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Introduction

If we have u, — 0 in L2 .(R2), © C R” open, what we can say about |u,|*?
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Introduction

If we have u, — 0 in L2 .(R2), © C R” open, what we can say about |u,|*?

Example:

2mine leoc
Un (X) 1= —=0,

but
lun(x)|=1 = unp—-»0 in L%OC(R).
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Introduction

If we have u, — 0 in L2 .(R2), © C R” open, what we can say about |u,|*?
Example:

. L2
2minz “loc

Un (X) 1= —=0,

but
lun(x)|=1 = unp—-»0 in L%OC(R).

It is bounded in L, (Q) < M(Q) = (C.(Q))’, so

2 *
[t/ |"— v
v is called the defect measure.

Of course, we have
L2
U =280 <= v=0.
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Introduction

If we have u, — 0 in L2 .(R2), © C R” open, what we can say about |u,|*?
Example:
2minx leoc
un(x) :=e —=0,
but
[un(x)] =1 = u,»0 in L3, (R).
It is bounded in L, (Q) < M(Q) = (C.(Q))’, so
[t | v
v is called the defect measure.
Of course, we have
2
un/ii 0 < v=0.

If the defect measure is not trivial we need another objects to determine all the
properties of the sequence:

e H-measures

e semiclassical measures
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H-measures

Q C R? open.

Theorem (Tartar, 1990)

If u, — 0 in LY (9; C"), then there exist a subsequence (u,) and
py € M(Q x ST M, (C)) such that for any 1, p2 € Cc(Q) and
P € C(8* ™)

ti [ (@) ®m(s))w(é) d = (puyg o152 B 1)

(Unbounded) Radon measure p,; we call the H-measure corresponding to the
(sub)sequence (uy).

Notation:

x=(z',2%,...,2) €Q, &£ = (&,6,...,64) € R?
(&) = [qae ™ dx

a-b= Zle a'd’ (a,b € C")

(a®@b)v=(v-bja = [a®Db];; =a't’

(-,-) sesquilinear dual product; (A, ) := [A¥ ¢]i;
M(X) = (Ce(X))'



H-measures

Q C R? open.

Theorem (Tartar, 1990)

If u, — 0 in L} (€; C"), then there exist a subsequence (u,) and
Ly € M(Q x S*71: M, (C)) such that for any @1, s € Cc(Q) and
¥ eC(5)

ti [ (707 6) @ Z0(©) 6 ((§7) 46 = (122 B).

(Unbounded) Radon measure p;; we call the H-measure corresponding to the
(sub)sequence (uy).

| A

Corollary

L2
Un—%0 <= py =0.




Semiclassical measures

Theorem (Gérard, 1991)

If u, — 0 in LY. (; C"), w, — 0T, then there exist a subsequence (u,) and
/LSZ”') € M(Q x R% M, (C)) such that for any @1, 02 € C2(Q) and
¥ € S(RY)

tim [ (700 © G (€)) vl ) e = (e 2B 0)

(Unbounded) measure u,gf"') we call the semiclassical measure with

characteristic length (w,,) corresponding to the (sub)sequence (u,).




Semiclassical measures

Theorem (Gérard, 1991)

If u, — 0 in LY. (; C"), w, — 0T, then there exist a subsequence (u,) and
/LSZ”') € M(Q x R% M, (C)) such that for any @1, 02 € C2(Q) and
¥ € S(RY)

lim [ (770 (6) @ Paiw (€))wlwn€) d€ = (pln), o152 BY) .

n’ Rd

(Unbounded) measure ug‘g"') we call the semiclassical measure with

characteristic length (w,,) corresponding to the (sub)sequence (u,).

L2
Un—80 <= p“) =0 & (un) is (wn) — oscillatory .
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Semiclassical measures

Theorem (Gérard, 1991)

If u, — 0 in LY. (; C"), w, — 0T, then there exist a subsequence (u,) and

,u,g;)”') € M(Q x R% M, (C)) such that for any @1, 02 € C2(Q) and
¥ € S(RY)

lim [ (@70 () ® Patiw (€) ) (wni€) d€ = (pln"), o182 BY) .

n’ Rd

(Unbounded) measure ui“;n’) we call the semiclassical measure with

characteristic length (w,,) corresponding to the (sub)sequence (u,).

Definition

| A

(un) is (wn)-oscillatory if
(Vo € CE(Q)  limpsoo limsup, fi, n 150 (€] d = 0.

Theorem

| A

L2
Un—80 <= p“) =0 & (un) is (wn) — oscillatory .




Example 1: Oscillations - one characteristic length

a>0, ke Z\ {0},

2
2mink-x L1
Up(x) =" 250, n— o0,

but
lun(x)| =1 = un-»0 in L. (RY).
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Example 1: Oscillations - one characteristic length

a>0, ke Z\ {0},

2
2mink-x L1
Up(x) =" 250, n— o0,

but
lun(x)| =1 = un-»0 in L. (RY).

611



Example 1: Oscillations - one characteristic length

a>0, ke Z\ {0},

2
2mink-x L1
Up(x) =" 250, n— o0,

but

<
|

=
T
I
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Example 1: Oscillations - one characteristic length

a>0, ke z\ {0},

o L?
U (x) 1= 27X e gy 00,
but
lun(x)] =1 = wun -0 in Li.(R%.

v=A\
HH = AX 6ﬁ
oo lim,, n%w, =0
pm) = ARY{ du L limg n®w, = ¢ € (0, 00)
0 |, lim,, n®w, = c©
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Example 1: Oscillations - one characteristic length

a>0 ke z\ {0},

2
2rin®k-x L
Un(X) 1= T 2N 0 n = 00,

but

v=A\
HH = A 6ﬁ
50 ) hmn n[ywn =0
plem) = AR 6o, lim, n®w, = ¢ € (0,00)
0 |, lim,, n®w, = c©

611



Example 1: Oscillations - one characteristic length

a>0 keZ\ {0},

o L2
’U,n(X) = e27r7,n k-x “loc 0, n— 0,
but
lun(x)] =1 = wu, -0 in LL. (R%).

v=A
do lim, n%w, =0
pem) = AR Suc ,  lim, n®w, = c € (0, 00)
0 lim,, n%w, = 0o

(prr, o R = <u§“§")7¢®w(ﬁ)>

611



Example 1: Oscillations - one characteristic length

a>0, ke z\ {0},

in®k.x Li
Un(x) = 27X gy 00,
but
lun(x)] =1 = wun -0 in Li.(R%.

v=2A
pr =KX 6ﬁ
oo lim,, n%w, =0
Hgﬁ") =AKq Sk, limy n%w, = c € (0,00)
0 |, lim,, n®w, = c©

If u, — u in L. (€ C") is (wy)-oscillatory and trp(™) (Q x {0}) = 0, then

(w89 = (o))
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Example 1: Oscillations - one characteristic length

a>0, ke z\ {0},

in®k.x Li
Un(x) = 27X gy 00,
but
lun(x)] =1 = wun -0 in Li.(R%.

v=2A
pr =KX 6ﬁ
oo lim,, n%w, =0
Hgﬁ") =AKq Sk, limy n%w, = c € (0,00)
0 |, lim,, n®w, = c©

If u, — u in L (€ C") is (wn)-oscillatory and trpn(“™) (Q x {0}) = 0, then

(w89 = (o))
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(wy, )-concentrating property

Definition

(un) is (wn)-oscillatory if
Ve e CE(Q)) limp— oo limsup, fl&l?% |pun (&)]? d€ = 0.
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(wy, )-concentrating property

Definition

(un) is (wn)-oscillatory if

(Vo € C2() limp—oo limsup, L&I?i |pun (&)]? d€ = 0.
(un) is (wn)-concentrating if

(Ve e C(R2)) limp—oo limsup, fl£|<% |oun (&)|? dé = 0.
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(wp, )-concentrating property

Definition

(un) is (wn)-oscillatory if

(Vi € C(@)  limp oo limsup, fi,, o [P0 ()] dE = 0.
(un) is (wn)-concentrating if ’

(Ve € CX(RQ))  limg_oo limsup,, f|£|< |<pun( &)Pde =0.

(un) wn-concentrating < trp,(“’”)(Q x {0}) =0.
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(wp, )-concentrating property

Definition

(un) is (wn)-oscillatory if

(Vip € CE(Q)  limpose linsup, fips |70 (€)d = 0.
(un) is (wn)-concentrating if ’

(Ve € CX(RQ))  limg_oo limsup,, fl§|< |<pun( &)Pde =0.

Lemma

(un) wn-concentrating <= tru{™) (2 x {0}) =0

| A\

Theorem

If u, — u in LY (9 C") is (wy)-oscillatory and (wy)-concentrating, then

(g, p R ) = <u§‘§”’,<p&¢(ﬁ)> .

N

711



For an arbitrary bounded sequence (uy) in L2 . (€; C") is there a characteristic
length w, — 0T such that (u,) is

1) (wn)-oscillatory?

2) (wn)-concentrating?

3) both (wy)-oscillatory and (wy )-concentrating?

811



For an arbitrary bounded sequence (uy) in L2 . (€; C") is there a characteristic
length w, — 0T such that (u,) is

1) (wn)-oscillatory?

2) (wn)-concentrating?

3) both (wy)-oscillatory and (wy )-concentrating?

(1) is valid and (2) is valid under the additional assumption that u, — 0 in
Lic (2 C").

811



1)
2)
3)

For an arbitrary bounded sequence (uy) in L2 . (€; C") is there a characteristic
length w, — 0T such that (u,) is
(wr, )-oscillatory?
(wn )-concentrating?
both (wp)-oscillatory and (wy)-concentrating?

(1) is valid and (2) is valid under the additional assumption that u, — 0 in
loc(Q CT)

For u,, — u in LY, .(Q; C") we have

Un = U in Lo (,C7) <= (Ywn — 07)  (un) is (wn) — oscillatory
u=0& up = 0in L (% C") <= (Ywn = 07)  (un) is (wn) — concen.

811



Example 2: Oscillations - two characteristic length

0<a<f kseZ\ {0},

2
2min®k-x Ll
Up(x) := ™" X250, n— o0

2
2minPsx Ll
Up(x) =™ T2 0, n— 00
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Example 2: Oscillations - two characteristic length

0<a<f kseZ\ {0},

2
2min®k-x Ui
Up(x) := ™" X250, n— o0

2
2rinPsx Lioc
Vp(x) = e ™" 250, n— o0

pr (u&™) is H-measure (semiclassical measure with characteristic length
(wn), wn — 07) associated to (un + vn).

MH:A&(éﬁ +5ﬁ)

911



Example 2: Oscillations - two characteristic length

0<a<f kseZ\ {0},

2
27in®k-x Lioc

un(x) :==e —=0, n—> o0
inBs.x Live
vn(x) = e27‘rzn s:x “loc 0’ n— 0o

pr (u&™) is H-measure (semiclassical measure with characteristic length
(wn), wn — 07) associated to (un + vn).

MH:A&(éﬁ +5ﬁ)

200 , limy, n?w, =0
(0es +00) lim,, n’w, = ¢ € (0, 00)
pgﬁ") =KX do , lime nPw, = 0o & limy, n®wy, = 0
Ok , lim, n%w, = ¢ € (0, co)
0 , lim,, n“w, = co

911
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Ko’oo(Rd) is a compactification of R¢ homeomorphic to a spherical layer
(i.e. an annulus in R?):

%o

1111



Precise description of Ko - (R?) 1/3

For fixed ro > 0 let us define r; = —=2—, and denote by

1/rg+1'

A[0,71,1] = {c eRY:rm <|¢] < 1}

closed d-dimensional spherical layer equipped with the standard topology
(inherited from R?). In addition let us define A(0,71,1) := Int A[0,71,1], and
by Ao[0,71,1] := S*71(0; 1) and Aso[0,71,1] := S*~! we denote boundary
spheres.

We want to construct a homeomorphism 7 : R — A(0,71,1).

1211



Precise description of Ko - (R?) 2/3

From the previous construction we get that 7 : R? —» A(0,71,1) is given by

7€) = ¢ _ leldro,

2 [EIK(E)
g2 + (fsks)

where K (&) = K(|€]) := /1 + (|| +r0)*.
& and J (&) lie on the same line:

JE  eneé ¢

MO 3

\&IK(§)|€‘

J is homeomorphism and its inverse 7~ : A(0,71,1) — R% is given by

-1 |C|_7"0V —[¢]?
J =
O v <7

resulting that (A[0,71,1],J) is a compactification of RZ.

1—[¢1%) 72 —rogl¢| 7,

1311



Precise description of KO,OC(R(I) 3/3

Now we define
Yo :={0°:ee s’} and Yoo = {0 e € S},

and Ko oo (RY) := REU B U T
Let us extend 7 to the whole Ko oo (R?) by J(0°) :=71e and J(c0®) = e,
which gives 77 (o) = Ao[0,71,1] and T~ (X)) = A [0, 71, 1].

d«(€&1,€5) = |T(&1) — T(€2)] is a metric on Ko, (R?), 50 (Ko,e(R?), du) is
a metric space isomorphic to A0, r1,1].

lim |7(6) - 708 =0, lim [7(€) - T(co1)| =0,

|€]—0 |¢| =00

lim |[77'(¢)[ =0, lim [J ()= +oo.

[¢l—=m1 [¢l—=1

1411



Continuous functions on Kg o (R?)

Lemma

For ¢ : Koo (R%) — C the following is equivalent:
a) ¥ € C(Ko,(R7)), _

b) (3¢ € C(A[0,r1,1])) ¥ =¢o T,

) Y, € C(RY), and

lim [(€) —w(0F)| =0  and  lim |ih(€) — (coT)| = 0.

[€]—0 [§] =00

1511



Continuous functions on Kg o (R?)

Lemma

For ¢ : Koo (R%) — C the following is equivalent:
a) ¥ € C(Ko,o(R)), 5

b) (3¢ € C(A[0,r1,1])) ¥ =¢o T,

c) Y, € C(RY), and

lim [(€) —w(0F)| =0  and  lim |ih(€) — (coT)| = 0.

[€]—0 [§] =00

For ¢ € C(R%) we have 9 € C(Ko,oo(R%)) iff there exist 10, 00 € C(5%71)
such that

vl€) —vo(gg) 0. lel= 0,

0l&) —v=(ig) =0 lel oo

In particular, ¢ —to(77) € Cup(R%) (uniformly continuous bounded functions).

1511



Continuous functions on Kg o (R?)

Lemma

For ¢ : Koo (R%) — C the following is equivalent:
a) ¥ € C(Ko,o(R)), 5

b) (3¢ € C(A[0,r1,1])) ¥ =¢o T,

c) V|na € C(R%), and

lim [(€) —w(0F)| =0  and  lim |ih(€) — (coT)| = 0.

[€]—0 [§] =00

For ¢ € C(R%) we have 9 € C(Ko,oo(R%)) iff there exist 10, 00 € C(5%71)
such that

vl€) —vo(gg) 0. lel= 0,

0l&) —v=(ig) =0 lel oo

In particular, ¢ —to(77) € Cup(R%) (uniformly continuous bounded functions).

i) Co(RY) — C(Ko,o(R%)), and
i) {pom : Y eC(S)} = CKoeo(R?)).

1511



One-scale H-measures

Theorem (Tartar, 2009)

If u, — 0 in LY (€; C"), w, — 0T, then there exist a subsequence (u,) and
,u&”onc)o € M(Q X Ko oo (RY); M, (C)) such that for any @1, 02 € C.(Q) and
¥ € C(Ko,o(R%))

lim | (1) (€) ® (oaun) (€) v (nr8) dé = (i) 122 )

(Unbounded) Radon measure pé( ") e call the one-scale H-measure with

characteristic length (w,,) correspondmg to the (sub)sequence (u.,).

1611



One-scale H-measures

Theorem (Tartar, 2009)

If u, — 0 in LY (€; C"), w, — 0T, then there exist a subsequence (u,) and
,u&”onzo € M(Q X Ko.0o(RY); M, (C)) such that for any @1, p2 € C.(Q) and
¥ € C(Ko,0o(RY))

lim | (1) (€) ® (oaun) (€) v (nr8) dé = (i) 122 )

n'

(Unbounded) Radon measure ué( ") e call the one-scale H-measure with

characteristic length (w,,) correspondmg to the (sub)sequence (u.,).

The original proof:

rigdtl
o v, (x, %) = un(x)e2 wn = 0inLE.(QxR;C")
o vy € M(Q xR x 8% M, (C))

. u&”") is obtained from vy (suitable projection in 29T and &;.1)

1611



Alternative proof (Antoni¢, E., Lazar)

e Cantor diagonal procedure (separability)
e commutation lemma

Let ¢ € C(Ko,00(R%)), ¢ € Co(R?Y), wy — 0T, and denote 1, (€) := (wn).
Then the commutator can be expressed as a sum

Cn = [ng,Ad;n] = én + K:

where K is a compact operator on L2(Rd), while C, —> 0 in the operator
norm on L(L*(R%)).

e variant of the kernel lemma

Let X andY be two Hausdorff second countable topological manifolds (with or

without a boundary), and let B be a non-negative continuous bilinear form on
Ceo(X) x Cc(Y). Then there exists a Radon measure u € M(X xY') such that

(VfeCe(X)(VgeCe(Y)) B(f,9) = (ufRg).

Furthermore, the above remains valid if we replace C. by Co, and M by M,
(the space of bounded Radon measures, i.e. the dual of Banach space Cy).

N

1711



Some properties of py,

a) Pio oo = MKy oo+ MK =0
LZ
c) un—2% 0 = Mg, .. =0
d) trpg, (2% o) =0 = (un) is (wn) — oscillatory

N,

01,02 € Ce(Q), ¥ € Co(RY), ¢ € C(ST7Y), wn, — 0F,

a) (i) e ®Y) = (ul), o1 BY),
b) (M%ﬁ”;,sms@@?l)wr) = (pw, pr92 B9),

where 7 (§) = £/[€].

N

1811



Example 1 revisited

b lim, n“w, =0
pm) = AR Suc , limn,n®wn =c € (0, 00)

0o lim,, n%w, = 0o
1 T lim,, n%w, =0
0
per =R dac, limgn®w, = c € (0,00)
é T lim,, n“w, = 0o

1911



Example 2 - revisited

un(x) —e xv UH(X) — 627rinBs-x,

associated objects to (un + vn):

2min“k-

ALH:A&(aTKI +5ﬁ)

260 , lim,, n®w, = 0
(60 + 6es) lim,, n®w, = c € (0, 00)
Mg‘:") =KX do , limy, nPwn = 00 & limn n%w, =0
Sk , lim,, n®w, = ¢ € (0, co)
0 , lim,, n“w, = 0o
(6« +6 s) lim,, n®w, = 0
o Tk 0lsl
(6 * +6es) lim, nPw, = ¢ € (0, 00)
0
pem) = AR (0 +08 &) limnnwn = oo & limynw, =0
,00 0 cols
(Ock + 6 T:\) , lim, n“wy, = ¢ € (0, 00)
© & +9 ﬁ) , lim,, n%w, = oo

2011



Localisation principle - assumptions

Let @ C R? open, m € N, u, — 0 in L (©;C") and

S e Oa(Au) =0 inQ, ()
1<lal<m
where
e lc0.m
e £, > 0 bounded
e AT — A% in C(Q; M;(C))
o f, € H_"(£2; C") such that
oo Sga . 2 d d
(Vo e CZ () ——m .. 0 in LY(R%CY) ()
1+30 en l|€‘s

2111



Localisation principle - assumptions

Let @ C R? open, m € N, u, — 0 in L (©;C") and

S e Oa(Au) =0 inQ, ()
1<lal<m
where
e lc0.m
e £, > 0 bounded
e AT — A% in C(Q; M;(C))
o f, € H_"(£2; C") such that
oo Sga . 2 d d
(Vo e CZ () ——m .. 0 in LY(R%CY) ()
1+30 en l|€‘s

For I = 0 the condition on (f,) is equivalent to
(Ve eCZ(Q)  lefally-m =0,

where HUH%{Z = [ra(1+27|hg|*)°|G(&)|* d€ is the semiclassical norm of
u € H*(Q; RY).

2111



Localisation principle - theorem

() Yiciaiemen ' 0a(ARun) = fn

(+x) (Ve € CZ(Q) ﬁ —0 in L*R%C")
s=l "

2211



Localisation principle - theorem

(%) Zl<\a|<m SN (Ajun) =fn

Theorem (Tartar, 2009)

(En)

Under previous assumptions and | = 1, i associated to (u,) satisfies

supp (puio,m) CQx Yo,

where

i)l & A%(x).
- 2 On) ATt

1<|a|<m

2211



Localisation principle - theorem

() Yiciajemen0a(ARun) = fn

Theorem (Antoni¢, E., Lazar, 2015)

(sn)

Under previous assumptions, py."’  associated to (uy) satisfies

T
plIJ‘KO’(X, = 07

where

i)l & *(x).
- 2 ) g AT

I<|a|l<m

2211



Localisation principle - theorem

() Yiciaiemen ' 0a(ARun) = fn

Theorem

For w, — O such that ¢ := lim,, S € [0, 00], corresponding one-scale
H-measure py _ with characteristic length (wy,) satisfies

P, =0,
where
£ o —
2al=t TETHE™ A (%) , ¢=0
Pe(x,€) i= § Ligjaicm (210)* i A (%) , ¢ € (0,00)

req

Z\od:m WAQ(X) ) =00

Moreover, if there exists eg > 0 such that €, > €9, n € N, we can take

6= 3 %A“(xy

|a|=m

2211



Localisation principle for H-measures

00 > Eco = En 2 €0 >0, u, — 0in L (Q; C"),

S e Oa(ATun) = fa,

I<]el<m

where A € C(Q; My(r)), Ay — A in C(Q;My(r)), and f, — 0 in
H 7 (9; CY).
Then the associated H-measure iy satisfies

Pprity = 0.

2311



Localisation principle for H-measures

00 > Eco = En 2 €0 >0, u, — 0in L (Q; C"),

S e Oa(ATun) = fa,

I<]el<m

where A € C(Q; My(r)), Ay — A in C(Q;My(r)), and f, — 0 in
H "(Q;C?).
Then the associated H-measure iy satisfies

Pprity = 0.

Sketch of the proof:

e If (e5,) is bounded from below and above by positive constants, (xx) is
equivalent to the strong convergence to zero in H ;" (2; CY).

® py and py,  coincide on the space of homogeneous functions of the zero
order (in &).

® D, is homogeneous of the zero order in .

2311



Localisation principle for semiclassical measures

en > 0 bounded, u, — 0 in L2 (Q; C"),
> et oa(ATun) =,

1<]al<m

where A5y € C(Q;Mq(r)), Ay — A% in C(Q;Mq(r)), and
fn € H 7" (€2; CY) satisfies ().

loc

Then the associated semiclassical measure p{“) satisfies

p(x. &) (u) =0,

where ¢ := lim,, =% and
n

a1 §FAX (%) , =0
P(X,€) = { i jajem (2Ti0)FETAZ(x) | ¢ € (0,00)
Z|a\:m £5A%(x) ) CESACO

2411



Proof (only the case lim,, £» = ¢ € (0, 00))

n

veSMRTY) = & (€] +1E]MY(€) € C(Koo(RY))

2511



Proof (only the case lim,, “= = ¢ € (0, 00))

En

veSMRTY) = & (€] +1E]MY(€) € C(Koo(RY))

le%

o—< 3 (2m‘c>“'mAaugm,muaws|mw>

I<|al<m

> (A%, . CrigRTpRE )

ISR
- > <A“u;,(2mc)lwmaw>=< > (2m‘c)'°"§“A°'u;,wm>,
I<|a|<m I<]e|sm

where in the third equality the fact that £*1) € S(R?) was used.

2511



Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u, := (uh,u2) — 0 in L (Q; C?) satisfies
up + €n0z, (a1u711) =fr
{ui Fendup(azid) = £2
where e, — 0%, f, := (£}, f2) € H;,1(Q; C?) satisfies
(Ve eCl(Q)  lefally-r =0,

while a1,a2 € C(2;R), a1, a2 # 0 everywhere.
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u, := (uh,u2) — 0 in L (Q; C?) satisfies
Un + €nday (aruy) = fn
{ui Fendup(azid) = £2
where e, — 0%, f, := (£}, f2) € H;,1(Q; C?) satisfies
(Ve eCl(Q)  lefally-r =0,
while a1,a2 € C(2;R), a1, a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py  with characteristic
length (g5,) (i.e. ¢ = 1) associated to (u,) we get the relation

I |10 2mi&r [ar(x) 0]  2mi& [0 0 .
<1+\£| {0 1}+1+|§|[ 0 0}+1+|g| [o aQ(x)D"Ko,m*Ov
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u, := (uh,u2) — 0 in L (Q; C?) satisfies
up + €n0z, (a1u711) =fr
{ U + €0y (azui) = i
where e, — 0%, f, := (£}, f2) € H;,1(Q; C?) satisfies
(Ve eCl(Q)  lefally-r =0,
while a1,a2 € C(2;R), a1, a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py  with characteristic
length (g,,) (i.e. ¢ = 1) associated to (u,) we get the relation

1 [1 0], 2mi& [ai(x) 0], 2mi& [0 0O __—
<1+\£| {0 1}+1+|§|[ 0 0}+1+|g| [o aQ(x)D"Ko,m*Ov

whose (1,1) component reads

1 . 21& 11
:07
(1 I R |€|a1(x)) Hio,00

hence
1 11

" ST
L [g] o

=0
1+ [g]/ Ko

207

2611



Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u, := (uh,u2) — 0 in L (Q; C?) satisfies
up + €n0z, (a1u711) =fr
{ U + €0y (azui) = i
where e, — 0%, f, := (£}, f2) € H;,1(Q; C?) satisfies
(Ve eCl(Q)  lefally-r =0,
while a1,a2 € C(2;R), a1, a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py  with characteristic
length (g,,) (i.e. ¢ = 1) associated to (u,) we get the relation

1 [1 0], 2mi& [ai(x) 0], 2mi& [0 0O __—
<1+\£| {0 1}+1+|§|[ 0 0}+1+|g| [o aQ(x)D"Ko,m*Ov

whose (1,1) component reads

1 . 21& 11
:07
(1 I R |€|a1(x)) Hio,00

hence
&1 11

SUPP iicy o €O X Do, 7 g Ko

=0
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u, := (uh,u2) — 0 in L (Q; C?) satisfies
Up, + En0, (a117,) = fr
{ U + €0y (azur) = fi
where e, — 01, f, := (£}, f2) € H;,L(Q; C?) satisfies
VeeCZ(Q)  lefully-r —0,
while a1,a2 € C(2;R), a1, a2 # 0 everywhere.
By the localisation principle for one-scale H-measure MK, o with characteristic
length (£,,) (i.e. ¢ = 1) associated to (u,) we get the relation

_ 1 1 0], 2mi& [ai(x) 0] 2mi& [0 0 _—_
(1+\£| {0 1}+1+|£|[ 0 o}+1+|5| [0 ag(x):|)u'K0,oo_0’

whose (1,1) component reads

1 . 27'('51 11
— t+1 a(x =0,
(g +irr ) b

hence

SUPP 1y oo © QX Do, SUPP i, . C© 2 x (3o U {& = 0})
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u, := (uh,u2) — 0 in L (Q; C?) satisfies
Up, + En0, (a117,) = fr
{ U + €0y (azur) = fi
where e, — 01, f, := (£}, f2) € H;,L(Q; C?) satisfies
VeeCZ(Q)  lefully-r —0,
while a1,a2 € C(2;R), a1, a2 # 0 everywhere.
By the localisation principle for one-scale H-measure MK, o with characteristic
length (£,,) (i.e. ¢ = 1) associated to (u,) we get the relation

_ 1 1 0], 2mi& [ai(x) 0] 2mi& [0 0 _—_
(1+\£| {0 1}+1+|£|[ 0 o}+1+|5| [0 ag(x):|)u'K0,oo_0’

whose (1,1) component reads

1 . 27'('51 11
— t+1 a(x =0,
(g +irr ) b

hence

SUPP ity o, € QX Too,  sUPP pic, . € 2 x (T U {& = 0})
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u, := (uh,u2) — 0 in L (Q; C?) satisfies

Un + €nday (aruy) = fn
{ui Fendup(azid) = £2
where e, — 0%, f, := (£}, f2) € H;,1(Q; C?) satisfies
(Ve eCl(Q)  lefally-r =0,
while a1,a2 € C(2;R), a1, a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py  with characteristic
length (g5,) (i.e. ¢ = 1) associated to (u,) we get the relation

1 10 2mi&1 [ai(x) 0O 2mi&2 [0 0 T
<1+\£| {0 1}+1+|s|[ 0 0}+1+|s| [0 a2<x>D -

whose (1,1) component reads

1 . 21& 11
:07
(1 I R Iélal(x)) Hico,00

hence

supp ;Lfé“m COx {oom’*l), oo(o"l)}
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u, := (uh,u2) — 0 in L (Q; C?) satisfies

{ Uy, + En0a, (a1p) = fr

U + €0y (azur) = fi
where e, — 0%, f, := (£}, f2) € H;,1(Q; C?) satisfies
(Ve eCl(Q)  lefally-r =0,
while a1,a2 € C(2;R), a1, a2 # 0 everywhere.

By the localisation principle for one-scale H-measure py  with characteristic
length (g5,) (i.e. ¢ = 1) associated to (u,) we get the relation

1 10 2mi&1 [ai(x) 0O 2mi&2 [0 0 T
<1+\£| {0 1}+1+|s|[ 0 0}+1+|s| [0 m(x)D“ -

whose (1,1) component reads

1 . 21& 11
:07
(1 I R Iélal(x)) Hico,00

hence

supp ik, .. C Q2 x {00!” 7V 00V}
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Example 3: equations with characteristic length (2/2)

Analogously, from the (2,2) component we get
supp M%(ZO,OO CQ x {00710 0ot}

hence supp g, _ N supp pig, . = 0 which implies uil) = pi, . =0.
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Example 3: equations with characteristic length (2/2)

Analogously, from the (2,2) component we get
supp pigy .. C Q2 x {00l 71, 000}
hence supp g, _ N supp pig, . = 0 which implies uil) = pi, . =0.

e . 5 *
The very definition of one-scale H-measures gives u}:u2 —— 0.

This approach can be systematically generalised by introducing a variant of
compensated compactness suitable for problems with characteristic length.
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Compactness by compensation with a characteristic length

Let u, — uin L _(Q; C") satisfy

S et 0a (AR un) =1,

1<]al<m

where AT — A% in C(2;Mgx:(C)), let &, — 0T, and f, € H;;7*(2; C?) be
such that for any ¢ € C°(Q)
ofn
1+ kn
is precompact in L2(R%; CY). Furthermore, let Q(x; A) := Q(x)\ - A, where
Q € C(Q;M,(C)), Q" = Q, is such that Q(-;u,)——v in M(Q).
Then we have
a) (3c€[0,00))(V(x,€) € QX KpooRHVRH(VA € Acixe) Q;A) 20 =
vz Q(v u),
b) (Fc € [0,00])(V(x,£) € QX KoooRHOR) (VA € Aeixe) Q(x;A) =0 =
v=Q(,u),

where

Ac;x,g = {A S CT : I)c()i7 £)A = 0}7

and p. is given as before.
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One-scale H-measures

QC R? open

Theorem

If U — 0 in LE(Q), v, — 0 in LY (Q) and wy, — 0T, then there exist (uy/),
(vns) and u(w ) € M(Q x Ko.oo(R%)) such that for any o1, s € Co() and
Y e C(Ko,oo(R )

li [ @ (€770 O ) d = (i) o128 0)

The measure ,u% ") is called the one-scale H-measure with characteristic

length (wp/) associated to the (sub)sequences (u,/) and (v,/).
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One-scale H-measures

QC R? open

Theorem

If U — 0 in LE(Q), v, — 0 in LY (Q) and wy, — 0T, then there exist (uy/),
(vns) and u(w ) € M(Q x Ko.oo(R%)) such that for any o1, s € Co() and
Y e C(Ko,oo(R )

i [ v, (o1 ) GOToa0 G0 dx = (i) 012 B 0)

The measure ,u% ") is called the one-scale H-measure with characteristic

length (wp/) associated to the (sub)sequences (u,/) and (v,/).

Ay (u) = (0a)", ¥n(€) == ¥(wn)
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One-scale H-

Q C R? open

Theorem

If wy, — 0 in L2 (Q), v, — 0 in L _(Q) and w, — 0T, then there exist (),
(vnr) and Z/I(:;;j € D'(Q x Ko,00(R%)) such that for any o1, p2 € C2°(€2) and

YeEr
i [ Av, (v ) o) om0 dx = (i g0 B )

The distribution l/I(( n') is called the one-scale H-distribution with characteristic

length (w.,’) assoaated to the (sub)sequences (u,) and (v,/).

Ay (u) = ()", ¥n () == Y(wnk)
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One-scale H-distributions

Qngopen,peﬂ,oo),%Jri:l

Theorem

If wy, — 0 in L2 (Q), v, — 0 in L (Q) and w, — 0T, then there exist (),
(vns) and VI(:)C;) € D’(Q x Ko,00(R?)) such that for any o1, p2 € C2(Q) and

Y el

lim / A (@11 ) () 20m ) 00 dx = (W) o152 B )
n Rd

The distribution l/I(( n') is called the one-scale H-distribution with characteristic

length (w.,’) assoaated to the (sub)sequences (u,) and (v,/).

Ay (u) = ()", ¥n () == Y(wnk)

Determine E such that
o Ay : LP(RY) — LP(R?) is continuous
e The First commutation lemma is valid

3011



Differential structure on Kq o (R%)

For k € No U {00} let us define
O (Koo (RY)) = {0 € C(Ko,(RY)) 1 0" i= w0 T € C*(A[0, 74, 1))}

It is not hard to check that C°(Ko oo (R%)) and C(Ko 0o (R%)) coincide.
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Differential structure on Kq o (R%)

For k € No U {00} let us define
O (Koo (RY)) = {0 € C(Ko,(RY)) 1 0" i= w0 T € C*(A[0, 74, 1))}

It is not hard to check that C°(Ko oo (R%)) and C(Ko 0o (R%)) coincide.
For ’l,b S CK(K07OO(Rd)) we define ||1/J||CN(KOYOC(R{1)) = ”'Qb*”C'i(A[O,rl,l])-

C"(A[0,71,1]) Banach algebra = C"(Ko,o(R") Banach algebra

Al0,71,1] compact = C"(A[0,71,1]) separable
—  C"(Ko,o(R")) separable
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Differential structure on Kq o (R%)

For k € No U {00} let us define
O (Koo (RY)) = {0 € C(Ko,(RY)) 1 0" i= w0 T € C*(A[0, 74, 1))}

It is not hard to check that C°(Ko oo (R%)) and C(Ko 0o (R%)) coincide.
For ’l,b S CK(K07OO(Rd)) we define ||1/J||CN(KOYOC(R{1)) = ”'Qb*”C'i(A[O,rl,l])-

C"(A[0,71,1]) Banach algebra = C"(Ko,o(R") Banach algebra

Al0,71,1] compact = C"(A[0,71,1]) separable
—  C"(Ko,o(R")) separable

Is Ay = (¥°)" : LP(R%) — LP(R?) continuous?
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Theorem (Hérmander-Mihlin)
If for v € L>°(R?) there exists C > 0 such that

(VE€ERH(Va NG, la| <) [0%9(€)| < m%

where k = LgJ + 1, then 4 is a Fourier multiplier. Moreover, we have

1
||Aw||L(LP(Rd)) < Cq max{p, zfl}c
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Theorem (Hérmander-Mihlin)
If for v € L>°(R?) there exists C > 0 such that

(VE€ERH(Va NG, la| <) [0%9(€)| < m%

where k = LgJ + 1, then 4 is a Fourier multiplier. Moreover, we have

1
HA’l/J”ﬁ(LP(Rd)) < Cy max{p, pfl}c

We shall use Fad di Bruno formula: for sufficiently smooth functions
g:RY— R"and f: R" — R we have

0%(fog)(§) = |a! >, CBa),

1<IBI<] e, BENG

where

B Vs
C(B, ) = (9 fz;!g(ﬁ)) $ H Z H 9 g;

o=, j=1
1016;1 ’ Zl 1 Y=,
0 ’hENo\{O}
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Lemma

For every j € 1..d and o € N& we have

1
€]
where P (€,m) is a polynomial of degree less or equal to |a| + 1 in & and
2|ae| + 1 in m, in addition that in the expression Alelp, ()\, oA, %) we do

not have terms of the negative order. Precisely, polynomial Po(&,n) has only
terms of the form C&Pn* where |B| + |a| > k.

v
Lemma

For every j € 1..d and o € N& we have

0*(T)(&) = Pa(& 5 ) K© !, geRE,

v
Theorem

Let s € No. For every 1 € C*(Ko,o0(R?)) and a € N such that |a| < x we
have
1%l e (o, 00 (RAY)

, teRY.
GE s

10%¢ (&) < Cra
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Let k € Ng. For every 1) € C*(Ko,oo(R?%)) and a € N such that |a| < k we
have

11l cr (k0,00 (R))

, £€RL
|&[le!

0%¢(§)] < Cra
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Let k € Ng. For every 1) € C*(Ko,oo(R?%)) and a € N such that |a| < k we
have

11l cr (k0,00 (R))

, £€RL
|&[le!

0%¢(§)] < Cra

Therefore, for k > | %] + 1 and 1 € C*(Ko,00(R%)) we have

HAw”L(LP(Rd)) Ca PH"ZJHCK(KO 0 (R3)) -
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Let k € Ng. For every 1) € C*(Ko,oo(R?%)) and a € N such that |a| < k we
have

11l cr (k0,00 (R))

, £€RL
|&[le!

0%¢(§)] < Cra

Therefore, for k > | %] + 1 and 1 € C*(Ko,00(R%)) we have

vl £ wr@ay) < Capll¥lles ko o ®ma)) -

i) S(RY) — C*(Ko,00(R%)), and
i) {pom : ¢ € C¥S 1)} = C" (Koo (R?)).
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Commutation lemma

Bou = pu , Ayu = (i)Y,
Lemma

Let ¢ € C*(Ko,o(RY)), & > [£] + 1, ¢ € Co(R?), wn — 0T, and denote
Un (&) := Y(wn&). Then the commutator can be expressed as a sum

Cn :=[By, Ay, ] =Cn + K,

where for any p € (1,00) we have that K is a compact operator on L¥(R%),
while C,, —> 0 in the operator norm on L(LF(R?)).
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Commutation lemma

Bou = pu , Ayu = (i)Y,

Let ¢ € C*(Ko,0o(R%)), K > L%J +1, p € Co(R?), wn, — 0T, and denote
Un (&) := Y(wn&). Then the commutator can be expressed as a sum

Crn =By, Ay, | = Cn + K,

where for any p € (1,00) we have that K is a compact operator on L¥(R%),
while C,, —> 0 in the operator norm on L(LF(R?)).

Dem.
Awn = Albn*woo’" +A¢007" )
—_——— ——

Cn K

where m(¢) := & and

T€]
Y(&) — (Yoom)(§) — 0, [£]—0.

Let r € (1,00) and 6 € (0, 1) such that = § 4 =2,

T
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Proof of Comm. Lemma: C,, := Ay Tere
Yn —40

Yn —tho o € C"(Ko,o(RY)) = ., bounded on L"(R?)
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Proof of Comm. Lemma: C,, := Ay, _yppon

Yn —tho o € C"(Ko,o(RY)) = ., bounded on L"(R?)

Lemma (Tartar, 2009)

Let ¢ € Cup(R?), p € Co(R?), wn — 0T, and denote 1, (€) := (wn).
Then the commutator Cy, := [By, Ay, | = ByoAy,, — Ay, B, tends to zero in
the operator norm on L(L*(R%)).
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Proof of Comm. Lemma: C,, := Ay, _yppon

Yn —tho o € C"(Ko,o(RY)) = ., bounded on L"(R?)

Lemma (Tartar, 2009)

Let ¢ € Cup(R?), p € Co(R?), wn — 0T, and denote 1, (€) := (wn).
Then the commutator Cy, := [By, Ay, | = ByoAy,, — Ay, B, tends to zero in
the operator norm on L(L*(R%)).

Yo —Poom € Cp(RY) = C, — 0in L(L*(RY))
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Proof of Comm. Lemma: C,, := Ay, _yppon

Yn —tho o € C"(Ko,o(RY)) = ., bounded on L"(R?)

Lemma (Tartar, 2009)

Let ¢ € Cup(R?), p € Co(R?), wn — 0T, and denote 1, (€) := (wn).
Then the commutator Cy, := [By, Ay, | = ByoAy,, — Ay, B, tends to zero in
the operator norm on L(L*(R%)).

Yo —Poom € Cp(RY) = C, — 0in L(L*(RY))

By the Riesz-Thorin interpolation theorem we have
HCnHE(LP(Rd)) ||C Hﬁ(lﬁ(Rd))”C ||£(Lr(Rd))a

implying Cr, — 0 in the operator norm on LP(R%).
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Proof of Comm. Lemma: K := Ay on

Yoom e C"(Kowo(R?) = K bounded on L"(R%)
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Proof of Comm. Lemma: K := Ay on

Yoom e C"(Kowo(R?) = K bounded on L"(R%)

Lemma (Tartar, 1990)

For 1 € C(S*™!) and ¢ € Co(R?) the commutator C := [B,, Ay is a
compact operator on L*(R%).
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Proof of Comm. Lemma: K := Ay on

Yoom e C"(Kowo(R?) = K bounded on L"(R%)

Lemma (Tartar, 1990)

For 1 € C(S*™!) and ¢ € Co(R?) the commutator C := [B,, Ay is a
compact operator on L*(R%).

Yo € C(S* ') = K compact on L*(R%)
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Proof of Comm. Lemma: K := Ay on

Yoom e C"(Kowo(R?) = K bounded on L"(R%)

Lemma (Tartar, 1990)

For v € C(S%') and ¢ € Co(R?) the commutator C := [By,, Ay] is a
compact operator on L*(R%).

Yo € C(S* ') = K compact on L*(R%)

Lemma (Antonié, Midur, Mitrovi¢, 2016)

Let A be compact on L2(R?) and bounded on L"(R%), for some
r € (1,00) \ {2}. Then A is also compact on LP(R?), for any p between 2 and
r (i.e. such that 1/p = 0/2+ (1 — 0)/r, for some 6 € (0,1)).

6 1-0
=5+

1_9 — K compact on L”(R%)
p 2 T
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One-scale H-distributions

Theorem

Ifup — O in LY () and (vy) is bounded in L{ _(S2), for some p € (1, c0)
and ¢ > p', and w, — 07, then there exist subsequences ('), (v,/) and a
complex distribution of finite order v (w " € D/(Q x Ko.00(R?)) such that for

any o1, @2 € Cc(Q) and ¢ € C“(Ko,oo(Rd)), where k = [ 2] + 1, we have

lim / Ay, (01un ) P20 dx =lim / Prunr Ay, (p20,) dx
<V1<<O D 152 B ¢>
where 1y, := (wn-). The distribution I/I(( ;j we call one-scale H-distribution
(with characteristic length (w,)) associated to (sub)sequences (u,) and (v,).
v
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One-scale H-distributions

Theorem

Ifup — O in LY () and (vy) is bounded in L{ _(S2), for some p € (1, c0)
and ¢ > p', and w, — 07, then there exist subsequences ('), (v,/) and a
complex distribution of finite order v (w " € D/(Q x Ko.00(R?)) such that for

any o1, @2 € Cc(Q) and ¢ € C“(Ko,oo(Rd)), where k = [ 2] + 1, we have

lirln/A,/)n, (P1Un ) P2 dx:lirp/golun/.AJ,n, (p2vn) dx

R4 R4
<V1<<O D 152 B ¢>

where 1y, := (wn-). The distribution I/I(( ;j we call one-scale H-distribution

(with characteristic length (w,)) associated to (sub)sequences (u,) and (v,).
v

/ Ay, (0100 ) P20 dx = (pavnr, Ay, (©1Un1)) .
R4

K, compacts such that K, C Int K1 and {J,,, Km = Q.
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The existence of one-scale H-distributions: proof 1/2

For ¢ € C"(Ko,00(R%)) and @1, @2 € Cc(Q) such that
supp @1, supp g2 C K,,, we have

| {p20n, Ay, (P1un)) | < Cmallprllnee (s, [92llnee (e 1]l en ko, oo ra)) -
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The existence of one-scale H-distributions: proof 1/2

For ¢ € C"(Ko,00(R%)) and @1, @2 € Cc(Q) such that
supp @1, supp g2 C K,,, we have

[ {p2vn, Ay, (p1un)) | < Cm,alle1lLee (5,0 192]lLoe () 1]l om0, o mAY) -

By the Cantor diagonal procedure (we have separability) ... we get trilinear
form L:

L(SOl, ®2, ¢) = l’lnl;n <S02vn’ 5 Awn/ (Solun’)> .
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The existence of one-scale H-distributions: proof 1/2

For ¢ € C"(Ko,00(R%)) and @1, @2 € Cc(Q) such that
supp @1, supp g2 C K,,, we have

[ {p2vn, Ay, (p1un)) | < Cm,alle1lLee (5,0 192]lLoe () 1]l om0, o mAY) -

By the Cantor diagonal procedure (we have separability) ... we get trilinear
form L:

L(@l, Y2, ¢) = l’lnl;n <S02vn’ ) Awn/ (Solun’)> .

L depends only on the product p1@2: ¢; € Cc(Q2) such that {; =1 on supp ¢,
i=1,2,

lim (20w, v, (1)) =l (p2vn, 1.As,, (Gun))
= hnn'ﬂ (@rp2vnr, Ay, (Crun))
=lim (C1¢ovn, @182Ap,, (Crum))
=lim (G1Govnr, Ay, (p1¢2un))

= L(p1,92,9) = L(v1$2,(1(2, %) .
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The existence of one-scale H-distributions: proof 2/2

For ¢ € Cc(Q) and ¢ € C*(Ko,c(R?)) we define

L(p,¥) == L(p,(,v),

where ( = 1 on supp .
L is continuous bilinear form on C.(22) x C*(Kg,oo(R%)).
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The existence of one-scale H-distributions: proof 2/2

For ¢ € Cc(Q) and ¢ € C*(Ko,c(R?)) we define

L(p,¥) == Ly, (, %),

where ( = 1 on supp .
L is continuous bilinear form on C.(22) x C*(Kg,oo(R%)).

Theorem

Let Q@ C R? be open, and let B be a continuous bilinear form on
O () x C(Ko,0o(RY)). Then there exists a unique distribution
v €D (Q x Ko oo(RY)) such that

(Vf€CZ(Q)(Vg € C°(Kow(RY)) B(f,9)=(v,fHg).

Moreover, if B is continuous on C%(€) x C'(Ko .o (R%)) for some k,l € No, v
is of a finite order q < k + 1 + 2d + 1.
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The existence of one-scale H-distributions: proof 2/2

For ¢ € Cc(Q) and 9 € C*(Ko,o(R?%)) we define
L(p, ) == L(p,C,¥),

where ( = 1 on supp .
L is continuous bilinear form on C.(22) x C*(Kg,oo(R%)).

Theorem

Let Q@ C R? be open, and let B be a continuous bilinear form on
O () x C(Ko,0o(RY)). Then there exists a unique distribution
v €D (Q x Ko oo(RY)) such that

(Vf€CZ(Q)(Vg € C°(Kow(RY)) B(f,9)=(v,fHg).

Moreover, if B is continuous on C%(€) x C'(Ko .o (R%)) for some k,l € No, v
is of a finite order q < k + 1 + 2d + 1.

Therefore, we have that there exists I/I(f;";j € Dltnar1 (2 x Ko,oo(R?)) such
that ’

<VI(<U;7;37 P12 W 1/1> =L(p1¢2,¢)

:L(‘PISEL C1C27 d))
=L(p1,p2,%) = lim (pavnr; Ay, (P1Un))
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Localisation principle: assumptions

H*P(RY) : {u cS A )3 U E Lp(Rd)}

(1+¢
HIP(9Q) ::{u €D : (Vo eC () pue H”’(Rd)}

loc
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Localisation principle: assumptions

S,p dy . _ D d
HP(RY) : {uGS A(Hm,_,,ueL(R)}

HIP(9Q) ::{u €D : (VpeCP(Q) pue H”’(Rd)}

loc
Let © C R? open, m € N, u, = 0in LY (2;C"), p € (1,00), and
> eMoa(A%u,) =f, inQ, (%)
0<|ex|sm

where
o g, 0T
o A% € C™(2; Myx:(C))
o f, € H 7" (Q; C") such that

(Ve eCZ(Q) Ay, ca-z(efa) —0 in LP(R%: QY. (x)
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Localisation principle: assumptions

S,p dy . _ D d
HP(RY) : {uGS A(ng‘z,ueL(R)}

HIP(9Q) ::{u €D : (VpeCP(Q) pue H”’(Rd)}

loc
Let © C R? open, m € N, u, = 0in LY (2;C"), p € (1,00), and
> eMoa(A%u,) =f, inQ, (%)
0<|ex|sm

where
e c, »0F
o A% € C™(Q;Mgx:(C))

o f, € H 7" (Q; C") such that
(Ve eCZ(Q) Ay, ca-z(efa) —0 in LP(R%: QY. (x)
(14 |€>)™ % is a Fourier multiplier = (fnﬁ)O = (**))
of (14’2 2% HTP
_ < frn ——
0 <( T+ e ) < gl = ((**) = 0)
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Localisation principle

Theorem

’
Under previous assumptions let (vy) be a bounded sequence in L{, .(; C").
Then one-scale H-distribution vk, . associated to (sub)sequences (v,) and

(un) with characteristic length (e,,) satisfies:

p(x, vk, . =0,

where

px&) = 3 (@m)el—5 _ae(),

T (1_|_ |£|2)%+q+1

while q is order of VK, o0 -
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Localisation principle

Theorem

Under previous assumptions let (v,) be a bounded sequence in LIOC(Q; Cn).
Then one-scale H-distribution vk, . associated to (sub)sequences (v,) and
(un) with characteristic length (e,,) satisfies:
T
p(x7 £)VK0,OO = 07

where

X, = 27 Ia‘LmAa X),
p( g) OSIQZKT”( 7”) (1+|£|2)7+(I+1 ( )

while q is order of VK, o0 -

Dem. Multiplying () by ¢ € C°(Q2) and using the Leibniz rule we get

> > (= m( )Elflaaﬁ((aw)Aaun)wan.

0<|a|<m 0<BLx
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Localisation principle: proof 1/2

Let (¢,,) be a sequence in Rt bounded from above and let (f,) be a sequence
of vector valued functions such that for some k € 0..m it converges strongly to
zero in H-FP(R%; CY). Then (ekf,,) satisfies (xx).

B£0 = &0, g ((aﬁw)Aaun) satisfies (%)
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Localisation principle: proof 1/2

Let (¢,,) be a sequence in Rt bounded from above and let (f,) be a sequence
of vector valued functions such that for some k € 0..m it converges strongly to
zero in H-FP(R%; CY). Then (ekf,,) satisfies (xx).

B£0 = &0, g ((aﬁw)Aaun) satisfies (%)

Thus, we have ~
Z Sllala‘l(Aa‘PUn) =fn,

o<lal<m

where (f,,) satisfies (%).
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Localisation principle: proof 1/2

Let (¢,,) be a sequence in Rt bounded from above and let (f,) be a sequence
of vector valued functions such that for some k € 0..m it converges strongly to
zero in H-FP(R%; CY). Then (ekf,,) satisfies (xx).

B£0 = &0, g ((aﬁw)Aaun) satisfies (%)

Thus, we have ~
Z 8L&|8&<Aawun) =fn,

o<lal<m

where (f,,) satisfies (%).

Form € N and o € N{ such that m > 2q + |c| + 2 we have

—=5 € 1Ko, (RY)).
(1+1€12) 2 (Koo (B)

£ q
(Ve <m) (1 g%t € C*(Ko,(R?))

4211



Localisation principle: proof 2/2

Applying Awm+2q+2,0 we get

Y Appyialgmizirza(pA®u,) — 0 in LP(R%CY),

0]l <m

where g t2at2e . — (&7
¥n (1+leng]2) 2 FoF1
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Localisation principle: proof 2/2

Applying Awm+2q+2,0 we get

Y Appyialgmizirza(pA®u,) — 0 in LP(R%CY),
o<lal<m
m+2g+2,00 . (en &)™
where 17, T hjene) BT
After applying Ay, ), for ¢ € C?(Ko,oo(R%)), to the above sum, forming a
tensor product with @1vy, for o1 € CZ°(Q2), and taking the complex
conjugation, for the (4, ) component of the above sum we get

0= Z th/ A(Qm)\a\w wm+zq+za(<pA]Sun)<p1U,’idx

0<|a|<m s=1
S S {Cn A o n)
0<|algm s=1
-\ | O ga o - A
_< > @m) e ATV ik G018 )

0<e|<m
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Example 4: oscillations - two characteristic length

0<a<B kseZ\ {0},

2
27ri(na‘s+n6k)-x Lioc

un(x) :=e —=0, n— o0
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Example 4: oscillations - two characteristic length

0<a<B kseZ\ {0},

2
eQ'/ri(na‘s-!—an)-x Lioc

Un(X) = —=0, n—= 00

6()% € , lim,, n’w, =0
&’0"20 =A\x)X Su(&) , lim,nPw, =c € (0,00)
) & & , lim,, n®w, = 0o

Lower order term n® and corresponding direction of oscillations s we cannot
resemble in any case.
Therefore, we need some new methods and/or tools.
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Multi-scale H-measures and variants

In [T3] Tartar introduced multi-scale objects, called multi-scale H-measures.
W}“ e 7w£1 — 0+v L1, P2 S CC(Q)y 'l,[) S CO(Rld):

o /R (@10 (€) @ Fat (€) )Y (whv€, ., wh €) dE = (un) 00 015y W)

Our approach: instead of ¥(w./&, ..., wh, &) work with ¥(wi&r, ..., wiéq).

For example, starting from parabolic H-measure construct parabolic one-scale
H-measure (an object with two scales in the ratio 1:2).

m [ P10 (7€) @ Gath (7. €)Y (e T 2w €) drd = (v, 9132 K V).
n R

[T3] Luc TARTAR: Multi-scale H-measures, Discrete and Continuous Dynamical
Systems - Series S (2015)
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