymbol{\xi})-\psi\left(\infty^{\frac{\boldsymbol{\xi}}{\boldsymbol{\xi} \mid}}\right)\right|=0
$$

For $\psi \in \mathrm{C}\left(\mathbf{R}_{*}^{d}\right)$ we have $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ iff there exist $\psi_{0}, \psi_{\infty} \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ such that

$$
\begin{aligned}
& \psi(\boldsymbol{\xi})-\psi_{0}\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \rightarrow 0, \quad|\boldsymbol{\xi}| \rightarrow 0 \\
& \psi(\boldsymbol{\xi})-\psi_{\infty}\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \rightarrow 0, \quad|\boldsymbol{\xi}| \rightarrow \infty
\end{aligned}
$$

In particular, $\psi-\psi_{0}\left(\frac{\dot{\Gamma}}{|\cdot|}\right) \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right)$ (uniformly continuous bounded functions).

Differential structure on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

For $\kappa \in \mathbf{N}_{0} \cup\{\infty\}$ let us define

$$
\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right):=\left\{\psi \in \mathrm{C}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right): \psi^{*}:=\psi \circ \mathcal{J}^{-1} \in \mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right)\right\} .
$$

It is not hard to check that $\mathrm{C}^{0}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ coincide. For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we define $\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}:=\left\|\psi^{*}\right\|_{\mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right)}$.

$$
\begin{aligned}
\mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right) \text { Banach algebra } & \Longrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \text { Banach algebra } \\
A\left[0, r_{1}, 1\right] \text { compact } & \Longrightarrow \mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right) \text { separable } \\
& \Longrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \text { separable }
\end{aligned}
$$

Is $\mathcal{A}_{\psi}=\left(\psi^{\bullet}\right)^{\vee}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ continuous?

Theorem (Hörmander-Mihlin)

If for $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ there exists $C>0$ such that

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}\right)\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d},|\boldsymbol{\alpha}| \leqslant \kappa\right) \quad\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right| \leqslant \frac{C}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}
$$

where $\kappa=\left\lfloor\frac{d}{2}\right\rfloor+1$, then ψ is a Fourier multiplier. Moreover, we have

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)} \leqslant C_{d} \max \left\{p, \frac{1}{p-1}\right\} C
$$

We shall use Faá di Bruno formula: for sufficiently smooth functions $\mathrm{g}: \mathbf{R}^{d} \longrightarrow \mathbf{R}^{r}$ and $f: \mathbf{R}^{r} \longrightarrow \mathbf{R}$ we have

$$
\partial^{\boldsymbol{\alpha}}(f \circ \mathrm{~g})(\boldsymbol{\xi})=|\boldsymbol{\alpha}|!\sum_{1 \leqslant|\boldsymbol{\beta}| \leqslant|\boldsymbol{\alpha}|, \boldsymbol{\beta} \in \mathbf{N}_{0}^{r}} C(\boldsymbol{\beta}, \boldsymbol{\alpha}),
$$

where

$$
C(\boldsymbol{\beta}, \boldsymbol{\alpha})=\frac{\left(\partial^{\boldsymbol{\beta}} f\right)(\mathrm{g}(\boldsymbol{\xi}))}{\boldsymbol{\beta}!} \sum_{\substack{\sum_{i=1}^{r} \boldsymbol{\alpha}_{i}=\boldsymbol{\alpha}, \boldsymbol{\alpha}_{i} \in \mathbf{N}_{0}^{d}}} \prod_{j=1}^{r} \sum_{\substack{\sum_{i}^{\beta_{j}=1} \\ \boldsymbol{\gamma}_{i} \in \mathbf{N}_{0}^{d} \backslash\{0\}}} \prod_{s=1}^{\boldsymbol{\gamma}_{j}} \prod_{s=1} \frac{\partial^{\boldsymbol{\gamma}_{s}} g_{j}(\boldsymbol{\xi})}{\boldsymbol{\gamma}_{s}!} .
$$

Lemma

For every $j \in 1$..d and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ we have

$$
\partial^{\boldsymbol{\alpha}}\left(\mathcal{J}_{j}\right)(\boldsymbol{\xi})=P_{\boldsymbol{\alpha}}\left(\boldsymbol{\xi}, \frac{1}{|\boldsymbol{\xi}|}\right) K(\boldsymbol{\xi})^{-1-2|\boldsymbol{\alpha}|}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}
$$

where $P_{\boldsymbol{\alpha}}(\boldsymbol{\xi}, \eta)$ is a polynomial of degree less or equal to $|\boldsymbol{\alpha}|+1$ in $\boldsymbol{\xi}$ and $2|\boldsymbol{\alpha}|+1$ in η, in addition that in the expression $\lambda^{|\boldsymbol{\alpha}|} P_{\boldsymbol{\alpha}}\left(\lambda, \ldots, \lambda, \frac{1}{\lambda}\right)$ we do not have terms of the negative order. Precisely, polynomial $P_{\boldsymbol{\alpha}}(\boldsymbol{\xi}, \eta)$ has only terms of the form $C \boldsymbol{\xi}^{\boldsymbol{\beta}} \eta^{k}$ where $|\boldsymbol{\beta}|+|\boldsymbol{\alpha}| \geqslant k$.

Lemma

For every $j \in 1$..d and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ we have

$$
\left|\partial^{\boldsymbol{\alpha}}\left(\mathcal{J}_{j}\right)(\boldsymbol{\xi})\right| \leqslant \frac{C_{\boldsymbol{\alpha}, d}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}
$$

Theorem

Let $\kappa \in \mathbf{N}_{0}$. For every $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ such that $|\boldsymbol{\alpha}| \leqslant \kappa$ we have

$$
\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right| \leqslant C_{\kappa, d} \frac{\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}
$$

Theorem

Let $\kappa \in \mathbf{N}_{0}$. For every $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ such that $|\boldsymbol{\alpha}| \leqslant \kappa$ we have

$$
\left|\partial^{\alpha} \psi(\boldsymbol{\xi})\right| \leqslant C_{\kappa, d} \frac{\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d} .
$$

Theorem

Let $\kappa \in \mathbf{N}_{0}$. For every $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ such that $|\boldsymbol{\alpha}| \leqslant \kappa$ we have

$$
\left|\partial^{\alpha} \psi(\boldsymbol{\xi})\right| \leqslant C_{\kappa, d} \frac{\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}}{|\boldsymbol{\xi}|^{\mid \boldsymbol{\alpha}} \mid}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d} .
$$

Therefore, for $\kappa \geqslant\left\lfloor\frac{d}{2}\right\rfloor+1$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we have

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)} \leqslant C_{d, p}\|\psi\|_{\mathrm{C}^{k}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

Theorem

Let $\kappa \in \mathbf{N}_{0}$. For every $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ such that $|\boldsymbol{\alpha}| \leqslant \kappa$ we have

$$
\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right| \leqslant C_{\kappa, d} \frac{\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}
$$

Therefore, for $\kappa \geqslant\left\lfloor\frac{d}{2}\right\rfloor+1$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we have

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathcal{L}_{\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)}} \leqslant C_{d, p}\|\psi\|_{\mathrm{C}^{k}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

Lemma

i) $\mathcal{S}\left(\mathbf{R}^{d}\right) \hookrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, and
ii) $\left\{\psi \circ \pi: \psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)\right\} \hookrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

Commutation lemma

$B_{\varphi} u:=\varphi u, \mathcal{A}_{\psi} u:=(\psi \hat{u})^{\vee}$.

Lemma

Let $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right), \kappa \geqslant\left\lfloor\frac{d}{2}\right\rfloor+1, \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator can be expressed as a sum

$$
C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=\tilde{C}_{n}+K
$$

where for any $p \in\langle 1, \infty\rangle$ we have that K is a compact operator on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, while $\tilde{C}_{n} \longrightarrow 0$ in the operator norm on $\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)$.

Commutation lemma

$B_{\varphi} u:=\varphi u, \mathcal{A}_{\psi} u:=(\psi \hat{u})^{\vee}$.

Lemma

Let $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right), \kappa \geqslant\left\lfloor\frac{d}{2}\right\rfloor+1, \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator can be expressed as a sum

$$
C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=\tilde{C}_{n}+K
$$

where for any $p \in\langle 1, \infty\rangle$ we have that K is a compact operator on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, while $\tilde{C}_{n} \longrightarrow 0$ in the operator norm on $\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)$.

Dem.

$$
\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=\underbrace{\left[B_{\varphi}, \mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}\right]}_{\tilde{C}_{n}}+\underbrace{\left[B_{\varphi}, \mathcal{A}_{\psi_{0} \circ \pi}\right]}_{K}
$$

where $\boldsymbol{\pi}(\boldsymbol{\xi}):=\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}$ and

$$
\psi(\boldsymbol{\xi})-\left(\psi_{0} \circ \boldsymbol{\pi}\right)(\boldsymbol{\xi}) \longrightarrow 0, \quad|\boldsymbol{\xi}| \rightarrow 0
$$

Let $r \in\langle 1, \infty\rangle$ and $\theta \in\langle 0,1\rangle$ such that $\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{r}$.

Proof of Comm. Lemma: $\tilde{C}_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}\right]$

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad \tilde{C}_{n} \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Proof of Comm. Lemma: $\tilde{C}_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}\right]$

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad \tilde{C}_{n} \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 2009)

Let $\psi \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator $C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=B_{\varphi} \mathcal{A}_{\psi_{n}}-\mathcal{A}_{\psi_{n}} B_{\varphi}$ tends to zero in the operator norm on $\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$.

Proof of Comm. Lemma: $\tilde{C}_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}\right]$

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad \tilde{C}_{n} \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 2009)

Let $\psi \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator $C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=B_{\varphi} \mathcal{A}_{\psi_{n}}-\mathcal{A}_{\psi_{n}} B_{\varphi}$ tends to zero in the operator norm on $\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$.

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right) \quad \Longrightarrow \quad \tilde{C}_{n} \longrightarrow 0 \text { in } \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)
$$

Proof of Comm. Lemma: $\tilde{C}_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}\right]$

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad \tilde{C}_{n} \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 2009)

Let $\psi \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$.
Then the commutator $C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=B_{\varphi} \mathcal{A}_{\psi_{n}}-\mathcal{A}_{\psi_{n}} B_{\varphi}$ tends to zero in the operator norm on $\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$.

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right) \quad \Longrightarrow \quad \tilde{C}_{n} \longrightarrow 0 \text { in } \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)
$$

By the Riesz-Thorin interpolation theorem we have

$$
\left\|\tilde{C}_{n}\right\|_{\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)} \leqslant\left\|\tilde{C}_{n}\right\|_{\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)}^{\theta}\left\|\tilde{C}_{n}\right\|_{\mathcal{L}\left(\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)\right)}^{1-\theta}
$$

implying $\tilde{C}_{n} \longrightarrow 0$ in the operator norm on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.

Proof of Comm. Lemma: $K:=\left[B_{\varphi}, \mathcal{A}_{\psi_{0} \circ \pi}\right]$

$$
\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad K \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Proof of Comm. Lemma: $K:=\left[B_{\varphi}, \mathcal{A}_{\psi_{0} \circ \pi}\right]$

$$
\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad K \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 1990)

For $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ and $\varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ the commutator $C:=\left[B_{\varphi}, \mathcal{A}_{\psi}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.

Proof of Comm. Lemma: $K:=\left[B_{\varphi}, \mathcal{A}_{\psi_{0} \circ \pi}\right]$

$$
\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad K \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 1990)

For $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ and $\varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ the commutator $C:=\left[B_{\varphi}, \mathcal{A}_{\psi}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.

$$
\psi_{0} \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right) \quad \Longrightarrow \quad K \text { compact on } \mathrm{L}^{2}\left(\mathbf{R}^{d}\right)
$$

Proof of Comm. Lemma: $K:=\left[B_{\varphi}, \mathcal{A}_{\psi_{0} \circ \pi}\right]$

$$
\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad K \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 1990)

For $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ and $\varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ the commutator $C:=\left[B_{\varphi}, \mathcal{A}_{\psi}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.

$$
\psi_{0} \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right) \quad \Longrightarrow \quad K \text { compact on } \mathrm{L}^{2}\left(\mathbf{R}^{d}\right)
$$

Lemma (Antonić, Mišur, Mitrović, 2016)

Let A be compact on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and bounded on $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 1, \infty\rangle \backslash\{2\}$. Then A is also compact on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any p between 2 and r (i.e. such that $1 / p=\theta / 2+(1-\theta) / r$, for some $\theta \in\langle 0,1\rangle$).

$$
\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{r} \quad \Longrightarrow \quad K \text { compact on } \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

One-scale H-distributions

Theorem

If $u_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{p}(\Omega)$ and $\left(v_{n}\right)$ is bounded in $\mathrm{L}_{\mathrm{loc}}^{q}(\Omega)$, for some $p \in\langle 1, \infty\rangle$ and $q \geqslant p^{\prime}$, and $\omega_{n} \rightarrow 0^{+}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex distribution of finite order $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, where $\kappa=\left\lfloor\frac{d}{2}\right\rfloor+1$, we have

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right) \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \varphi_{1} u_{n^{\prime}} \overline{\mathcal{A}_{\bar{\psi}_{n^{\prime}}}\left(\varphi_{2} v_{n^{\prime}}\right)} d \mathbf{x} \\
& =\left\langle\nu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
\end{aligned}
$$

where $\psi_{n}:=\psi\left(\omega_{n} \cdot\right)$. The distribution $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ we call one-scale H-distribution (with characteristic length $\left(\omega_{n^{\prime}}\right)$) associated to (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.

One-scale H-distributions

Theorem

If $u_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{p}(\Omega)$ and $\left(v_{n}\right)$ is bounded in $\mathrm{L}_{\mathrm{loc}}^{q}(\Omega)$, for some $p \in\langle 1, \infty\rangle$ and $q \geqslant p^{\prime}$, and $\omega_{n} \rightarrow 0^{+}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex distribution of finite order $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, where $\kappa=\left\lfloor\frac{d}{2}\right\rfloor+1$, we have

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right) \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \varphi_{1} u_{n^{\prime}} \overline{\mathcal{A}_{\bar{\psi}_{n^{\prime}}}\left(\varphi_{2} v_{n^{\prime}}\right)} d \mathbf{x} \\
& =\left\langle\nu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
\end{aligned}
$$

where $\psi_{n}:=\psi\left(\omega_{n} \cdot\right)$. The distribution $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ we call one-scale H-distribution (with characteristic length $\left(\omega_{n^{\prime}}\right)$) associated to (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.

$$
\int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right) \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x}=\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle
$$

K_{m} compacts such that $K_{m} \subseteq \operatorname{lnt} K_{m+1}$ and $\bigcup_{m} K_{m}=\Omega$.

The existence of one-scale H-distributions: proof $1 / 2$

For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ such that $\operatorname{supp} \varphi_{1}, \operatorname{supp} \varphi_{2} \subseteq K_{m}$, we have

$$
\left|\left\langle\varphi_{2} v_{n}, \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n}\right)\right\rangle\right| \leqslant C_{m, d}\left\|\varphi_{1}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\left\|\varphi_{2}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

The existence of one-scale H-distributions: proof $1 / 2$

For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ such that $\operatorname{supp} \varphi_{1}, \operatorname{supp} \varphi_{2} \subseteq K_{m}$, we have

$$
\left|\left\langle\varphi_{2} v_{n}, \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n}\right)\right\rangle\right| \leqslant C_{m, d}\left\|\varphi_{1}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\left\|\varphi_{2}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

By the Cantor diagonal procedure (we have separability) ... we get trilinear form L :

$$
L\left(\varphi_{1}, \varphi_{2}, \psi\right)=\lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle
$$

The existence of one-scale H-distributions: proof $1 / 2$

For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ such that $\operatorname{supp} \varphi_{1}, \operatorname{supp} \varphi_{2} \subseteq K_{m}$, we have

$$
\left|\left\langle\varphi_{2} v_{n}, \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n}\right)\right\rangle\right| \leqslant C_{m, d}\left\|\varphi_{1}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\left\|\varphi_{2}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

By the Cantor diagonal procedure (we have separability) ... we get trilinear form L :

$$
L\left(\varphi_{1}, \varphi_{2}, \psi\right)=\lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle
$$

L depends only on the product $\varphi_{1} \bar{\varphi}_{2}: \zeta_{i} \in \mathrm{C}_{c}(\Omega)$ such that $\zeta_{i} \equiv 1$ on $\operatorname{supp} \varphi_{i}$, $i=1,2$,

$$
\begin{aligned}
& \lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle=\lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \varphi_{1} \mathcal{A}_{\psi_{n^{\prime}}}\left(\zeta_{1} u_{n}\right)\right\rangle \\
&=\lim _{n^{\prime}}\left\langle\bar{\varphi}_{1} \varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\zeta_{1} u_{n}\right)\right\rangle \\
&=\lim _{n^{\prime}}\left\langle\zeta_{1} \zeta_{2} v_{n^{\prime}}, \varphi_{1} \bar{\varphi}_{2} \mathcal{A}_{\psi_{n^{\prime}}}\left(\zeta_{1} u_{n}\right)\right\rangle \\
&=\lim _{n^{\prime}}\left\langle\zeta_{1} \zeta_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} \bar{\varphi}_{2} u_{n}\right)\right\rangle \\
& \Longrightarrow \quad L\left(\varphi_{1}, \varphi_{2}, \psi\right)=L\left(\varphi_{1} \bar{\varphi}_{2}, \zeta_{1} \zeta_{2}, \psi\right) .
\end{aligned}
$$

The existence of one-scale H-distributions: proof $2 / 2$

For $\varphi \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we define

$$
\mathcal{L}(\varphi, \psi):=L(\varphi, \zeta, \psi),
$$

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$.
\mathcal{L} is continuous bilinear form on $\mathrm{C}_{c}(\Omega) \times \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

The existence of one-scale H-distributions: proof 2/2

For $\varphi \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we define

$$
\mathcal{L}(\varphi, \psi):=L(\varphi, \zeta, \psi),
$$

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$.
\mathcal{L} is continuous bilinear form on $\mathrm{C}_{c}(\Omega) \times \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

Theorem

Let $\Omega \subseteq \mathbf{R}^{d}$ be open, and let B be a continuous bilinear form on $\mathrm{C}_{c}^{\infty}(\Omega) \times \mathrm{C}^{\infty}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$. Then there exists a unique distribution $\nu \in \mathcal{D}^{\prime}\left(\Omega \times K_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that

$$
\left(\forall f \in \mathrm{C}_{c}^{\infty}(\Omega)\right)\left(\forall g \in \mathrm{C}^{\infty}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)\right) \quad B(f, g)=\langle\nu, f \boxtimes g\rangle .
$$

Moreover, if B is continuous on $\mathrm{C}_{c}^{k}(\Omega) \times \mathrm{C}^{l}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ for some $k, l \in \mathbf{N}_{0}, \nu$ is of a finite order $q \leqslant k+l+2 d+1$.

The existence of one-scale H-distributions: proof 2/2

For $\varphi \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we define

$$
\mathcal{L}(\varphi, \psi):=L(\varphi, \zeta, \psi),
$$

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$.
\mathcal{L} is continuous bilinear form on $\mathrm{C}_{c}(\Omega) \times \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

Theorem

Let $\Omega \subseteq \mathbf{R}^{d}$ be open, and let B be a continuous bilinear form on $\mathrm{C}_{c}^{\infty}(\Omega) \times \mathrm{C}^{\infty}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$. Then there exists a unique distribution $\nu \in \mathcal{D}^{\prime}\left(\Omega \times K_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that

$$
\left(\forall f \in \mathrm{C}_{c}^{\infty}(\Omega)\right)\left(\forall g \in \mathrm{C}^{\infty}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)\right) \quad B(f, g)=\langle\nu, f \boxtimes g\rangle .
$$

Moreover, if B is continuous on $\mathrm{C}_{c}^{k}(\Omega) \times \mathrm{C}^{l}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ for some $k, l \in \mathbf{N}_{0}, \nu$ is of a finite order $q \leqslant k+l+2 d+1$.

Therefore, we have that there exists $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}_{\kappa+2 d+1}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that

$$
\begin{aligned}
\left\langle\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle & =\mathcal{L}\left(\varphi_{1} \bar{\varphi}_{2}, \psi\right) \\
& =L\left(\varphi_{1} \bar{\varphi}_{2}, \zeta_{1} \zeta_{2}, \psi\right) \\
& =L\left(\varphi_{1}, \varphi_{2}, \psi\right)=\lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle
\end{aligned}
$$

Localisation principle: assumptions

$$
\begin{aligned}
\mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right) & :=\left\{u \in \mathcal{S}^{\prime}: \mathcal{A}_{\left(1+|\xi|^{2}\right)^{\frac{s}{2}}} u \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)\right\} \\
\mathrm{H}_{\mathrm{loc}}^{s, p}(\Omega) & :=\left\{u \in \mathcal{D}^{\prime}:\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \varphi u \in \mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right)\right\}
\end{aligned}
$$

Localisation principle: assumptions

$$
\begin{aligned}
\mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right) & :=\left\{u \in \mathcal{S}^{\prime}: \mathcal{A}_{\left(1+|\xi|^{2} \frac{s}{2}\right.} u \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)\right\} \\
\mathrm{H}_{\mathrm{loc}}^{s, p}(\Omega) & :=\left\{u \in \mathcal{D}^{\prime}:\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \varphi u \in \mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right)\right\}
\end{aligned}
$$

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{p}\left(\Omega ; \mathbf{C}^{r}\right), p \in\langle 1, \infty\rangle$, and

$$
\begin{equation*}
\sum_{0 \leqslant|\alpha| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega \tag{*}
\end{equation*}
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\alpha} \in \mathrm{C}^{\infty}\left(\Omega ; \mathrm{M}_{\mathrm{q} \times \mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m, p}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\begin{equation*}
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \mathcal{A}_{\left(1+\left|\varepsilon_{n} \xi\right|^{2}\right)^{-\frac{m}{2}}}\left(\varphi \mathrm{f}_{n}\right) \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right) \tag{**}
\end{equation*}
$$

Localisation principle: assumptions

$$
\begin{aligned}
\mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right) & :=\left\{u \in \mathcal{S}^{\prime}: \mathcal{A}_{\left(1+|\xi|^{2}\right)^{\frac{s}{2}}} u \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)\right\} \\
\mathrm{H}_{\mathrm{loc}}^{s, p}(\Omega) & :=\left\{u \in \mathcal{D}^{\prime}:\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \varphi u \in \mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right)\right\}
\end{aligned}
$$

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {floc }}^{p}\left(\Omega ; \mathbf{C}^{r}\right), p \in\langle 1, \infty\rangle$, and

$$
\begin{equation*}
\sum_{0 \leqslant|\alpha| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega \tag{*}
\end{equation*}
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\alpha} \in \mathrm{C}^{\infty}\left(\Omega ; \mathrm{M}_{\mathrm{q} \times \mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\text {lac }}^{-m, p}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\begin{equation*}
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \mathcal{A}_{\left(1+\left|\varepsilon_{n} \xi\right|^{2}\right)^{-\frac{m}{2}}\left(\varphi f_{n}\right) \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right) ~} \tag{**}
\end{equation*}
$$

$$
\begin{aligned}
& \left(1+|\boldsymbol{\xi}|^{2}\right)^{-\frac{m}{2}} \text { is a Fourier multiplier } \\
& \left|\partial^{\alpha}\left(\left(\frac{1+\left|\varepsilon_{n} \boldsymbol{\xi}\right|^{2}}{1+|\boldsymbol{\xi}|^{2}}\right)^{\frac{m}{2}}\right)\right| \leqslant \frac{2^{\kappa}}{|\boldsymbol{\xi}|^{|\alpha|}} \Longrightarrow\left(\mathrm{f}_{n} \xrightarrow{\mathrm{~L}_{\mathrm{oc}}^{p}} 0 \Longrightarrow(* *)\right) \\
&
\end{aligned}
$$

Localisation principle

Theorem

Under previous assumptions let $\left(\mathrm{v}_{n}\right)$ be a bounded sequence in $\mathrm{L}_{\mathrm{loc}}^{p^{\prime}}\left(\Omega ; \mathbf{C}^{r}\right)$. Then one-scale H-distribution $\nu_{\mathrm{K}_{0, \infty}}$ associated to (sub)sequences (v_{n}) and $\left(\mathbf{u}_{n}\right)$ with characteristic length $\left(\varepsilon_{n}\right)$ satisfies:

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\nu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{\left(1+|\boldsymbol{\xi}|^{2}\right)^{\frac{m}{2}+q+1}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})
$$

while q is order of $\boldsymbol{\nu}_{\mathrm{K}_{0, \infty}}$.

