One-scale H-measures and variants

Marko Erceg

Department of Mathematics, Faculty of Science University of Zagreb

doctoral thesis defense Zagreb, $17^{\rm th}$ June, 2016

If we have $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $\Omega \subseteq \mathbf{R}^d$ open, what we can say about $|u_n|^2$?

If we have $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $\Omega \subseteq \mathbf{R}^d$ open, what we can say about $|u_n|^2$?

Example:

$$u_n(\mathbf{x}) := e^{2\pi i n x} \frac{\mathbf{L}_{\text{loc}}^2}{0},$$

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}).$$

If we have $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $\Omega \subseteq \mathbf{R}^d$ open, what we can say about $|u_n|^2$?

Example:

$$u_n(\mathbf{x}) := e^{2\pi i n x} \frac{\mathbf{L}_{\text{loc}}^2}{0},$$

but

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}).$$

It is bounded in $L^1_{loc}(\Omega) \hookrightarrow \mathcal{M}(\Omega) = (C_c(\Omega))'$, so

$$|u_{n'}|^2 \stackrel{*}{\longrightarrow} \nu$$
.

 ν is called the defect measure.

Of course, we have

$$u_{n'} \stackrel{\mathrm{L}^2_{\mathrm{loc}}}{\longrightarrow} 0 \iff \nu = 0 .$$

If we have $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $\Omega \subseteq \mathbf{R}^d$ open, what we can say about $|u_n|^2$?

Example:

$$u_n(\mathbf{x}) := e^{2\pi i n x} \frac{\mathbf{L}_{\text{loc}}^2}{0},$$

but

$$|u_n(\mathbf{x})| = 1 \implies u_n \to 0 \text{ in } L^2_{loc}(\mathbf{R}).$$

It is bounded in $L^1_{loc}(\Omega) \hookrightarrow \mathcal{M}(\Omega) = (C_c(\Omega))'$, so

$$|u_{n'}|^2 \stackrel{*}{\longrightarrow} \nu$$
.

 ν is called the defect measure.

Of course, we have

$$u_{n'} \stackrel{\mathrm{L}^2_{\mathrm{loc}}}{\longrightarrow} 0 \iff \nu = 0.$$

If the defect measure is not trivial we need another objects to determine all the properties of the sequence:

- H-measures
- semiclassical measures
- ...

Outline

Outline

 $\Omega \subseteq \mathbf{R}^d$ open.

Theorem (Tartar, 1990)

If $\mathbf{u}_n \rightharpoonup \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}_H \in \mathcal{M}(\Omega \times \mathbf{S}^{d-1}; \mathbf{M}_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(\mathbf{S}^{d-1})$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi \left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|} \right) d\boldsymbol{\xi} = \langle \boldsymbol{\mu}_H, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle.$$

(Unbounded) Radon measure μ_H we call the H-measure corresponding to the (sub)sequence (u_n) .

Notation:

$$\begin{array}{l} \mathbf{x} = (x^1, x^2, \dots, x^d) \in \Omega, \ \boldsymbol{\xi} = (\xi_1, \xi_2, \dots, \xi_d) \in \mathbf{R}^d \\ \hat{\mathbf{u}}(\boldsymbol{\xi}) = \int_{\mathbf{R}^d} e^{-2\pi i \boldsymbol{\xi} \cdot \mathbf{x}} d\mathbf{x} \\ \mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^d a^i \bar{b}^i \ (\mathbf{a}, \mathbf{b} \in \mathbf{C}^r) \\ (\mathbf{a} \otimes \mathbf{b}) \mathbf{v} = (\mathbf{v} \cdot \mathbf{b}) \mathbf{a} \implies [\mathbf{a} \otimes \mathbf{b}]_{ij} = a^i \bar{b}^j \\ \langle \cdot, \cdot \rangle \text{ sesquilinear dual product; } \langle \mathbf{A}, \varphi \rangle := [A^{ij}, \varphi]_{ij} \\ \mathcal{M}(X) = (\mathbf{C}_c(X))' \end{array}$$

 $\Omega \subseteq \mathbf{R}^d$ open.

Theorem (Tartar, 1990)

If $\mathbf{u}_n \rightharpoonup \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}_H \in \mathcal{M}(\Omega \times S^{d-1}; M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(S^{d-1})$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathsf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathsf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi \left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|} \right) d\boldsymbol{\xi} = \langle \boldsymbol{\mu}_H, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle.$$

(Unbounded) Radon measure μ_H we call the H-measure corresponding to the (sub)sequence (u_n).

Corollary

$$\mathsf{u}_n \overset{\mathrm{L}^2_{\mathrm{loc}}}{\longrightarrow} \mathsf{0} \iff \boldsymbol{\mu}_H = \mathbf{0} \;.$$

Semiclassical measures

Theorem (Gérard, 1991)

If $\mathbf{u}_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}^{(\omega_{n'})}_{sc} \in \mathcal{M}(\Omega \times \mathbf{R}^d; \mathrm{M_r}(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}^\infty_c(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{sc}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

(Unbounded) measure $\mu_{sc}^{(\omega_{n'})}$ we call the semiclassical measure with characteristic length $(\omega_{n'})$ corresponding to the (sub)sequence $(u_{n'})$.

Semiclassical measures

Theorem (Gérard, 1991)

If $\mathbf{u}_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}^{(\omega_{n'})}_{sc} \in \mathcal{M}(\Omega \times \mathbf{R}^d; \mathrm{M_r}(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}^\infty_c(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{sc}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

(Unbounded) measure $\mu_{sc}^{(\omega_{n'})}$ we call the semiclassical measure with characteristic length $(\omega_{n'})$ corresponding to the (sub)sequence $(u_{n'})$.

Theorem

$$\mathsf{u}_n \overset{\mathrm{L}^2_\mathrm{loc}}{\longrightarrow} \mathsf{0} \iff \boldsymbol{\mu}_{sc}^{(\omega_n)} = \mathsf{0} \quad \& \quad (\mathsf{u}_n) \; \textit{is} \; (\omega_n) - \textit{oscillatory} \; .$$

Semiclassical measures

Theorem (Gérard, 1991)

If $\mathbf{u}_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}^{(\omega_{n'})}_{sc} \in \mathcal{M}(\Omega \times \mathbf{R}^d; \mathrm{M_r}(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}^\infty_c(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{sc}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

(Unbounded) measure $\mu_{sc}^{(\omega_{n'})}$ we call the semiclassical measure with characteristic length $(\omega_{n'})$ corresponding to the (sub)sequence $(u_{n'})$.

Definition

$$\begin{array}{ll} (\mathsf{u}_n) \text{ is } (\omega_n)\text{-oscillatory if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n\int_{|\pmb{\xi}|\geqslant\frac{R}{\omega_n}}|\widehat{\varphi \mathbf{u}_n}(\pmb{\xi})|^2\,d\pmb{\xi}=0\,. \end{array}$$

Theorem

$$\mathsf{u}_n \overset{\mathrm{L}^2_{\mathrm{loc}}}{\Longrightarrow} \mathsf{0} \iff \boldsymbol{\mu}_{\mathrm{sc}}^{(\omega_n)} = \mathbf{0} \quad \& \quad (\mathsf{u}_n) \text{ is } (\omega_n) - \mathsf{oscillatory} \ .$$

$$\alpha>0$$
 , $\mathbf{k}\in\mathbf{Z}^d\setminus\{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}_{loc}^2} 0, \ n \to \infty,$$

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d).$$

$$\alpha>0$$
 , $\mathbf{k}\in\mathbf{Z}^d\setminus\{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{\mathbf{0}}, \ n \to \infty,$$

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d).$$

$$\nu = \lambda$$

$$\alpha>0$$
 , $\mathbf{k}\in\mathbf{Z}^d\setminus\{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}_{loc}^2} 0, \ n \to \infty,$$

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d).$$

$$\nu = \lambda$$

$$\mu_H = \lambda \boxtimes \delta_{\frac{\mathsf{k}}{|\mathsf{k}|}}$$

$$\alpha>0$$
 , $\mathbf{k}\in\mathbf{Z}^d\setminus\{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}_{loc}^2} 0, \ n \to \infty,$$

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d).$$

$$\begin{split} \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \begin{cases} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathsf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{cases} \end{split}$$

$$\alpha>0$$
 , $\mathbf{k}\in\mathbf{Z}^d\setminus\{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}_{loc}^2} 0, \ n \to \infty,$$

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d).$$

$$\begin{split} \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \begin{cases} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathsf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{cases} \end{split}$$

$$\alpha>0$$
, $\mathbf{k}\in\mathbf{Z}^d\setminus\{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}_{loc}^2} 0, \ n \to \infty,$$

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d).$$

$$\begin{split} \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \left\{ \begin{array}{l} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathsf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{array} \right. \\ \left\langle \mu_H, \varphi \boxtimes \psi \right\rangle &= \left\langle \mu_{sc}^{(\omega_n)}, \varphi \boxtimes \psi \left(\frac{\cdot}{|\cdot|}\right) \right\rangle \end{split}$$

$$\alpha>0\text{, }\mathsf{k}\in\mathbf{Z}^d\setminus\{\mathbf{0}\}\text{,}$$

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}_{loc}^2} 0, \ n \to \infty$$

but

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d).$$

$$\begin{split} \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \left\{ \begin{array}{l} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathsf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{array} \right. \end{split}$$

Theorem

If
$$u_n \longrightarrow u$$
 in $L^2_{loc}(\Omega; \mathbf{C}^r)$ is (ω_n) -oscillatory and $tr \boldsymbol{\mu}_{sc}^{(\omega_n)}(\Omega \times \{0\}) = 0$, then

$$\langle \pmb{\mu}_H, \varphi \boxtimes \psi \rangle = \left\langle \pmb{\mu}_{sc}^{(\omega_n)}, \varphi \boxtimes \psi \Big(\frac{\cdot}{|\cdot|} \Big) \right\rangle \,.$$

$$\alpha>0$$
, $\mathbf{k}\in\mathbf{Z}^d\setminus\{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}_{loc}^2} 0, \ n \to \infty$$

but

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d).$$

$$\begin{split} \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \left\{ \begin{array}{l} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathsf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{array} \right. \end{split}$$

Theorem

If
$$u_n \longrightarrow u$$
 in $L^2_{loc}(\Omega; \mathbf{C}^r)$ is (ω_n) -oscillatory and $\operatorname{tr} \boldsymbol{\mu}_{sc}^{(\omega_n)}(\Omega \times \{0\}) = 0$, then

$$\langle \boldsymbol{\mu}_{H}, \varphi \boxtimes \psi \rangle = \left\langle \boldsymbol{\mu}_{sc}^{(\omega_{n})}, \varphi \boxtimes \psi \left(\frac{\cdot}{|\cdot|} \right) \right\rangle.$$

Definition

$$\begin{array}{ll} (\mathsf{u}_n) \text{ is } (\omega_n)\text{-oscillatory if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n \int_{|\pmb{\xi}|\geqslant\frac{R}{\omega_n}} |\widehat{\varphi \mathbf{u}_n}(\pmb{\xi})|^2\,d\pmb{\xi} = 0\,. \end{array}$$

Definition

$$\begin{array}{ll} (\mathsf{u}_n) \text{ is } (\omega_n)\text{-oscillatory if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n\int_{|\pmb{\xi}|\geqslant\frac{R}{\omega_n}}|\widehat{\varphi \mathbf{u}_n}(\pmb{\xi})|^2\,d\pmb{\xi}=0\,. \\ (\mathsf{u}_n) \text{ is } (\omega_n)\text{-concentrating if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n\int_{|\pmb{\xi}|\leqslant\frac{1}{R(\omega_n)}}|\widehat{\varphi \mathbf{u}_n}(\pmb{\xi})|^2\,d\pmb{\xi}=0\,. \end{array}$$

Definition

$$\begin{array}{ll} (\mathsf{u}_n) \text{ is } (\omega_n)\text{-oscillatory if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n\int_{|\pmb{\xi}|\geqslant\frac{R}{\omega_n}}|\widehat{\varphi \mathsf{u}_n}(\pmb{\xi})|^2\,d\pmb{\xi}=0\,. \\ (\mathsf{u}_n) \text{ is } (\omega_n)\text{-concentrating if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n\int_{|\pmb{\xi}|\leqslant\frac{1}{R_{CL}}}|\widehat{\varphi \mathsf{u}_n}(\pmb{\xi})|^2\,d\pmb{\xi}=0\,. \end{array}$$

Lemma

$$(\mathsf{u}_n)\ \omega_n$$
-concentrating $\iff \mathsf{tr} \boldsymbol{\mu}_{sc}^{(\omega_n)}(\Omega \times \{\mathbf{0}\}) = 0$.

Definition

$$\begin{array}{ll} (\mathsf{u}_n) \text{ is } (\omega_n)\text{-oscillatory if} \\ (\forall \, \varphi \in \mathrm{C}_c^\infty(\Omega)) & \lim_{R \to \infty} \limsup_n \int_{|\boldsymbol{\xi}| \geqslant \frac{R}{\omega_n}} |\widehat{\varphi \mathbf{u}_n}(\boldsymbol{\xi})|^2 \, d\boldsymbol{\xi} = 0 \,. \\ (\mathsf{u}_n) \text{ is } (\omega_n)\text{-concentrating if} \\ (\forall \, \varphi \in \mathrm{C}_c^\infty(\Omega)) & \lim_{R \to \infty} \limsup_n \int_{|\boldsymbol{\xi}| \leqslant \frac{1}{R^{1-\epsilon}}} |\widehat{\varphi \mathbf{u}_n}(\boldsymbol{\xi})|^2 \, d\boldsymbol{\xi} = 0 \,. \end{array}$$

Lemma

$$(\mathsf{u}_n)\ \omega_n$$
-concentrating $\iff \mathsf{tr} \boldsymbol{\mu}_{sc}^{(\omega_n)}(\Omega \times \{0\}) = 0$.

Theorem

If $u_n \longrightarrow u$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$ is (ω_n) -oscillatory and (ω_n) -concentrating, then

$$\langle \boldsymbol{\mu}_{H}, \varphi \boxtimes \psi \rangle = \left\langle \boldsymbol{\mu}_{sc}^{(\omega_{n})}, \varphi \boxtimes \psi \left(\frac{\cdot}{|\cdot|} \right) \right\rangle.$$

For an arbitrary bounded sequence (u_n) in $L^2_{loc}(\Omega; \mathbf{C}^r)$ is there a characteristic length $\omega_n \to 0^+$ such that (u_n) is

- 1) (ω_n) -oscillatory?
- 2) (ω_n) -concentrating?
- 3) both (ω_n) -oscillatory and (ω_n) -concentrating?

For an arbitrary bounded sequence (u_n) in $L^2_{loc}(\Omega; \mathbf{C}^r)$ is there a characteristic length $\omega_n \to 0^+$ such that (u_n) is

- 1) (ω_n) -oscillatory?
- 2) (ω_n) -concentrating?
- 3) both (ω_n) -oscillatory and (ω_n) -concentrating?

Theorem

(1) is valid and (2) is valid under the additional assumption that $u_n \longrightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$.

For an arbitrary bounded sequence (u_n) in $L^2_{loc}(\Omega; \mathbf{C}^r)$ is there a characteristic length $\omega_n \to 0^+$ such that (u_n) is

- 1) (ω_n) -oscillatory?
- 2) (ω_n) -concentrating?
- 3) both (ω_n) -oscillatory and (ω_n) -concentrating?

Theorem

(1) is valid and (2) is valid under the additional assumption that $u_n \longrightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$.

Theorem

For
$$u_n \longrightarrow u$$
 in $L^2_{loc}(\Omega; \mathbf{C}^r)$ we have

$$\begin{split} \mathbf{u}_n \to \mathbf{u} \ \textit{in} \ L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r) \iff (\forall \, \omega_n \to 0^+) \quad (\mathbf{u}_n) \ \textit{is} \ (\omega_n) - \textit{oscillatory} \\ \mathbf{u} = \mathbf{0} \ \& \ \mathbf{u}_n \to \mathbf{0} \ \textit{in} \ L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r) \iff (\forall \, \omega_n \to 0^+) \quad (\mathbf{u}_n) \ \textit{is} \ (\omega_n) - \textit{concen}. \end{split}$$

$$\begin{split} 0 < \alpha < \beta, \ \mathsf{k}, \mathsf{s} \in \mathbf{Z}^d \setminus \{\mathbf{0}\}, \\ u_n(\mathbf{x}) := e^{2\pi i n^\alpha \mathsf{k} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}^2_{\mathrm{loc}}} 0 \,, \ n \to \infty \\ v_n(\mathbf{x}) := e^{2\pi i n^\beta \mathsf{s} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}^2_{\mathrm{loc}}} 0 \,, \ n \to \infty \end{split}$$

$$0 < \alpha < \beta$$
, $k, s \in \mathbf{Z}^d \setminus \{0\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}^2_{\text{loc}}} 0, \ n \to \infty$$
$$v_n(\mathbf{x}) := e^{2\pi i n^{\beta} \mathbf{s} \cdot \mathbf{x}} \xrightarrow{\mathbf{L}^2_{\text{loc}}} 0, \ n \to \infty$$

 μ_H $(\mu_{sc}^{(\omega_n)})$ is H-measure (semiclassical measure with characteristic length (ω_n) , $\omega_n \to 0^+)$ associated to $(u_n + v_n)$.

$$\mu_H = \lambda \boxtimes \left(\delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} + \delta_{\frac{\mathsf{s}}{|\mathsf{s}|}} \right)$$

$$0<\alpha, k,s $\in \mathbf{Z}^d\setminus\{\mathbf{0}\}$,
$$u_n(\mathbf{x}):=e^{2\pi i n^{lpha}\mathbf{k}\cdot\mathbf{x}} \stackrel{\mathbf{L}^2_{\mathrm{loc}}}{\longrightarrow} 0\,,\ n\to\infty$$

$$v_n(\mathbf{x}):=e^{2\pi i n^{eta}\mathbf{s}\cdot\mathbf{x}} \stackrel{\mathbf{L}^2_{\mathrm{loc}}}{\longrightarrow} 0\,,\ n\to\infty$$$$

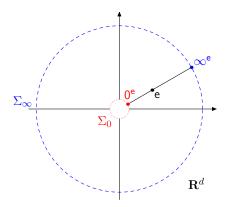
 μ_H ($\mu_{sc}^{(\omega_n)}$) is H-measure (semiclassical measure with characteristic length (ω_n) , $\omega_n \to 0^+$) associated to $(u_n + v_n)$.

$$\begin{split} \mu_{H} &= \lambda \boxtimes \left(\delta_{\frac{\mathbf{k}}{|\mathbf{k}|}} + \delta_{\frac{\mathbf{s}}{|\mathbf{s}|}} \right) \\ \mu_{sc}^{(\omega_{n})} &= \lambda \boxtimes \begin{cases} 2\delta_{0} &, & \lim_{n} n^{\beta} \omega_{n} = 0 \\ (\delta_{c\mathbf{s}} + \delta_{0}) &, & \lim_{n} n^{\beta} \omega_{n} = c \in \langle 0, \infty \rangle \\ \delta_{0} &, & \lim_{n} n^{\beta} \omega_{n} = \infty & \& \lim_{n} n^{\alpha} \omega_{n} = 0 \\ \delta_{c\mathbf{k}} &, & \lim_{n} n^{\alpha} \omega_{n} = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_{n} n^{\alpha} \omega_{n} = \infty \end{cases} \end{split}$$

Outline

$\overline{\mathrm{K}_{0,\infty}(\mathbf{R}^d)}$

 $K_{0,\infty}({f R}^d)$ is a compactification of ${f R}^d_*$ homeomorphic to a spherical layer (i.e. an annulus in ${f R}^2$):



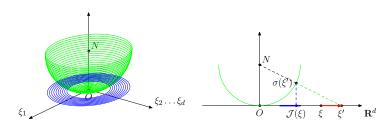
Precise description of $K_{0,\infty}(\mathbf{R}^d)$ 1/3

For fixed $r_0>0$ let us define $r_1=rac{r_0}{\sqrt{r_0^2+1}}$, and denote by

$$A[\mathbf{0}, r_1, 1] := \left\{ \boldsymbol{\zeta} \in \mathbf{R}^d : r_1 \leqslant |\boldsymbol{\zeta}| \leqslant 1 \right\}$$

closed d-dimensional spherical layer equipped with the standard topology (inherited from ${\bf R}^d$). In addition let us define $A({\bf 0},r_1,1):={\rm Int}\,A[{\bf 0},r_1,1]$, and by $A_0[{\bf 0},r_1,1]:={\bf S}^{d-1}({\bf 0};r_1)$ and $A_\infty[{\bf 0},r_1,1]:={\bf S}^{d-1}$ we denote boundary spheres.

We want to construct a homeomorphism $\mathcal{J}: \mathbf{R}^d_* \longrightarrow A(\mathbf{0}, r_1, 1)$.



Precise description of $K_{0,\infty}(\mathbf{R}^d)$ 2/3

From the previous construction we get that $\mathcal{J}:\mathbf{R}^d_*\longrightarrow A(\mathbf{0},r_1,1)$ is given by

$$\mathcal{J}(\boldsymbol{\xi}) = \frac{\boldsymbol{\xi}}{\sqrt{|\boldsymbol{\xi}|^2 + \left(\frac{|\boldsymbol{\xi}|}{|\boldsymbol{\xi}| + r_0}\right)^2}} = \frac{|\boldsymbol{\xi}| + r_0}{|\boldsymbol{\xi}| K(\boldsymbol{\xi})} \boldsymbol{\xi},$$

where $K(\boldsymbol{\xi}) = K(|\boldsymbol{\xi}|) := \sqrt{1 + (|\boldsymbol{\xi}| + r_0)^2}$. $\boldsymbol{\xi}$ and $\mathcal{J}(\boldsymbol{\xi})$ lie on the same line:

$$\frac{\mathcal{J}(\boldsymbol{\xi})}{|\mathcal{J}(\boldsymbol{\xi})|} = \frac{\frac{|\boldsymbol{\xi}| + r_0}{|\boldsymbol{\xi}| K(\boldsymbol{\xi})} \boldsymbol{\xi}}{\frac{|\boldsymbol{\xi}| + r_0}{|\boldsymbol{\xi}| K(\boldsymbol{\xi})} |\boldsymbol{\xi}|} = \frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}.$$

 $\mathcal J$ is homeomorphism and its inverse $\mathcal J^{-1}:A(\mathbf 0,r_1,1)\longrightarrow \mathbf R^d_*$ is given by

$$\mathcal{J}^{-1}(\zeta) = \frac{|\zeta| - r_0 \sqrt{1 - |\zeta|^2}}{|\zeta| \sqrt{1 - |\zeta|^2}} \zeta = \zeta (1 - |\zeta|^2)^{-\frac{1}{2}} - r_0 \zeta |\zeta|^{-1},$$

resulting that $(A[0, r_1, 1], \mathcal{J})$ is a compactification of \mathbf{R}^d_* .

Precise description of $K_{0,\infty}(\mathbf{R}^d)$ 3/3

Now we define

$$\Sigma_0 := \{ \mathbf{0}^{\mathsf{e}} : \mathsf{e} \in \mathbf{S}^{d-1} \} \qquad \text{and} \qquad \Sigma_\infty := \{ \infty^{\mathsf{e}} : \mathsf{e} \in \mathbf{S}^{d-1} \} \,,$$

and $K_{0,\infty}(\mathbf{R}^d) := \mathbf{R}^d_* \cup \Sigma_0 \cup \Sigma_\infty$.

Let us extend $\mathcal J$ to the whole $\mathrm{K}_{0,\infty}(\mathbf R^d)$ by $\mathcal J(0^\mathrm{e}):=r_1\mathrm{e}$ and $\mathcal J(\infty^\mathrm{e})=\mathrm{e}$, which gives $\mathcal J^\to(\Sigma_0)=A_0[0,r_1,1]$ and $\mathcal J^\to(\Sigma_\infty)=A_\infty[0,r_1,1]$.

 $d_*(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) := |\mathcal{J}(\boldsymbol{\xi}_1) - \mathcal{J}(\boldsymbol{\xi}_2)|$ is a metric on $K_{0,\infty}(\mathbf{R}^d)$, so $(K_{0,\infty}(\mathbf{R}^d), d_*)$ is a metric space isomorphic to $A[0, r_1, 1]$.

$$\lim_{|\pmb{\xi}|\to 0} \Bigl| \mathcal{J}(\pmb{\xi}) - \mathcal{J}(\mathbf{0}^{\frac{\pmb{\xi}}{|\pmb{\xi}|}}) \Bigr| = 0 \;, \quad \lim_{|\pmb{\xi}|\to \infty} \Bigl| \mathcal{J}(\pmb{\xi}) - \mathcal{J}(\infty^{\frac{\pmb{\xi}}{|\pmb{\xi}|}}) \Bigr| = 0 \;,$$

$$\lim_{|\boldsymbol{\zeta}| \to r_1} |\mathcal{J}^{-1}(\boldsymbol{\zeta})| = 0 , \quad \lim_{|\boldsymbol{\zeta}| \to 1} |\mathcal{J}^{-1}(\boldsymbol{\zeta})| = +\infty.$$

Continuous functions on $K_{0,\infty}(\mathbf{R}^d)$

Lemma

For $\psi: K_{0,\infty}(\mathbf{R}^d) \longrightarrow \mathbf{C}$ the following is equivalent:

- a) $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$,
- b) $(\exists \tilde{\psi} \in C(A[0,r_1,1])) \psi = \tilde{\psi} \circ \mathcal{J}$,
- c) $\psi_{|_{\mathbf{R}^d}} \in \mathrm{C}(\mathbf{R}^d_*)$, and

$$\lim_{|\pmb{\xi}|\to 0} |\psi(\pmb{\xi}) - \psi(\mathbf{0}^{\frac{\pmb{\xi}}{|\pmb{\xi}|}})| = 0 \qquad \text{ and } \qquad \lim_{|\pmb{\xi}|\to \infty} |\psi(\pmb{\xi}) - \psi(\infty^{\frac{\pmb{\xi}}{|\pmb{\xi}|}})| = 0 \,.$$

Continuous functions on $K_{0,\infty}(\mathbf{R}^d)$

Lemma

For $\psi: K_{0,\infty}(\mathbf{R}^d) \longrightarrow \mathbf{C}$ the following is equivalent:

- a) $\psi \in \mathrm{C}(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$,
- b) $(\exists \tilde{\psi} \in C(A[0,r_1,1])) \psi = \tilde{\psi} \circ \mathcal{J}$,
- c) $\psi_{|_{\mathbf{R}^d}} \in \mathrm{C}(\mathbf{R}^d_*)$, and

$$\lim_{|\pmb{\xi}|\to 0} |\psi(\pmb{\xi}) - \psi(\mathbf{0}^{\frac{\pmb{\xi}}{|\pmb{\xi}|}})| = 0 \qquad \text{ and } \qquad \lim_{|\pmb{\xi}|\to \infty} |\psi(\pmb{\xi}) - \psi(\infty^{\frac{\pmb{\xi}}{|\pmb{\xi}|}})| = 0 \,.$$

For $\psi \in C(\mathbf{R}^d_*)$ we have $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$ iff there exist $\psi_0, \psi_\infty \in C(S^{d-1})$ such that

$$\psi(\boldsymbol{\xi}) - \psi_0\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \to 0, \quad |\boldsymbol{\xi}| \to 0,$$
$$\psi(\boldsymbol{\xi}) - \psi_\infty\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \to 0, \quad |\boldsymbol{\xi}| \to \infty.$$

In particular, $\psi - \psi_0(\frac{\cdot}{|\cdot|}) \in C_{ub}(\mathbf{R}^d)$ (uniformly continuous bounded functions).

Continuous functions on $K_{0,\infty}(\mathbf{R}^d)$

Lemma

For $\psi: \mathrm{K}_{0,\infty}(\mathbf{R}^d) \longrightarrow \mathbf{C}$ the following is equivalent:

- a) $\psi \in \mathrm{C}(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$,
- b) $(\exists \tilde{\psi} \in C(A[0,r_1,1])) \psi = \tilde{\psi} \circ \mathcal{J}$
- c) $\psi_{|_{\mathbf{R}^d}} \in \mathrm{C}(\mathbf{R}^d_*)$, and

$$\lim_{|\pmb{\xi}|\to 0} |\psi(\pmb{\xi}) - \psi(\mathbf{0}^{\frac{\pmb{\xi}}{|\pmb{\xi}|}})| = 0 \qquad \text{ and } \qquad \lim_{|\pmb{\xi}|\to \infty} |\psi(\pmb{\xi}) - \psi(\infty^{\frac{\pmb{\xi}}{|\pmb{\xi}|}})| = 0 \,.$$

For $\psi \in C(\mathbf{R}^d_*)$ we have $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$ iff there exist $\psi_0, \psi_\infty \in C(S^{d-1})$ such that

$$\psi(\boldsymbol{\xi}) - \psi_0\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \to 0, \quad |\boldsymbol{\xi}| \to 0,$$
$$\psi(\boldsymbol{\xi}) - \psi_\infty\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \to 0, \quad |\boldsymbol{\xi}| \to \infty.$$

In particular, $\psi - \psi_0(\frac{\cdot}{\text{LI}}) \in C_{ub}(\mathbf{R}^d)$ (uniformly continuous bounded functions).

Lemma

- i) $C_0(\mathbf{R}^d) \hookrightarrow C(K_{0,\infty}(\mathbf{R}^d))$, and
- ii) $\{\psi \circ \boldsymbol{\pi} : \psi \in C(S^{d-1})\} \hookrightarrow C(K_{0,\infty}(\mathbf{R}^d)).$

One-scale H-measures

Theorem (Tartar, 2009)

If $\mathbf{u}_n \rightharpoonup \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$, $\omega_n \to \mathbf{0}^+$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}_{K_{0,\infty}}^{(\omega_n)} \in \mathcal{M}(\Omega \times K_{0,\infty}(\mathbf{R}^d); \mathrm{M_r}(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}_c(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{(\varphi_1 \mathsf{u}_{n'})}(\boldsymbol{\xi}) \otimes \widehat{(\varphi_2 \mathsf{u}_{n'})}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle \, .$$

(Unbounded) Radon measure $\mu_{K_{0,\infty}}^{(\omega_{n'})}$ we call the one-scale H-measure with characteristic length $(\omega_{n'})$ corresponding to the (sub)sequence $(u_{n'})$.

One-scale H-measures

Theorem (Tartar, 2009)

If $\mathbf{u}_n \rightharpoonup \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}_{K_{0,\infty}}^{(\omega_n)} \in \mathcal{M}(\Omega \times K_{0,\infty}(\mathbf{R}^d); M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{(\varphi_1 \mathsf{u}_{n'})}(\boldsymbol{\xi}) \otimes \widehat{(\varphi_2 \mathsf{u}_{n'})}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle .$$

(Unbounded) Radon measure $\mu_{K_{0,\infty}}^{(\omega_{n'})}$ we call the one-scale H-measure with characteristic length $(\omega_{n'})$ corresponding to the (sub)sequence $(u_{n'})$.

The original proof:

- $\mathsf{v}_n(\mathbf{x}, x^{d+1}) := \mathsf{u}_n(\mathbf{x}) e^{\frac{2\pi i x^{d+1}}{\omega_n}} \rightharpoonup \mathsf{0} \text{ in } \mathsf{L}^2_{\mathrm{loc}}(\Omega \times \mathbf{R}; \mathbf{C}^r)$
- $\nu_H \in \mathcal{M}(\Omega \times \mathbf{R} \times \mathbf{S}^d; \mathbf{M_r}(\mathbf{C}))$
- $\mu_{{
 m K}_{0,\infty}}^{(\omega_n)}$ is obtained from u_H (suitable projection in x^{d+1} and ξ_{d+1})

Alternative proof (Antonić, E., Lazar)

- Cantor diagonal procedure (separability)
- commutation lemma

Lemma

Let $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$, $\varphi \in C_0(\mathbf{R}^d)$, $\omega_n \to 0^+$, and denote $\psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$. Then the commutator can be expressed as a sum

$$C_n := [B_{\varphi}, \mathcal{A}_{\psi_n}] = \tilde{C}_n + K$$
,

where K is a compact operator on $L^2(\mathbf{R}^d)$, while $\tilde{C}_n \longrightarrow 0$ in the operator norm on $\mathcal{L}(L^2(\mathbf{R}^d))$.

variant of the kernel lemma

Lemma

Let X and Y be two Hausdorff second countable topological manifolds (with or without a boundary), and let B be a non-negative continuous bilinear form on $C_c(X) \times C_c(Y)$. Then there exists a Radon measure $\mu \in \mathcal{M}(X \times Y)$ such that

$$(\forall f \in C_c(X))(\forall g \in C_c(Y)) \quad B(f,g) = \langle \mu, f \boxtimes g \rangle.$$

Furthermore, the above remains valid if we replace C_c by C_0 , and \mathcal{M} by \mathcal{M}_b (the space of bounded Radon measures, i.e. the dual of Banach space C_0).

Some properties of $\mu_{\mathrm{K}_{0,\infty}}$

Theorem

$$\begin{array}{lll} \text{a)} & & \mu_{K_{0,\infty}}^* = \mu_{K_{0,\infty}} \;, & & \mu_{K_{0,\infty}} \geqslant 0 \\ \\ \text{c)} & & \text{u}_n \overset{L^2_{\text{loc}}}{\longrightarrow} 0 & \iff & \mu_{K_{0,\infty}} = 0 \\ \\ \text{d)} & & \text{tr} \mu_{K_{0,\infty}} (\Omega \times \Sigma_\infty) = 0 & \iff & (\text{u}_n) \; \text{is} \; (\omega_n) - \text{oscillatory} \end{array}$$

Theorem

$$\begin{split} \varphi_1, \varphi_2 \in \mathrm{C}_c(\Omega), \ \psi \in \mathrm{C}_0(\mathbf{R}^d), \ \tilde{\psi} \in \mathrm{C}(\mathrm{S}^{d-1}), \ \omega_n \to 0^+, \\ a) & \langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{(\omega_n)}, \varphi_1 \bar{\varphi_2} \boxtimes \psi \rangle &= \langle \boldsymbol{\mu}_{sc}^{(\omega_n)}, \varphi_1 \bar{\varphi_2} \boxtimes \psi \rangle, \\ b) & \langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{(\omega_n)}, \varphi_1 \bar{\varphi_2} \boxtimes \tilde{\psi} \circ \boldsymbol{\pi} \rangle &= \langle \boldsymbol{\mu}_H, \varphi_1 \bar{\varphi_2} \boxtimes \tilde{\psi} \rangle, \end{split}$$
 where $\boldsymbol{\pi}(\boldsymbol{\xi}) = \boldsymbol{\xi}/|\boldsymbol{\xi}|.$

Example 1 revisited

$$\begin{split} u_n(\mathbf{x}) &= e^{2\pi i n^\alpha \mathbf{k} \cdot \mathbf{x}}, \\ \mu_H &= \lambda \boxtimes \delta_{\frac{\mathbf{k}}{|\mathbf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \begin{cases} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{ck} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{cases} \\ \mu_{\mathbf{K}_0, \infty}^{(\omega_n)} &= \lambda \boxtimes \begin{cases} \delta_{\frac{\mathbf{k}}{|\mathbf{k}|}} &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{ck} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ \delta_{\frac{\mathbf{k}}{|\mathbf{k}|}} &, & \lim_n n^\alpha \omega_n = \infty \end{cases} \end{split}$$

Example 2 - revisited

$$u_n(\mathbf{x}) = e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}}, \ v_n(\mathbf{x}) = e^{2\pi i n^{\beta} \mathbf{s} \cdot \mathbf{x}},$$
 associated objects to $(u_n + v_n)$:

$$\begin{split} \mu_{H} &= \lambda \boxtimes \left(\delta_{\frac{k}{|\mathbf{k}|}} + \delta_{\frac{\mathbf{s}}{|\mathbf{s}|}}\right) \\ \mu_{sc}^{(\omega_{n})} &= \lambda \boxtimes \begin{cases} 2\delta_{0} &, & \lim_{n} n^{\beta} \omega_{n} = 0 \\ (\delta_{0} + \delta_{c\mathbf{s}}) &, & \lim_{n} n^{\beta} \omega_{n} = c \in \langle 0, \infty \rangle \\ \delta_{0} &, & \lim_{n} n^{\beta} \omega_{n} = \infty & \lim_{n} n^{\alpha} \omega_{n} = 0 \\ \delta_{c\mathbf{k}} &, & \lim_{n} n^{\alpha} \omega_{n} = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_{n} n^{\alpha} \omega_{n} = \infty \end{cases} \\ \mu_{\mathbf{K}_{0},\infty}^{(\omega_{n})} &= \lambda \boxtimes \begin{cases} \left(\delta_{\frac{\mathbf{k}}{|\mathbf{k}|}} + \delta_{\frac{\mathbf{s}}{0}|\mathbf{s}|}\right) &, & \lim_{n} n^{\beta} \omega_{n} = 0 \\ \left(\delta_{\frac{\mathbf{k}}{|\mathbf{k}|}} + \delta_{c\mathbf{s}}\right) &, & \lim_{n} n^{\beta} \omega_{n} = c \in \langle 0, \infty \rangle \\ \left(\delta_{c\mathbf{k}} + \delta_{\frac{\mathbf{s}}{0}|\mathbf{s}|}\right) &, & \lim_{n} n^{\beta} \omega_{n} = \infty & \lim_{n} n^{\alpha} \omega_{n} = 0 \\ \left(\delta_{c\mathbf{k}} + \delta_{\frac{\mathbf{s}}{0}|\mathbf{s}|}\right) &, & \lim_{n} n^{\beta} \omega_{n} = \infty & \lim_{n} n^{\alpha} \omega_{n} = 0 \\ \left(\delta_{c\mathbf{k}} + \delta_{\frac{\mathbf{s}}{0}|\mathbf{s}|}\right) &, & \lim_{n} n^{\alpha} \omega_{n} = c \in \langle 0, \infty \rangle \\ \left(\delta_{\frac{\mathbf{k}}{|\mathbf{k}|}} + \delta_{\frac{\mathbf{s}}{0}|\mathbf{s}|}\right) &, & \lim_{n} n^{\alpha} \omega_{n} = \infty \end{cases} \end{split}$$

Localisation principle - assumptions

Let $\Omega \subseteq \mathbf{R}^d$ open, $m \in \mathbf{N}$, $\mathbf{u}_n \rightharpoonup \mathbf{0}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$ and

$$\sum_{l\leqslant |\alpha|\leqslant m} \varepsilon_n^{|\alpha|-l} \partial_{\alpha} (\mathbf{A}_n^{\alpha} \mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega \,, \tag{*}$$

where

- $l \in 0..m$
- $\varepsilon_n > 0$ bounded
- $\mathbf{A}_n^{\boldsymbol{\alpha}} \to \mathbf{A}^{\boldsymbol{\alpha}}$ in $\mathrm{C}(\Omega; \mathrm{M_r}(\mathbf{C}))$
- $f_n \in H^{-m}_{loc}(\Omega; \mathbf{C}^r)$ such that

$$(\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega))\qquad \frac{\widehat{\varphi \mathsf{f}_n}}{1+\sum_{s=l}^m\varepsilon_n^{s-l}|\pmb{\xi}|^s}\longrightarrow 0\quad\text{in}\quad \mathrm{L}^2(\mathbf{R}^d;\mathbf{C}^r) \qquad (**)$$

Localisation principle - assumptions

Let $\Omega \subseteq \mathbf{R}^d$ open, $m \in \mathbf{N}$, $\mathsf{u}_n \rightharpoonup \mathsf{0}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$ and

$$\sum_{l\leqslant |\alpha|\leqslant m} \varepsilon_n^{|\alpha|-l} \partial_\alpha(\mathbf{A}_n^\alpha \mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega\,, \tag{*}$$

where

- $l \in 0..m$
- $\varepsilon_n > 0$ bounded
- $\mathbf{A}_n^{\alpha} \to \mathbf{A}^{\alpha}$ in $\mathrm{C}(\Omega; \mathrm{M_r}(\mathbf{C}))$
- $f_n \in H^{-m}_{loc}(\Omega; \mathbf{C}^r)$ such that

$$(\forall \varphi \in \mathrm{C}_c^{\infty}(\Omega)) \qquad \frac{\widehat{\varphi \mathsf{f}_n}}{1 + \sum_{s=l}^m \varepsilon_n^{s-l} |\boldsymbol{\xi}|^s} \longrightarrow \mathbf{0} \quad \text{in} \quad \mathrm{L}^2(\mathbf{R}^d; \mathbf{C}^r) \qquad (**)$$

For l = 0 the condition on (f_n) is equivalent to

$$(\forall \varphi \in C_c^{\infty}(\Omega)) \qquad \|\varphi \mathsf{f}_n\|_{\mathbf{H}_c^{-m}} \to 0,$$

where $\|\mathbf{u}\|_{\mathbf{H}_h^s}^2 = \int_{\mathbf{R}^d} (1 + 2\pi |h\boldsymbol{\xi}|^2)^s |\hat{\mathbf{u}}(\boldsymbol{\xi})|^2 d\boldsymbol{\xi}$ is the semiclassical norm of $\mathbf{u} \in \mathbf{H}^s(\Omega; \mathbf{R}^d)$.

(*)
$$\sum_{l \leqslant |\alpha| \leqslant m} \varepsilon_n^{|\alpha|-l} \partial_{\alpha} (\mathbf{A}_n^{\alpha} \mathbf{u}_n) = \mathbf{f}_n$$

$$(**) \quad (\forall \, \varphi \in \mathrm{C}^\infty_c(\Omega)) \qquad \frac{\widehat{\varphi \mathbf{f}_n}}{1 + \sum_{s=l}^m \varepsilon_n^{s-l} |\mathbf{\xi}|^s} \longrightarrow \mathbf{0} \quad \text{in} \quad \mathrm{L}^2(\mathbf{R}^d; \mathbf{C}^r)$$

(*)
$$\sum_{l \leq |\alpha| \leq m} \varepsilon_n^{|\alpha|-l} \partial_{\alpha} (\mathbf{A}_n^{\alpha} \mathbf{u}_n) = \mathbf{f}_n$$

$$(**) \quad (\forall \, \varphi \in \mathrm{C}^\infty_c(\Omega)) \qquad \frac{\widehat{\varphi_n}}{1 + \sum_{s=l}^m \varepsilon_n^{s-l} |\mathbf{\xi}|^s} \longrightarrow \mathbf{0} \quad \text{in} \quad \mathrm{L}^2(\mathbf{R}^d; \mathbf{C}^r)$$

Theorem (Tartar, 2009)

Under previous assumptions and l=1, $\mu_{\mathrm{K}_{0,\infty}}^{(\varepsilon_n)}$ associated to (u_n) satisfies

supp
$$(\mathbf{p}\boldsymbol{\mu}_{K_{0,\infty}}^{\top}) \subseteq \Omega \times \Sigma_0$$
,

where

$$\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) := \sum_{1 \leqslant |\boldsymbol{\alpha}| \leqslant m} (2\pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}| + |\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) \,.$$

(*)
$$\sum_{l \leq |\alpha| \leq m} \varepsilon_n^{|\alpha|-l} \partial_{\alpha} (\mathbf{A}_n^{\alpha} \mathbf{u}_n) = \mathbf{f}_n$$

$$(**) \quad (\forall \, \varphi \in \mathrm{C}^\infty_c(\Omega)) \qquad \frac{\widehat{\varphi_n}}{1 + \sum_{\substack{s=l \\ s = l}}^m \varepsilon_n^{s-l} |\mathbf{\xi}|^s} \longrightarrow \mathbf{0} \quad \text{in} \quad \mathrm{L}^2(\mathbf{R}^d; \mathbf{C}^r)$$

Theorem (Antonić, E., Lazar, 2015)

Under previous assumptions, $\mu_{K_{0,\infty}}^{(\varepsilon_n)}$ associated to (u_n) satisfies

$$\mathbf{p}_1 \boldsymbol{\mu}_{K_{0,\infty}}^\top = \mathbf{0}\,,$$

where

$$\mathbf{p}_1(\mathbf{x}, \boldsymbol{\xi}) := \sum_{l \leqslant |\boldsymbol{\alpha}| \leqslant m} (2\pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^l + |\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) \,.$$

(*)
$$\sum_{l \leqslant |\alpha| \leqslant m} \varepsilon_n^{|\alpha|-l} \partial_{\alpha} (\mathbf{A}_n^{\alpha} \mathbf{u}_n) = \mathbf{f}_n$$

$$(**) \quad (\forall \, \varphi \in \mathrm{C}^\infty_c(\Omega)) \qquad \frac{\widehat{\varphi \mathfrak{f}_n}}{1 + \sum_{s=l}^m \varepsilon_n^{s-l} |\xi|^s} \longrightarrow \mathbf{0} \quad \text{in} \quad \mathrm{L}^2(\mathbf{R}^d; \mathbf{C}^r)$$

Theorem,

For $\omega_n \to 0^+$ such that $c := \lim_n \frac{\varepsilon_n}{\omega_n} \in [0, \infty]$, corresponding one-scale H-measure $\mu_{\mathrm{K}_{0,\infty}}$ with characteristic length (ω_n) satisfies

$$\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{\top} = \mathbf{0}$$
,

where

$$\mathbf{p}_{c}(\mathbf{x}, \boldsymbol{\xi}) := \begin{cases} \sum_{|\boldsymbol{\alpha}| = l} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, & c = 0\\ \sum_{l \leq |\boldsymbol{\alpha}| \leq m} (2\pi i c)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, & c \in \langle 0, \infty \rangle\\ \sum_{|\boldsymbol{\alpha}| = m} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, & c = \infty \end{cases}$$

Moreover, if there exists $\varepsilon_0 > 0$ such that $\varepsilon_n > \varepsilon_0$, $n \in \mathbb{N}$, we can take

$$\mathbf{p}_{\infty}(\mathbf{x}, \boldsymbol{\xi}) := \sum_{|\boldsymbol{lpha}| = m} rac{oldsymbol{\xi}^{oldsymbol{lpha}}}{|oldsymbol{\xi}|^m} \mathbf{A}^{oldsymbol{lpha}}(\mathbf{x}) \,.$$

Localisation principle for H-measures

Theorem

$$\infty > \varepsilon_{\infty} \geqslant \varepsilon_n \geqslant \varepsilon_0 > 0$$
, $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$,

$$\sum_{l\leqslant |\alpha|\leqslant m}\varepsilon_n^{|\alpha|-l}\partial_{\alpha}(\mathbf{A}_n^{\alpha}\mathsf{u}_n)=\mathsf{f}_n\,,$$

where $\mathbf{A}_n^{\alpha} \in \mathrm{C}(\Omega; \mathrm{M}_{\mathrm{q}}(r))$, $\mathbf{A}_n^{\alpha} \longrightarrow \mathbf{A}^{\alpha}$ in $\mathrm{C}(\Omega; \mathrm{M}_{\mathrm{q}}(r))$, and $\mathrm{f}_n \longrightarrow 0$ in $\mathrm{H}_{\mathrm{loc}}^{-m}(\Omega; \mathbf{C}^q)$.

Then the associated H-measure μ_H satisfies

$$\mathbf{p}_{pr}\boldsymbol{\mu}_{H}=\mathbf{0}$$
.

Localisation principle for H-measures

Theorem

$$\infty > \varepsilon_{\infty} \geqslant \varepsilon_n \geqslant \varepsilon_0 > 0$$
, $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$,

$$\sum_{l \leqslant |\alpha| \leqslant m} \varepsilon_n^{|\alpha|-l} \partial_{\alpha} (\mathbf{A}_n^{\alpha} \mathbf{u}_n) = \mathsf{f}_n ,$$

where $\mathbf{A}_n^{\alpha} \in \mathrm{C}(\Omega; \mathrm{M}_{\mathrm{q}}(r))$, $\mathbf{A}_n^{\alpha} \longrightarrow \mathbf{A}^{\alpha}$ in $\mathrm{C}(\Omega; \mathrm{M}_{\mathrm{q}}(r))$, and $\mathfrak{f}_n \longrightarrow 0$ in $\mathrm{H}_{\mathrm{loc}}^{-m}(\Omega; \mathbf{C}^q)$.

Then the associated H-measure μ_H satisfies

$$\mathbf{p}_{pr}\boldsymbol{\mu}_{H}=\mathbf{0}$$
 .

Sketch of the proof:

- If (ε_n) is bounded from below and above by positive constants, (**) is equivalent to the strong convergence to zero in $H^{-m}_{loc}(\Omega; \mathbf{C}^q)$.
- μ_H and $\mu_{K_{0,\infty}}$ coincide on the space of homogeneous functions of the zero order (in ξ).
- \mathbf{p}_{pr} is homogeneous of the zero order in $\boldsymbol{\xi}$.

Localisation principle for semiclassical measures

Theorem

 $\varepsilon_n > 0$ bounded, $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$,

$$\sum_{l\leqslant |\alpha|\leqslant m}\varepsilon_n^{|\alpha|-l}\partial_{\alpha}(\mathbf{A}_n^{\alpha}\mathbf{u}_n)=\mathsf{f}_n\,,$$

where $\mathbf{A}_n^{\alpha} \in \mathrm{C}(\Omega; \mathrm{M}_{\mathrm{q}}(r))$, $\mathbf{A}_n^{\alpha} \longrightarrow \mathbf{A}^{\alpha}$ in $\mathrm{C}(\Omega; \mathrm{M}_{\mathrm{q}}(r))$, and $\mathsf{f}_n \in \mathrm{H}^{-m}_{\mathrm{loc}}(\Omega; \mathbf{C}^q)$ satisfies (**).

Then the associated semiclassical measure $\mu_{sc}^{(\omega_n)}$ satisfies

$$\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \Big(\boldsymbol{\mu}_{sc}^{(\omega_n)} \Big)^{\top} = \mathbf{0},$$

where $c := \lim_n \frac{\varepsilon_n}{\omega_n}$ and

$$\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) := \begin{cases} \sum_{|\boldsymbol{\alpha}| = l} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, & c = 0\\ \sum_{l \leqslant |\boldsymbol{\alpha}| \leqslant m} (2\pi i c)^{|\boldsymbol{\alpha}|} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, & c \in \langle 0, \infty \rangle\\ \sum_{|\boldsymbol{\alpha}| = m} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, & c = \infty \end{cases}$$

Proof (only the case $\lim_n \frac{\omega_n}{\varepsilon_n} = c \in \langle 0, \infty \rangle$)

$$\psi \in \mathcal{S}(\mathbf{R}^d) \implies \boldsymbol{\xi} \mapsto (|\boldsymbol{\xi}|^l + |\boldsymbol{\xi}|^m)\psi(\boldsymbol{\xi}) \in \mathrm{C}(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$$

Proof (only the case $\lim_n \frac{\omega_n}{\varepsilon_n} = c \in \langle 0, \infty \rangle$)

$$\begin{split} \psi &\in \mathcal{S}(\mathbf{R}^d) \quad \Longrightarrow \quad \boldsymbol{\xi} \mapsto (|\boldsymbol{\xi}|^l + |\boldsymbol{\xi}|^m) \psi(\boldsymbol{\xi}) \in \mathrm{C}(\mathrm{K}_{0,\infty}(\mathbf{R}^d)) \\ \mathbf{0} &= \left\langle \sum_{l \leqslant |\boldsymbol{\alpha}| \leqslant m} (2\pi i c)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^l + |\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^\top, \varphi \boxtimes (|\boldsymbol{\xi}|^l + |\boldsymbol{\xi}|^m) \psi \right\rangle \\ &= \sum_{l \leqslant |\boldsymbol{\alpha}| \leqslant m} \left\langle \mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^\top, \overline{(2\pi i c)^{|\boldsymbol{\alpha}|}} \varphi \boxtimes \boldsymbol{\xi}^{\boldsymbol{\alpha}} \psi \right\rangle \\ &= \sum_{l \leqslant |\boldsymbol{\alpha}| \leqslant m} \left\langle \mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{sc}^\top, \overline{(2\pi i c)^{|\boldsymbol{\alpha}|}} \varphi \boxtimes \boldsymbol{\xi}^{\boldsymbol{\alpha}} \psi \right\rangle = \left\langle \sum_{l \leqslant |\boldsymbol{\alpha}| \leqslant m} (2\pi i c)^{|\boldsymbol{\alpha}|} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{sc}^\top, \varphi \boxtimes \psi \right\rangle, \end{split}$$

where in the third equality the fact that $\boldsymbol{\xi}^{\boldsymbol{\alpha}}\psi\in\mathcal{S}(\mathbf{R}^d)$ was used.

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies $\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1}(a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2}(a_2 u_n^2) = f_n^2 \end{cases},$

$$\begin{cases} u_n^1+\varepsilon_n\sigma_{x_1}(c_1\omega_n) & f_n\\ u_n^2+\varepsilon_n\partial_{x_2}(a_2u_n^2)=f_n^2 \end{cases},$$
 where $\varepsilon_n\to 0^+$, $\mathsf{f}_n:=(f_n^1,\ f_n^2)\in\mathrm{H}^{-1}_{\mathrm{loc}}(\Omega;\mathbf{C}^2)$ satisfies

where
$$e_n o 0$$
 , $f_n := (f_n, f_n) \in \Pi_{\mathrm{loc}}(\Omega)$, $\mathfrak{gatistics}$ $(orall \, \varphi \in \operatorname{C}^\infty_c(\Omega)) = \| \varphi \mathsf{f}_n \|_{\operatorname{H}^{-1}_{e_n}} o 0$,

while $a_1,a_2\in \mathrm{C}(\Omega;\mathbf{R})$, $a_1,a_2\neq 0$ everywhere.

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1} (a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2} (a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $\mathsf{f}_n := (f_n^1, \ f_n^2) \in \mathrm{H}^{-1}_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$(\forall \varphi \in C_c^{\infty}(\Omega)) \qquad \|\varphi f_n\|_{H_{\varepsilon_n}^{-1}} \to 0,$$

while $a_1, a_2 \in C(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) (i.e. c=1) associated to (u_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \xi_1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \xi_2}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \boldsymbol{\mu}_{\mathbf{K}_{0,\infty}}^{\top} = \mathbf{0} \,,$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $u_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{loc}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1} (a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2} (a_2 u_n^2) = f_n^2 \end{cases}$$

where $\varepsilon_n \to 0^+$, $f_n := (f_n^1, f_n^2) \in H^{-1}_{loc}(\Omega; \mathbf{C}^2)$ satisfies

$$(\forall \varphi \in C_c^{\infty}(\Omega)) \qquad \|\varphi f_n\|_{H_{\varepsilon_n}^{-1}} \to 0,$$

while $a_1, a_2 \in C(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) (i.e. c=1) associated to (u_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \xi_1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \xi_2}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \boldsymbol{\mu}_{\mathbf{K}_{0,\infty}}^\top = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\xi|} + i\frac{2\pi\xi_1}{1+|\xi|}a_1(\mathbf{x})\right)\mu_{K_{0,\infty}}^{11} = 0,$$

$$\frac{1}{1+|\pmb{\xi}|}\mu^{11}_{\mathbf{K}_{0,\infty}}=0\,,\quad \frac{\xi_1}{1+|\pmb{\xi}|}\mu^{11}_{\mathbf{K}_{0,\infty}}=0$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1} (a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2} (a_2 u_n^2) = f_n^2 \end{cases}$$

where $\varepsilon_n \to 0^+$, $f_n := (f_n^1, f_n^2) \in H^{-1}_{loc}(\Omega; \mathbf{C}^2)$ satisfies

$$(\forall \varphi \in C_c^{\infty}(\Omega)) \qquad \|\varphi f_n\|_{H_{\varepsilon_n}^{-1}} \to 0,$$

while $a_1, a_2 \in C(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) (i.e. c=1) associated to (u_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \xi_1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \xi_2}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \boldsymbol{\mu}_{\mathbf{K}_{0,\infty}}^\top = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\xi|} + i\frac{2\pi\xi_1}{1+|\xi|}a_1(\mathbf{x})\right)\mu_{K_{0,\infty}}^{11} = 0,$$

$$\operatorname{supp} \mu^{11}_{\mathrm{K}_{0,\infty}} \subseteq \Omega \times \Sigma_{\infty} \,, \quad \frac{\xi_1}{1+|\boldsymbol{\xi}|} \mu^{11}_{\mathrm{K}_{0,\infty}} = 0$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $u_n := (u_n^1, u_n^2) \longrightarrow 0$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1} (a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2} (a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $f_n := (f_n^1, f_n^2) \in H^{-1}_{loc}(\Omega; \mathbf{C}^2)$ satisfies

$$(\forall \varphi \in C_c^{\infty}(\Omega)) \qquad \|\varphi f_n\|_{H_{\varepsilon_n}^{-1}} \to 0,$$

while $a_1, a_2 \in C(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) (i.e. c=1) associated to (u_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|}\begin{bmatrix}1&0\\0&1\end{bmatrix}+\frac{2\pi i \xi_1}{1+|\boldsymbol{\xi}|}\begin{bmatrix}a_1(\mathbf{x})&0\\0&0\end{bmatrix}+\frac{2\pi i \xi_2}{1+|\boldsymbol{\xi}|}\begin{bmatrix}0&0\\0&a_2(\mathbf{x})\end{bmatrix}\right)\boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^\top=\mathbf{0}\,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\xi|} + i\frac{2\pi\xi_1}{1+|\xi|}a_1(\mathbf{x})\right)\mu_{K_{0,\infty}}^{11} = 0,$$

$$\operatorname{supp} \mu^{11}_{K_{0,\infty}} \subseteq \Omega \times \Sigma_{\infty} \,, \quad \operatorname{supp} \mu^{11}_{K_{0,\infty}} \subseteq \Omega \times (\Sigma_0 \cup \{\xi_1 = 0\})$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1} (a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2} (a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $f_n := (f_n^1, f_n^2) \in H^{-1}_{loc}(\Omega; \mathbf{C}^2)$ satisfies

$$(\forall \varphi \in C_c^{\infty}(\Omega)) \qquad \|\varphi f_n\|_{H_{\varepsilon_n}^{-1}} \to 0,$$

while $a_1, a_2 \in C(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) (i.e. c=1) associated to (u_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|}\begin{bmatrix}1&0\\0&1\end{bmatrix}+\frac{2\pi i \xi_1}{1+|\boldsymbol{\xi}|}\begin{bmatrix}a_1(\mathbf{x})&0\\0&0\end{bmatrix}+\frac{2\pi i \xi_2}{1+|\boldsymbol{\xi}|}\begin{bmatrix}0&0\\0&a_2(\mathbf{x})\end{bmatrix}\right)\boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^\top=\mathbf{0}\,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\xi|} + i\frac{2\pi\xi_1}{1+|\xi|}a_1(\mathbf{x})\right)\mu_{K_{0,\infty}}^{11} = 0,$$

$$\operatorname{supp} \mu^{11}_{K_{0,\infty}} \subseteq \Omega \times \Sigma_{\infty} \,, \quad \operatorname{supp} \mu^{11}_{K_{0,\infty}} \subseteq \Omega \times (\Sigma_0 \cup \{\xi_1 = 0\})$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1} (a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2} (a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $f_n := (f_n^1, f_n^2) \in H^{-1}_{loc}(\Omega; \mathbf{C}^2)$ satisfies

$$(\forall \varphi \in C_c^{\infty}(\Omega)) \qquad \|\varphi f_n\|_{H_{\varepsilon_n}^{-1}} \to 0,$$

while $a_1, a_2 \in C(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) (i.e. c=1) associated to (u_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \boldsymbol{\xi}_1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \boldsymbol{\xi}_2}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \boldsymbol{\mu}_{\mathbf{K}_{0,\infty}}^\top = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\xi|} + i\frac{2\pi\xi_1}{1+|\xi|}a_1(\mathbf{x})\right)\mu_{K_{0,\infty}}^{11} = 0,$$

$$\operatorname{supp} \mu^{11}_{K_{0,\infty}} \subseteq \Omega \times \{\infty^{(0,-1)}, \infty^{(0,1)}\}$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1} (a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2} (a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $f_n := (f_n^1, f_n^2) \in H^{-1}_{loc}(\Omega; \mathbf{C}^2)$ satisfies

$$(\forall \varphi \in C_c^{\infty}(\Omega)) \qquad \|\varphi f_n\|_{H_{\varepsilon_n}^{-1}} \to 0,$$

while $a_1, a_2 \in C(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) (i.e. c=1) associated to (u_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \xi_1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \xi_2}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \boldsymbol{\mu}_{\mathbf{K}_{0,\infty}}^\top = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\xi|} + i\frac{2\pi\xi_1}{1+|\xi|}a_1(\mathbf{x})\right)\mu_{K_{0,\infty}}^{11} = 0,$$

$$\operatorname{supp} \mu^{11}_{K_{0,\infty}} \subseteq \Omega \times \{\infty^{(0,-1)}, \infty^{(0,1)}\}$$

Analogously, from the (2,2) component we get

$$\operatorname{supp} \mu_{K_{0,\infty}}^{22} \subseteq \Omega \times \{ \infty^{(-1,0)}, \infty^{(1,0)} \},\,$$

hence $\operatorname{supp} \mu^{11}_{K_{0,\infty}} \cap \operatorname{supp} \mu^{22}_{K_{0,\infty}} = \emptyset \text{ which implies } \mu^{12}_{K_{0,\infty}} = \mu^{21}_{K_{0,\infty}} = 0.$

Analogously, from the (2,2) component we get

$$\operatorname{supp} \mu_{K_{0,\infty}}^{22} \subseteq \Omega \times \{ \infty^{(-1,0)}, \infty^{(1,0)} \},\,$$

hence $\operatorname{supp}\mu^{11}_{K_{0,\infty}}\cap\operatorname{supp}\mu^{22}_{K_{0,\infty}}=\emptyset$ which implies $\mu^{12}_{K_{0,\infty}}=\mu^{21}_{K_{0,\infty}}=0.$

The very definition of one-scale H-measures gives $u_n^1 \bar{u_n^2} \stackrel{*}{\longrightarrow} 0$.

This approach can be systematically generalised by introducing a variant of compensated compactness suitable for problems with characteristic length.

Compactness by compensation with a characteristic length

Let $u_n \longrightarrow u$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$ satisfy

$$\sum_{l\leqslant |\alpha|\leqslant m} \varepsilon_n^{|\alpha|-l} \partial_{\alpha} (\mathbf{A}_n^{\alpha} \mathbf{u}_n) = \mathbf{f}_n ,$$

where $\mathbf{A}_n^{\alpha} \longrightarrow \mathbf{A}^{\alpha}$ in $C(\Omega; M_{q \times r}(\mathbf{C}))$, let $\varepsilon_n \to 0^+$, and $\mathbf{f}_n \in H^{-m}_{loc}(\Omega; \mathbf{C}^q)$ be such that for any $\varphi \in C_c^{\infty}(\Omega)$

$$\frac{\widehat{\varphi \mathsf{f}_n}}{1 + k_n}$$

is precompact in $L^2(\mathbf{R}^d; \mathbf{C}^q)$. Furthermore, let $Q(\mathbf{x}; \boldsymbol{\lambda}) := \mathbf{Q}(\mathbf{x}) \boldsymbol{\lambda} \cdot \boldsymbol{\lambda}$, where $\mathbf{Q} \in \mathrm{C}(\Omega; \mathrm{M_r}(\mathbf{C}))$, $\mathbf{Q}^* = \mathbf{Q}$, is such that $Q(\cdot; \mathbf{u}_n) \stackrel{*}{\longrightarrow} \nu$ in $\mathcal{M}(\Omega)$. Then we have

- a) $(\exists c \in [0,\infty])(\forall (\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d)\mathbf{R}^d)(\forall \boldsymbol{\lambda} \in \Lambda_{c;\mathbf{x},\boldsymbol{\xi}}) \ Q(\mathbf{x};\boldsymbol{\lambda}) \geqslant 0 \implies \nu \geqslant Q(\cdot,\mathbf{u}),$
- b) $(\exists c \in [0,\infty])(\forall (\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d)\mathbf{R}^d)(\forall \boldsymbol{\lambda} \in \Lambda_{c;\mathbf{x},\boldsymbol{\xi}}) \ Q(\mathbf{x};\boldsymbol{\lambda}) = 0 \implies \nu = Q(\cdot,\mathbf{u}),$

where

$$\Lambda_{c;\mathbf{x},\boldsymbol{\xi}} := \left\{ \boldsymbol{\lambda} \in \mathbf{C}^r : \mathbf{p}_c(\mathbf{x},\boldsymbol{\xi})\boldsymbol{\lambda} = 0 \right\},$$

and \mathbf{p}_c is given as before.

Outline

One-scale H-measures

$\Omega \subseteq \mathbf{R}^d$ open

Theorem

If $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $v_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$ and $\omega_n \to 0^+$, then there exist $(u_{n'})$, $(v_{n'})$ and $\mu_{K_{0,\infty}}^{(\omega_{n'})} \in \mathcal{M}(\Omega \times K_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}}(\boldsymbol{\xi}) \widehat{\overline{\varphi_2 v_{n'}}(\boldsymbol{\xi})} \psi(\omega_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \langle \mu_{K_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle .$$

The measure $\mu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}$ is called the one-scale H-measure with characteristic length $(\omega_{n'})$ associated to the (sub)sequences $(u_{n'})$ and $(v_{n'})$.

One-scale H-measures

$\Omega \subseteq \mathbf{R}^d$ open

Theorem

If $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $v_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$ and $\omega_n \to 0^+$, then there exist $(u_{n'})$, $(v_{n'})$ and $\mu_{K_{0,\infty}}^{(\omega_{n'})} \in \mathcal{M}(\Omega \times K_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \frac{\mathcal{A}_{\psi_n}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} \, d\mathbf{x} = \langle \mu_{K_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \rangle \ .$$

The measure $\mu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}$ is called the one-scale H-measure with characteristic length $(\omega_{n'})$ associated to the (sub)sequences $(u_{n'})$ and $(v_{n'})$.

$$\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee}, \ \psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$$

One-scale H-distributions

$\Omega \subseteq \mathbf{R}^d$ open

Theorem

If $u_n \rightharpoonup 0$ in $\mathbf{L}^p_{\mathrm{loc}}(\Omega)$, $v_n \rightharpoonup 0$ in $\mathbf{L}^{p'}_{\mathrm{loc}}(\Omega)$ and $\omega_n \to 0^+$, then there exist $(u_{n'})$, $(v_{n'})$ and $\nu^{(\omega_{n'})}_{\mathrm{K}_{0,\infty}} \in \mathcal{D}'(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in \mathbf{C}^\infty_c(\Omega)$ and $\psi \in E$

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi_n}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} = \langle \nu_{\mathbf{K}_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle .$$

The distribution $\nu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}$ is called the one-scale H-distribution with characteristic length $(\omega_{n'})$ associated to the (sub)sequences $(u_{n'})$ and $(v_{n'})$.

$$\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee}, \ \psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$$

One-scale H-distributions

$$\Omega \subseteq \mathbf{R}^d$$
 open, $p \in \langle 1, \infty \rangle$, $\frac{1}{p} + \frac{1}{p'} = 1$

Theorem

If $u_n \rightharpoonup 0$ in $\mathrm{L}^p_{\mathrm{loc}}(\Omega)$, $v_n \rightharpoonup 0$ in $\mathrm{L}^{p'}_{\mathrm{loc}}(\Omega)$ and $\omega_n \to 0^+$, then there exist $(u_{n'})$, $(v_{n'})$ and $\nu^{(\omega_{n'})}_{\mathrm{K}_{0,\infty}} \in \mathcal{D}'(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}^\infty_c(\Omega)$ and $\psi \in E$

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi_n}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} = \langle \nu_{K_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle .$$

The distribution $\nu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}$ is called the one-scale H-distribution with characteristic length $(\omega_{n'})$ associated to the (sub)sequences $(u_{n'})$ and $(v_{n'})$.

$$\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee}, \ \psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$$

Determine E such that

- $\mathcal{A}_{\psi}: \mathrm{L}^p(\mathbf{R}^d) \longrightarrow \mathrm{L}^p(\mathbf{R}^d)$ is continuous
- The First commutation lemma is valid

Differential structure on $K_{0,\infty}(\mathbf{R}^d)$

For $\kappa \in \mathbf{N}_0 \cup \{\infty\}$ let us define

$$C^{\kappa}(K_{0,\infty}(\mathbf{R}^d)) := \left\{ \psi \in C(K_{0,\infty}(\mathbf{R}^d)) : \psi^* := \psi \circ \mathcal{J}^{-1} \in C^{\kappa}(A[0,r_1,1]) \right\}.$$

It is not hard to check that $C^0(K_{0,\infty}(\mathbf{R}^d))$ and $C(K_{0,\infty}(\mathbf{R}^d))$ coincide.

Differential structure on $K_{0,\infty}(\mathbf{R}^d)$

For $\kappa \in \mathbf{N}_0 \cup \{\infty\}$ let us define

$$C^{\kappa}(K_{0,\infty}(\mathbf{R}^d)) := \left\{ \psi \in C(K_{0,\infty}(\mathbf{R}^d)) : \psi^* := \psi \circ \mathcal{J}^{-1} \in C^{\kappa}(A[0,r_1,1]) \right\}.$$

It is not hard to check that $C^0(K_{0,\infty}(\mathbf{R}^d))$ and $C(K_{0,\infty}(\mathbf{R}^d))$ coincide.

For
$$\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$$
 we define $\|\psi\|_{C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))} := \|\psi^*\|_{C^{\kappa}(A[0,r_1,1])}$.

$$\mathrm{C}^\kappa(A[0,r_1,1])$$
 Banach algebra \implies $\mathrm{C}^\kappa(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$ Banach algebra

$$A[0, r_1, 1]$$
 compact \Longrightarrow $C^{\kappa}(A[0, r_1, 1])$ separable \Longrightarrow $C^{\kappa}(K_{0, \infty}(\mathbf{R}^d))$ separable

Differential structure on $K_{0,\infty}(\mathbf{R}^d)$

For $\kappa \in \mathbf{N}_0 \cup \{\infty\}$ let us define

$$C^{\kappa}(K_{0,\infty}(\mathbf{R}^d)) := \left\{ \psi \in C(K_{0,\infty}(\mathbf{R}^d)) : \psi^* := \psi \circ \mathcal{J}^{-1} \in C^{\kappa}(A[0,r_1,1]) \right\}.$$

It is not hard to check that $C^0(K_{0,\infty}(\mathbf{R}^d))$ and $C(K_{0,\infty}(\mathbf{R}^d))$ coincide.

For
$$\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$$
 we define $\|\psi\|_{C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))} := \|\psi^*\|_{C^{\kappa}(A[0,r_1,1])}$.

$$\mathrm{C}^\kappa(A[0,r_1,1])$$
 Banach algebra \implies $\mathrm{C}^\kappa(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$ Banach algebra

$$A[0,r_1,1]$$
 compact \Longrightarrow $\operatorname{C}^{\kappa}(A[0,r_1,1])$ separable
$$\Longrightarrow \operatorname{C}^{\kappa}(\operatorname{K}_{0,\infty}(\operatorname{\mathbf{R}}^d))$$
 separable

Is
$$\mathcal{A}_{\psi} = (\psi \hat{\cdot})^{\vee} : L^p(\mathbf{R}^d) \longrightarrow L^p(\mathbf{R}^d)$$
 continuous?

Theorem (Hörmander-Mihlin)

If for $\psi \in L^{\infty}(\mathbf{R}^d)$ there exists C > 0 such that

$$(\forall \boldsymbol{\xi} \in \mathbf{R}_*^d)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d, |\boldsymbol{\alpha}| \leqslant \kappa) \qquad |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})| \leqslant \frac{C}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}},$$

where $\kappa = \lfloor \frac{d}{2} \rfloor + 1$, then ψ is a Fourier multiplier. Moreover, we have

$$\|\mathcal{A}_{\psi}\|_{\mathcal{L}(L^{p}(\mathbf{R}^{d}))} \leqslant C_{d} \max \left\{ p, \frac{1}{p-1} \right\} C.$$

Theorem (Hörmander-Mihlin)

If for $\psi \in L^{\infty}(\mathbf{R}^d)$ there exists C > 0 such that

$$(\forall \boldsymbol{\xi} \in \mathbf{R}_*^d)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d, |\boldsymbol{\alpha}| \leqslant \kappa) \qquad |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})| \leqslant \frac{C}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}},$$

where $\kappa = \lfloor \frac{d}{2} \rfloor + 1$, then ψ is a Fourier multiplier. Moreover, we have

$$\|\mathcal{A}_{\psi}\|_{\mathcal{L}(\mathbf{L}^{p}(\mathbf{R}^{d}))} \leqslant C_{d} \max \left\{ p, \frac{1}{p-1} \right\} C.$$

We shall use Faá di Bruno formula: for sufficiently smooth functions $g: \mathbf{R}^d \longrightarrow \mathbf{R}^r$ and $f: \mathbf{R}^r \longrightarrow \mathbf{R}$ we have

$$\partial^{\boldsymbol{\alpha}}(f \circ \mathbf{g})(\boldsymbol{\xi}) = |\boldsymbol{\alpha}|! \sum_{1 \leq |\boldsymbol{\beta}| \leq |\boldsymbol{\alpha}|, \; \boldsymbol{\beta} \in \mathbf{N}^{r}_{\boldsymbol{\alpha}}} C(\boldsymbol{\beta}, \boldsymbol{\alpha}) \,,$$

where

$$C(\boldsymbol{\beta}, \boldsymbol{\alpha}) = \frac{(\partial^{\boldsymbol{\beta}} f)(\mathbf{g}(\boldsymbol{\xi}))}{\boldsymbol{\beta}!} \sum_{\substack{\sum_{i=1}^r \boldsymbol{\alpha}_i = \boldsymbol{\alpha}, \\ \boldsymbol{\alpha}_i \in \mathbf{N}_0^d}} \prod_{j=1}^r \sum_{\substack{\sum_{i=1}^{\beta_j} \boldsymbol{\gamma}_i = \boldsymbol{\alpha}_j, \\ \boldsymbol{\gamma}_i \in \mathbf{N}_0^d \setminus \{0\}}} \prod_{s=1}^{\beta_j} \frac{\partial^{\boldsymbol{\gamma}_s} g_j(\boldsymbol{\xi})}{\boldsymbol{\gamma}_s!} \;.$$

Lemma

For every $j \in 1..d$ and $\alpha \in \mathbb{N}_0^d$ we have

$$\partial^{\boldsymbol{\alpha}}(\mathcal{J}_j)(\boldsymbol{\xi}) = P_{\boldsymbol{\alpha}}(\boldsymbol{\xi}, \frac{1}{|\boldsymbol{\xi}|}) K(\boldsymbol{\xi})^{-1-2|\boldsymbol{\alpha}|}, \quad \boldsymbol{\xi} \in \mathbf{R}_*^d,$$

where $P_{\alpha}(\xi,\eta)$ is a polynomial of degree less or equal to $|\alpha|+1$ in ξ and $2|\alpha|+1$ in η , in addition that in the expression $\lambda^{|\alpha|}P_{\alpha}\Big(\lambda,\ldots,\lambda,\frac{1}{\lambda}\Big)$ we do not have terms of the negative order. Precisely, polynomial $P_{\alpha}(\xi,\eta)$ has only terms of the form $C\xi^{\beta}\eta^k$ where $|\beta|+|\alpha|\geqslant k$.

Lemma

For every $j \in 1..d$ and $\alpha \in \mathbf{N}_0^d$ we have

$$|\partial^{\boldsymbol{\alpha}}(\mathcal{J}_j)(\boldsymbol{\xi})| \leqslant \frac{C_{\boldsymbol{\alpha},d}}{|\boldsymbol{\xi}||\alpha|}, \quad \boldsymbol{\xi} \in \mathbf{R}_*^d.$$

Theorem

Let $\kappa \in \mathbf{N}_0$. For every $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\alpha \in \mathbf{N}_0^d$ such that $|\alpha| \leqslant \kappa$ we have

$$|\partial^{\boldsymbol{\alpha}}\psi(\boldsymbol{\xi})| \leqslant C_{\kappa,d} \frac{\|\psi\|_{\mathbf{C}^{\kappa}(\mathbf{K}_{0,\infty}(\mathbf{R}^d))}}{|\boldsymbol{\xi}||\boldsymbol{\alpha}|}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}.$$

Theorem

Let $\kappa \in \mathbf{N}_0$. For every $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\alpha \in \mathbf{N}_0^d$ such that $|\alpha| \leqslant \kappa$ we have

$$|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})| \leqslant C_{\kappa,d} \frac{\|\psi\|_{\mathbf{C}^{\kappa}(\mathbf{K}_{0,\infty}(\mathbf{R}^d))}}{|\boldsymbol{\xi}||\boldsymbol{\alpha}|} \;, \quad \boldsymbol{\xi} \in \mathbf{R}^d_* \,.$$

Theorem

Let $\kappa \in \mathbf{N}_0$. For every $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\alpha \in \mathbf{N}_0^d$ such that $|\alpha| \leqslant \kappa$ we have

$$|\partial^{\boldsymbol{\alpha}}\psi(\boldsymbol{\xi})| \leqslant C_{\kappa,d} \frac{\|\psi\|_{\mathbf{C}^{\kappa}(\mathbf{K}_{0,\infty}(\mathbf{R}^d))}}{|\boldsymbol{\xi}||\boldsymbol{\alpha}|}, \quad \boldsymbol{\xi} \in \mathbf{R}_*^d.$$

Therefore, for
$$\kappa \geqslant \lfloor \frac{d}{2} \rfloor + 1$$
 and $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ we have

$$\|\mathcal{A}_{\psi}\|_{\mathcal{L}(L^{p}(\mathbf{R}^{d}))} \leqslant C_{d,p} \|\psi\|_{C^{\kappa}(K_{0,\infty}(\mathbf{R}^{d}))}$$
.

Theorem

Let $\kappa \in \mathbf{N}_0$. For every $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\alpha \in \mathbf{N}_0^d$ such that $|\alpha| \leqslant \kappa$ we have

$$|\partial^{\boldsymbol{\alpha}}\psi(\boldsymbol{\xi})| \leqslant C_{\kappa,d} \frac{\|\psi\|_{\mathbf{C}^{\kappa}(\mathbf{K}_{0,\infty}(\mathbf{R}^d))}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_*^d.$$

Therefore, for $\kappa \geqslant \lfloor \frac{d}{2} \rfloor + 1$ and $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ we have

$$\|\mathcal{A}_{\psi}\|_{\mathcal{L}(L^{p}(\mathbf{R}^{d}))} \leqslant C_{d,p} \|\psi\|_{C^{\kappa}(K_{0,\infty}(\mathbf{R}^{d}))}$$
.

Lemma

- i) $\mathcal{S}(\mathbf{R}^d) \hookrightarrow \mathrm{C}^{\kappa}(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$, and
- ii) $\{\psi \circ \boldsymbol{\pi} : \psi \in C^{\kappa}(S^{d-1})\} \hookrightarrow C^{\kappa}(K_{0,\infty}(\mathbf{R}^d)).$

Commutation lemma

$$B_{\varphi}u := \varphi u$$
 , $\mathcal{A}_{\psi}u := (\psi \hat{u})^{\vee}$.

Lemma

Let $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$, $\kappa \geqslant \lfloor \frac{d}{2} \rfloor + 1$, $\varphi \in C_0(\mathbf{R}^d)$, $\omega_n \to 0^+$, and denote $\psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$. Then the commutator can be expressed as a sum

$$C_n := [B_{\varphi}, \mathcal{A}_{\psi_n}] = \tilde{C}_n + K,$$

where for any $p \in \langle 1, \infty \rangle$ we have that K is a compact operator on $L^p(\mathbf{R}^d)$, while $\tilde{C}_n \longrightarrow 0$ in the operator norm on $\mathcal{L}(L^p(\mathbf{R}^d))$.

Commutation lemma

$$B_{\varphi}u := \varphi u$$
 , $\mathcal{A}_{\psi}u := (\psi \hat{u})^{\vee}$.

Lemma

Let $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$, $\kappa \geqslant \lfloor \frac{d}{2} \rfloor + 1$, $\varphi \in C_0(\mathbf{R}^d)$, $\omega_n \to 0^+$, and denote $\psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$. Then the commutator can be expressed as a sum

$$C_n := [B_{\varphi}, \mathcal{A}_{\psi_n}] = \tilde{C}_n + K,$$

where for any $p \in \langle 1, \infty \rangle$ we have that K is a compact operator on $L^p(\mathbf{R}^d)$, while $\tilde{C}_n \longrightarrow 0$ in the operator norm on $\mathcal{L}(L^p(\mathbf{R}^d))$.

Dem.

$$\mathcal{A}_{\psi_n} = \underbrace{\mathcal{A}_{\psi_n - \psi_0 \circ \pi}}_{\widehat{C}_n} + \underbrace{\mathcal{A}_{\psi_0 \circ \pi}}_{K},$$

where $\pi(oldsymbol{\xi}) := rac{oldsymbol{\xi}}{|oldsymbol{\xi}|}$ and

$$\psi(\boldsymbol{\xi}) - (\psi_0 \circ \boldsymbol{\pi})(\boldsymbol{\xi}) \longrightarrow 0, \quad |\boldsymbol{\xi}| \to 0.$$

Let $r\in\langle 1,\infty\rangle$ and $\theta\in\langle 0,1\rangle$ such that $\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{r}.$

Proof of Comm. Lemma: $\tilde{C}_n := \mathcal{A}_{\psi_n - \psi_0 \circ \pi}$

$$\psi_n - \psi_0 \circ \boldsymbol{\pi} \in \operatorname{C}^{\kappa}(\operatorname{K}_{0,\infty}(\mathbf{R}^d)) \implies \tilde{C}_n \text{ bounded on } \operatorname{L}^r(\mathbf{R}^d)$$

Proof of Comm. Lemma: $ilde{C}_n := \mathcal{A}_{\psi_n - \psi_0 \circ oldsymbol{\pi}}$

$$\psi_n - \psi_0 \circ \boldsymbol{\pi} \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d)) \implies \tilde{C}_n \text{ bounded on } L^r(\mathbf{R}^d)$$

Lemma (Tartar, 2009)

Let $\psi \in C_{ub}(\mathbf{R}^d)$, $\varphi \in C_0(\mathbf{R}^d)$, $\omega_n \to 0^+$, and denote $\psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$. Then the commutator $C_n := [B_{\varphi}, \mathcal{A}_{\psi_n}] = B_{\varphi} \mathcal{A}_{\psi_n} - \mathcal{A}_{\psi_n} B_{\varphi}$ tends to zero in the operator norm on $\mathcal{L}(L^2(\mathbf{R}^d))$.

Proof of Comm. Lemma: $\tilde{C}_n := \mathcal{A}_{\psi_n - \psi_0 \circ \boldsymbol{\pi}}$

$$\psi_n - \psi_0 \circ \boldsymbol{\pi} \in \operatorname{C}^{\kappa}(\operatorname{K}_{0,\infty}(\mathbf{R}^d)) \implies \tilde{C}_n \text{ bounded on } \operatorname{L}^r(\mathbf{R}^d)$$

Lemma (Tartar, 2009)

Let $\psi \in C_{ub}(\mathbf{R}^d)$, $\varphi \in C_0(\mathbf{R}^d)$, $\omega_n \to 0^+$, and denote $\psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$. Then the commutator $C_n := [B_{\varphi}, \mathcal{A}_{\psi_n}] = B_{\varphi} \mathcal{A}_{\psi_n} - \mathcal{A}_{\psi_n} B_{\varphi}$ tends to zero in the operator norm on $\mathcal{L}(L^2(\mathbf{R}^d))$.

$$\psi_n - \psi_0 \circ \boldsymbol{\pi} \in C_{ub}(\mathbf{R}^d) \implies \tilde{C}_n \longrightarrow 0 \text{ in } \mathcal{L}(L^2(\mathbf{R}^d))$$

Proof of Comm. Lemma: $\tilde{C}_n := \mathcal{A}_{\psi_n - \psi_0 \circ \boldsymbol{\pi}}$

$$\psi_n - \psi_0 \circ \boldsymbol{\pi} \in \operatorname{C}^{\kappa}(\operatorname{K}_{0,\infty}(\operatorname{\mathbf{R}}^d)) \implies \tilde{C}_n \text{ bounded on } \operatorname{L}^r(\operatorname{\mathbf{R}}^d)$$

Lemma (Tartar, 2009)

Let $\psi \in C_{ub}(\mathbf{R}^d)$, $\varphi \in C_0(\mathbf{R}^d)$, $\omega_n \to 0^+$, and denote $\psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$. Then the commutator $C_n := [B_{\varphi}, \mathcal{A}_{\psi_n}] = B_{\varphi} \mathcal{A}_{\psi_n} - \mathcal{A}_{\psi_n} B_{\varphi}$ tends to zero in the operator norm on $\mathcal{L}(L^2(\mathbf{R}^d))$.

$$\psi_n - \psi_0 \circ \boldsymbol{\pi} \in C_{ub}(\mathbf{R}^d) \implies \tilde{C}_n \longrightarrow 0 \text{ in } \mathcal{L}(L^2(\mathbf{R}^d))$$

By the Riesz-Thorin interpolation theorem we have

$$\|\tilde{C}_n\|_{\mathcal{L}(\mathbf{L}^p(\mathbf{R}^d))} \leqslant \|\tilde{C}_n\|_{\mathcal{L}(\mathbf{L}^2(\mathbf{R}^d))}^{\theta} \|\tilde{C}_n\|_{\mathcal{L}(\mathbf{L}^r(\mathbf{R}^d))}^{1-\theta},$$

implying $\tilde{C}_n \longrightarrow 0$ in the operator norm on $L^p(\mathbf{R}^d)$.

Proof of Comm. Lemma: $K := \mathcal{A}_{\psi_0 \circ \pi}$

$$\psi_0 \circ \pi \in \mathrm{C}^{\kappa}(\mathrm{K}_{0,\infty}(\mathbf{R}^d)) \implies K \text{ bounded on } \mathrm{L}^r(\mathbf{R}^d)$$

Proof of Comm. Lemma: $K := \mathcal{A}_{\psi_0 \circ \boldsymbol{\pi}}$

$$\psi_0 \circ \boldsymbol{\pi} \in \operatorname{C}^{\kappa}(\operatorname{K}_{0,\infty}(\mathbf{R}^d)) \implies K \text{ bounded on } \operatorname{L}^r(\mathbf{R}^d)$$

Lemma (Tartar, 1990)

For $\psi \in C(S^{d-1})$ and $\varphi \in C_0(\mathbf{R}^d)$ the commutator $C := [B_{\varphi}, \mathcal{A}_{\psi}]$ is a compact operator on $L^2(\mathbf{R}^d)$.

Proof of Comm. Lemma: $K := \mathcal{A}_{\psi_0 \circ \boldsymbol{\pi}}$

$$\psi_0 \circ \boldsymbol{\pi} \in \operatorname{C}^{\kappa}(\operatorname{K}_{0,\infty}(\mathbf{R}^d)) \implies K \text{ bounded on } \operatorname{L}^r(\mathbf{R}^d)$$

Lemma (Tartar, 1990)

For $\psi \in C(S^{d-1})$ and $\varphi \in C_0(\mathbf{R}^d)$ the commutator $C := [B_{\varphi}, \mathcal{A}_{\psi}]$ is a compact operator on $L^2(\mathbf{R}^d)$.

$$\psi_0 \in \mathrm{C}(\mathrm{S}^{d-1}) \implies K \text{ compact on } \mathrm{L}^2(\mathbf{R}^d)$$

Proof of Comm. Lemma: $K := \mathcal{A}_{\psi_0 \circ \pi}$

$$\psi_0 \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}(\mathrm{K}_{0,\infty}(\mathbf{R}^d)) \implies K \text{ bounded on } \mathrm{L}^r(\mathbf{R}^d)$$

Lemma (Tartar, 1990)

For $\psi \in C(S^{d-1})$ and $\varphi \in C_0(\mathbf{R}^d)$ the commutator $C := [B_{\varphi}, \mathcal{A}_{\psi}]$ is a compact operator on $L^2(\mathbf{R}^d)$.

$$\psi_0 \in \mathrm{C}(\mathrm{S}^{d-1}) \implies K \text{ compact on } \mathrm{L}^2(\mathbf{R}^d)$$

Lemma (Antonić, Mišur, Mitrović, 2016)

Let A be compact on $L^2(\mathbf{R}^d)$ and bounded on $L^r(\mathbf{R}^d)$, for some $r \in \langle 1, \infty \rangle \setminus \{2\}$. Then A is also compact on $L^p(\mathbf{R}^d)$, for any p between 2 and r (i.e. such that $1/p = \theta/2 + (1-\theta)/r$, for some $\theta \in \langle 0, 1 \rangle$).

$$\frac{1}{p} = \frac{\theta}{2} + \frac{1-\theta}{r} \implies K \text{ compact on } L^p(\mathbf{R}^d)$$

One-scale H-distributions

Theorem

If $u_n \longrightarrow 0$ in $L^p_{loc}(\Omega)$ and (v_n) is bounded in $L^q_{loc}(\Omega)$, for some $p \in \langle 1, \infty \rangle$ and $q \geqslant p'$, and $\omega_n \to 0^+$, then there exist subsequences $(u_{n'})$, $(v_{n'})$ and a complex distribution of finite order $\nu_{K_{0,\infty}}^{(\omega_{n'})} \in \mathcal{D}'(\Omega \times K_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C^\kappa(K_{0,\infty}(\mathbf{R}^d))$, where $\kappa = \lfloor \frac{d}{2} \rfloor + 1$, we have

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \overline{\varphi_2 v_{n'}} \, d\mathbf{x} = \lim_{n'} \int_{\mathbf{R}^d} \varphi_1 u_{n'} \overline{\mathcal{A}_{\bar{\psi}_{n'}}(\varphi_2 v_{n'})} \, d\mathbf{x}$$
$$= \left\langle \nu_{\mathbf{K}_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle,$$

where $\psi_n := \psi(\omega_n \cdot)$. The distribution $\nu_{\mathbf{K}_{0,\infty}}^{(\omega_{n'})}$ we call one-scale H-distribution (with characteristic length $(\omega_{n'})$) associated to (sub)sequences $(u_{n'})$ and $(v_{n'})$.

One-scale H-distributions

Theorem

If $u_n \longrightarrow 0$ in $L^p_{loc}(\Omega)$ and (v_n) is bounded in $L^q_{loc}(\Omega)$, for some $p \in \langle 1, \infty \rangle$ and $q \geqslant p'$, and $\omega_n \to 0^+$, then there exist subsequences $(u_{n'})$, $(v_{n'})$ and a complex distribution of finite order $\nu^{(\omega_{n'})}_{K_{0,\infty}} \in \mathcal{D}'(\Omega \times K_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C^\kappa(K_{0,\infty}(\mathbf{R}^d))$, where $\kappa = \lfloor \frac{d}{2} \rfloor + 1$, we have

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \overline{\varphi_2 v_{n'}} \, d\mathbf{x} = \lim_{n'} \int_{\mathbf{R}^d} \varphi_1 u_{n'} \overline{\mathcal{A}_{\bar{\psi}_{n'}}(\varphi_2 v_{n'})} \, d\mathbf{x}$$
$$= \left\langle \nu_{\mathbf{K}_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle,$$

where $\psi_n := \psi(\omega_n \cdot)$. The distribution $\nu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}$ we call one-scale H-distribution (with characteristic length $(\omega_{n'})$) associated to (sub)sequences $(u_{n'})$ and $(v_{n'})$.

$$\int_{\mathbf{R}^d} \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \overline{\varphi_2 v_{n'}} \, d\mathbf{x} = \left\langle \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \right\rangle \, .$$

 K_m compacts such that $K_m \subseteq \operatorname{Int} K_{m+1}$ and $\bigcup_m K_m = \Omega$.

The existence of one-scale H-distributions: proof 1/2

For $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\varphi_1, \varphi_2 \in C_c(\Omega)$ such that $\operatorname{supp} \varphi_1, \operatorname{supp} \varphi_2 \subseteq K_m$, we have

$$|\langle \varphi_2 v_n, \mathcal{A}_{\psi_n}(\varphi_1 u_n) \rangle| \leqslant C_{m,d} \|\varphi_1\|_{L^{\infty}(K_m)} \|\varphi_2\|_{L^{\infty}(K_m)} \|\psi\|_{C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))}.$$

The existence of one-scale H-distributions: proof 1/2

For $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\varphi_1, \varphi_2 \in C_c(\Omega)$ such that $\operatorname{supp} \varphi_1, \operatorname{supp} \varphi_2 \subseteq K_m$, we have

$$|\langle \varphi_2 v_n, \mathcal{A}_{\psi_n}(\varphi_1 u_n) \rangle| \leqslant C_{m,d} \|\varphi_1\|_{L^{\infty}(K_m)} \|\varphi_2\|_{L^{\infty}(K_m)} \|\psi\|_{C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))}.$$

By the Cantor diagonal procedure (we have separability) ... we get $\underline{\text{trilinear}}$ form L:

$$L(\varphi_1, \varphi_2, \psi) = \lim_{n'} \left\langle \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \right\rangle.$$

The existence of one-scale H-distributions: proof 1/2

For $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\varphi_1, \varphi_2 \in C_c(\Omega)$ such that $\operatorname{supp} \varphi_1, \operatorname{supp} \varphi_2 \subseteq K_m$, we have

$$|\langle \varphi_2 v_n, \mathcal{A}_{\psi_n}(\varphi_1 u_n) \rangle| \leqslant C_{m,d} \|\varphi_1\|_{L^{\infty}(K_m)} \|\varphi_2\|_{L^{\infty}(K_m)} \|\psi\|_{C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))}.$$

By the Cantor diagonal procedure (we have separability) ... we get $\underline{\text{trilinear}}$ form L:

$$L(\varphi_1, \varphi_2, \psi) = \lim_{n'} \left\langle \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \right\rangle .$$

L depends only on the product $\varphi_1\bar{\varphi}_2$: $\zeta_i\in C_c(\Omega)$ such that $\zeta_i\equiv 1$ on $\mathrm{supp}\,\varphi_i$, i=1,2.

$$\begin{split} \lim_{n'} \left\langle \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \right\rangle &= \lim_{n'} \left\langle \varphi_2 v_{n'}, \varphi_1 \mathcal{A}_{\psi_{n'}}(\zeta_1 u_n) \right\rangle \\ &= \lim_{n'} \left\langle \bar{\varphi}_1 \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\zeta_1 u_n) \right\rangle \\ &= \lim_{n'} \left\langle \zeta_1 \zeta_2 v_{n'}, \varphi_1 \bar{\varphi}_2 \mathcal{A}_{\psi_{n'}}(\zeta_1 u_n) \right\rangle \\ &= \lim_{n'} \left\langle \zeta_1 \zeta_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 \bar{\varphi}_2 u_n) \right\rangle \,, \end{split}$$

 $\implies L(\varphi_1, \varphi_2, \psi) = L(\varphi_1 \bar{\varphi}_2, \zeta_1 \zeta_2, \psi).$

The existence of one-scale H-distributions: proof 2/2

For
$$\varphi\in C_c(\Omega)$$
 and $\psi\in C^\kappa(K_{0,\infty}(\mathbf{R}^d))$ we define
$$\mathcal{L}(\varphi,\psi):=L(\varphi,\zeta,\psi)\,,$$
 where $\zeta=1$ are suggests

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$. \mathcal{L} is continuous bilinear form on $C_c(\Omega) \times C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$.

The existence of one-scale H-distributions: proof 2/2

For
$$\varphi \in C_c(\Omega)$$
 and $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ we define
$$\mathcal{L}(\varphi,\psi) := L(\varphi,\zeta,\psi),$$

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$. \mathcal{L} is continuous bilinear form on $C_c(\Omega) \times C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$.

Theorem

Let $\Omega \subseteq \mathbf{R}^d$ be open, and let B be a continuous bilinear form on $\mathrm{C}^\infty_c(\Omega) \times \mathrm{C}^\infty(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$. Then there exists a unique distribution $\nu \in \mathcal{D}'(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that

$$(\forall f \in C_c^{\infty}(\Omega))(\forall g \in C^{\infty}(K_{0,\infty}(\mathbf{R}^d))) \quad B(f,g) = \langle \nu, f \boxtimes g \rangle .$$

Moreover, if B is continuous on $\mathrm{C}^k_c(\Omega) \times \mathrm{C}^l(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$ for some $k,l \in \mathbf{N}_0$, ν is of a finite order $q \leqslant k+l+2d+1$.

The existence of one-scale H-distributions: proof 2/2

For $\varphi \in C_c(\Omega)$ and $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ we define

$$\mathcal{L}(\varphi,\psi) := L(\varphi,\zeta,\psi),$$

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$.

 \mathcal{L} is continuous bilinear form on $C_c(\Omega) \times C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$.

Theorem

Let $\Omega\subseteq\mathbf{R}^d$ be open, and let B be a continuous bilinear form on $\mathrm{C}^\infty_c(\Omega)\times\mathrm{C}^\infty(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$. Then there exists a unique distribution $\nu\in\mathcal{D}'(\Omega\times\mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that

$$(\forall f \in C_c^{\infty}(\Omega))(\forall g \in C^{\infty}(K_{0,\infty}(\mathbf{R}^d))) \quad B(f,g) = \langle \nu, f \boxtimes g \rangle.$$

Moreover, if B is continuous on $C_c^k(\Omega) \times C^l(K_{0,\infty}(\mathbf{R}^d))$ for some $k,l \in \mathbf{N}_0$, ν is of a finite order $q \leq k+l+2d+1$.

Therefore, we have that there exists $\nu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})} \in \mathcal{D}'_{\kappa+2d+1}(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that

$$\begin{split} \left\langle \nu_{\mathbf{K}_{0,\infty}}^{(\omega_{n'})}, \varphi_{1}\bar{\varphi}_{2} \boxtimes \psi \right\rangle = & \mathcal{L}(\varphi_{1}\bar{\varphi}_{2}, \psi) \\ = & L(\varphi_{1}\bar{\varphi}_{2}, \zeta_{1}\zeta_{2}, \psi) \\ = & L(\varphi_{1}, \varphi_{2}, \psi) = \lim_{n'} \left\langle \varphi_{2}v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_{1}u_{n'}) \right\rangle \end{split}$$

Localisation principle: assumptions

$$\mathbf{H}^{s,p}(\mathbf{R}^d) := \left\{ u \in \mathcal{S}' : \mathcal{A}_{(1+|\boldsymbol{\xi}|^2)^{\frac{s}{2}}} u \in \mathbf{L}^p(\mathbf{R}^d) \right\}$$
$$\mathbf{H}^{s,p}_{\mathrm{loc}}(\Omega) := \left\{ u \in \mathcal{D}' : (\forall \varphi \in \mathbf{C}_c^{\infty}(\Omega)) \ \varphi u \in \mathbf{H}^{s,p}(\mathbf{R}^d) \right\}$$

Localisation principle: assumptions

$$\mathbf{H}^{s,p}(\mathbf{R}^d) := \left\{ u \in \mathcal{S}' : \mathcal{A}_{(1+|\boldsymbol{\xi}|^2)^{\frac{s}{2}}} u \in \mathbf{L}^p(\mathbf{R}^d) \right\}$$
$$\mathbf{H}^{s,p}_{\mathrm{loc}}(\Omega) := \left\{ u \in \mathcal{D}' : (\forall \varphi \in \mathbf{C}_c^{\infty}(\Omega)) \ \varphi u \in \mathbf{H}^{s,p}(\mathbf{R}^d) \right\}$$

Let $\Omega \subseteq \mathbf{R}^d$ open, $m \in \mathbf{N}$, $\mathbf{u}_n \rightharpoonup \mathbf{0}$ in $\mathrm{L}^p_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$, $p \in \langle 1, \infty \rangle$, and

$$\sum_{0 \leqslant |\alpha| \leqslant m} \varepsilon_n^{|\alpha|} \partial_{\alpha} (\mathbf{A}^{\alpha} \mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega \,, \tag{\star}$$

where

- $\varepsilon_n \to 0^+$
- $\mathbf{A}^{\alpha} \in C^{\infty}(\Omega; M_{q \times r}(\mathbf{C}))$
- $f_n \in H^{-m,p}_{loc}(\Omega; \mathbf{C}^r)$ such that

$$(\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega))\qquad \mathcal{A}_{(1+|\varepsilon_n\pmb{\xi}|^2)^{-\frac{m}{2}}}(\varphi\mathsf{f}_n)\longrightarrow \mathbf{0}\quad\text{in}\quad\mathrm{L}^p(\mathbf{R}^d;\mathbf{C}^q)\,. \tag{$\star\star$}$$

Localisation principle: assumptions

$$\mathbf{H}^{s,p}(\mathbf{R}^d) := \left\{ u \in \mathcal{S}' : \mathcal{A}_{(1+|\boldsymbol{\xi}|^2)^{\frac{s}{2}}} u \in \mathbf{L}^p(\mathbf{R}^d) \right\}$$
$$\mathbf{H}^{s,p}_{\mathrm{loc}}(\Omega) := \left\{ u \in \mathcal{D}' : (\forall \varphi \in \mathbf{C}_c^{\infty}(\Omega)) \ \varphi u \in \mathbf{H}^{s,p}(\mathbf{R}^d) \right\}$$

Let $\Omega \subseteq \mathbf{R}^d$ open, $m \in \mathbf{N}$, $u_n \rightharpoonup 0$ in $L^p_{loc}(\Omega; \mathbf{C}^r)$, $p \in \langle 1, \infty \rangle$, and

$$\sum_{0 \le |\boldsymbol{\alpha}| \le m} \varepsilon_n^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}} (\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega \,, \tag{*}$$

where

- $\varepsilon_n \to 0^+$
- $\mathbf{A}^{\alpha} \in C^{\infty}(\Omega; M_{q \times r}(\mathbf{C}))$
- $f_n \in H^{-m,p}_{loc}(\Omega; \mathbf{C}^r)$ such that

$$(\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega))\qquad \mathcal{A}_{(1+|\varepsilon_n\pmb{\xi}|^2)^{-\frac{m}{2}}}(\varphi\mathsf{f}_n)\longrightarrow \mathbf{0}\quad\text{in}\quad\mathrm{L}^p(\mathbf{R}^d;\mathbf{C}^q)\,.\qquad (\star\star$$

$$\left| (1 + |\boldsymbol{\xi}|^2)^{-\frac{m}{2}} \text{ is a Fourier multiplier } \Longrightarrow \left(f_n \frac{\mathcal{L}_{\text{loc}}^{\prime}}{0} \right) \Longrightarrow (\star \star) \right)$$

$$\left| \partial^{\alpha} \left(\left(\frac{1 + |\varepsilon_n \boldsymbol{\xi}|^2}{1 + |\boldsymbol{\xi}|^2} \right)^{\frac{m}{2}} \right) \right| \leqslant \frac{2^{\kappa}}{|\boldsymbol{\xi}|^{|\alpha|}} \Longrightarrow \left((\star \star) \Longrightarrow f_n \frac{\mathcal{H}_{\text{loc}}^{-m,p}}{0} \right)$$

Localisation principle

Theorem

Under previous assumptions let (v_n) be a bounded sequence in $L^{p'}_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$. Then one-scale H-distribution $\nu_{\mathrm{K}_{0,\infty}}$ associated to (sub)sequences (v_n) and (u_n) with characteristic length (ε_n) satisfies:

$$\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\nu}_{\mathrm{K}_{0,\infty}}^{\top} = \mathbf{0}$$
,

where

$$\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) = \sum_{0 \leq |\boldsymbol{\alpha}| \leq m} (2\pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{(1 + |\boldsymbol{\xi}|^2)^{\frac{m}{2} + q + 1}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}),$$

while q is order of $oldsymbol{
u}_{\mathrm{K}_{0,\infty}}$.

Localisation principle

Theorem

Under previous assumptions let (v_n) be a bounded sequence in $L^{p'}_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$. Then one-scale H-distribution $\nu_{\mathrm{K}_{0,\infty}}$ associated to (sub)sequences (v_n) and (u_n) with characteristic length (ε_n) satisfies:

$$\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\nu}_{\mathrm{K}_{0,\infty}}^{\top} = \mathbf{0},$$

where

$$\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) = \sum_{0 \leq |\boldsymbol{\alpha}| \leq m} (2\pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{(1 + |\boldsymbol{\xi}|^2)^{\frac{m}{2} + q + 1}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}),$$

while q is order of $\boldsymbol{\nu}_{\mathrm{K}_{0,\infty}}$.

 $\underline{\mathsf{Dem.}}$ Multiplying (\star) by $\varphi \in \mathrm{C}^\infty_c(\Omega)$ and using the Leibniz rule we get

$$\sum_{0\leqslant |\alpha|\leqslant m}\sum_{0\leqslant \beta\leqslant \alpha}(-1)^{|\beta|}\binom{\alpha}{\beta}\varepsilon_n^{|\alpha|}\partial_{\alpha-\beta}\Big((\partial_{\beta}\varphi)\mathbf{A}^{\alpha}\mathbf{u}_n\Big)=\varphi\mathbf{f}_n\,.$$

Localisation principle: proof 1/2

Lemma

Let (ε_n) be a sequence in \mathbf{R}^+ bounded from above and let (f_n) be a sequence of vector valued functions such that for some $k \in 0..m$ it converges strongly to zero in $\mathrm{H}^{-k,p}(\mathbf{R}^d;\mathbf{C}^q)$. Then $(\varepsilon_n^k\mathsf{f}_n)$ satisfies $(\star\star)$.

$$\boldsymbol{\beta} \neq 0 \quad \Longrightarrow \quad \varepsilon_n^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha} - \boldsymbol{\beta}} \Big((\partial_{\boldsymbol{\beta}} \varphi) \mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_n \Big) \text{ satisfies } (\star \star)$$

Localisation principle: proof 1/2

Lemma

Let (ε_n) be a sequence in \mathbf{R}^+ bounded from above and let (\mathbf{f}_n) be a sequence of vector valued functions such that for some $k \in 0..m$ it converges strongly to zero in $\mathbf{H}^{-k,p}(\mathbf{R}^d; \mathbf{C}^q)$. Then $(\varepsilon_n^k \mathbf{f}_n)$ satisfies $(\star\star)$.

$$\beta \neq 0 \implies \varepsilon_n^{|\alpha|} \partial_{\alpha-\beta} \Big((\partial_{\beta} \varphi) \mathbf{A}^{\alpha} \mathbf{u}_n \Big) \text{ satisfies } (\star \star)$$

Thus, we have

$$\sum_{0 \leqslant |\boldsymbol{\alpha}| \leqslant m} \varepsilon_n^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}} (\boldsymbol{A}^{\boldsymbol{\alpha}} \varphi \boldsymbol{\mathsf{u}}_n) = \tilde{\boldsymbol{\mathsf{f}}}_n \,,$$

where (\tilde{f}_n) satisfies $(\star\star)$.

Localisation principle: proof 1/2

Lemma

Let (ε_n) be a sequence in \mathbf{R}^+ bounded from above and let (f_n) be a sequence of vector valued functions such that for some $k \in 0..m$ it converges strongly to zero in $\mathbf{H}^{-k,p}(\mathbf{R}^d; \mathbf{C}^q)$. Then $(\varepsilon_n^k \mathsf{f}_n)$ satisfies $(\star\star)$.

$$\beta \neq 0 \implies \varepsilon_n^{|\alpha|} \partial_{\alpha-\beta} \Big((\partial_{\beta} \varphi) \mathbf{A}^{\alpha} \mathbf{u}_n \Big) \text{ satisfies } (\star \star)$$

Thus, we have

$$\sum_{0 \leq |\boldsymbol{\alpha}| \leq m} \varepsilon_n^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}} (\mathbf{A}^{\boldsymbol{\alpha}} \varphi \mathbf{u}_n) = \tilde{\mathbf{f}}_n ,$$

where (\tilde{f}_n) satisfies $(\star\star)$.

Lemma

For $m \in \mathbf{N}$ and $\alpha \in \mathbf{N}_0^d$ such that $m \geqslant 2q + |\alpha| + 2$ we have $\frac{\boldsymbol{\xi}^{\alpha}}{(1+|\boldsymbol{\xi}|^2)^{\frac{m}{2}}} \in C^q(K_{0,\infty}(\mathbf{R}^d)).$

$$(\forall |\boldsymbol{\alpha}| \leqslant m) \quad \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{(1+|\boldsymbol{\xi}|^2)^{\frac{m}{2}+q+1}} \in C^q(K_{0,\infty}(\mathbf{R}^d))$$

Localisation principle: proof 2/2

Applying $\mathcal{A}_{\psi_n^{m+2q+2,0}}$ we get

$$\sum_{0\leqslant |\pmb{\alpha}|\leqslant m}\mathcal{A}_{(2\pi i)^{|\pmb{\alpha}|}\psi_n^{m+2q+2,\pmb{\alpha}}}(\varphi\mathbf{A}^{\pmb{\alpha}}\mathbf{u}_n)\longrightarrow \mathbf{0}\quad\text{in}\quad \operatorname{L}^p(\mathbf{R}^d;\mathbf{C}^q)\,,$$

where
$$\psi_n^{m+2q+2, \alpha} := \frac{(\varepsilon_n \xi)^{\alpha}}{(1+|\varepsilon_n \xi|^2)^{\frac{m}{2}+q+1}}.$$

Applying $A_{\psi_n^{m+2q+2,0}}$ we get

$$\sum_{0\leqslant |\pmb{\alpha}|\leqslant m}\mathcal{A}_{(2\pi i)^{|\pmb{\alpha}|}\psi_n^{m+2q+2,\pmb{\alpha}}}(\varphi\mathbf{A}^{\pmb{\alpha}}\mathbf{u}_n)\longrightarrow \mathbf{0}\quad\text{in}\quad \operatorname{L}^p(\mathbf{R}^d;\mathbf{C}^q)\,,$$

where
$$\psi_n^{m+2q+2, \pmb{\alpha}} := \frac{(\varepsilon_n \pmb{\xi})^{\pmb{\alpha}}}{(1+|\varepsilon_n \pmb{\xi}|^2)^{\frac{m}{2}+q+1}}.$$

After applying $\mathcal{A}_{\psi(\varepsilon_n\cdot)}$, for $\psi\in\mathrm{C}^q(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$, to the above sum, forming a tensor product with $\varphi_1\mathsf{v}_n$, for $\varphi_1\in\mathrm{C}_c^\infty(\Omega)$, and taking the complex conjugation, for the (i,j) component of the above sum we get

$$\begin{split} 0 &= \sum_{0 \leqslant |\boldsymbol{\alpha}| \leqslant m} \sum_{s=1}^d \overline{\lim_n \int_{\mathbf{R}^d} \mathcal{A}_{(2\pi i)^{|\boldsymbol{\alpha}|} \psi_n \psi_n^{m+2q+2,\boldsymbol{\alpha}} (\varphi A_{js}^{\boldsymbol{\alpha}} u_n^s) \overline{\varphi_1 v_n^k} \, d\mathbf{x}}} \\ &= \sum_{0 \leqslant |\boldsymbol{\alpha}| \leqslant m} \sum_{s=1}^d \left\langle (2\pi i)^{|\boldsymbol{\alpha}|} \psi^{m+2q+2,\boldsymbol{\alpha}} A_{js}^{\boldsymbol{\alpha}} \nu_{\mathbf{K}_{0,\infty}}^{ks}, \bar{\varphi} \varphi_1 \boxtimes \bar{\psi} \right\rangle \\ &= \left\langle \sum_{0 \leqslant |\boldsymbol{\alpha}| \leqslant m} (2\pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{(1+|\boldsymbol{\xi}|^2)^{\frac{m}{2}+q+1}} [\mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\nu}_{\mathbf{K}_{0,\infty}}^{\intercal}]_{jk}, \bar{\varphi} \varphi_1 \boxtimes \bar{\psi} \right\rangle \,. \end{split}$$

Outline

Example 4: oscillations - two characteristic length

$$0<\alpha<\beta,\ \mathsf{k},\mathsf{s}\in\mathbf{Z}^d\setminus\{\mathbf{0}\},$$

$$u_n(\mathbf{x}):=e^{2\pi i(n^\alpha\mathsf{s}+n^\beta\mathsf{k})\cdot\mathbf{x}}\,\frac{\mathtt{L}_{\mathrm{loc}}^2}{\mathbf{0}}\,\mathbf{0}\,,\ n\to\infty$$

Example 4: oscillations - two characteristic length

$$0<\alpha<\beta,\ \mathsf{k},\mathsf{s}\in\mathbf{Z}^d\setminus\{\mathbf{0}\},$$

$$u_n(\mathbf{x}):=e^{2\pi i(n^\alpha\mathsf{s}+n^\beta\mathsf{k})\cdot\mathbf{x}}\underline{\ ^{\mathbf{L}^2_{\mathrm{loc}}}}\ \mathbf{0}\,,\ n\to\infty$$

$$\mu_{H} = \lambda(\mathbf{x}) \boxtimes \delta_{\frac{k}{|\mathbf{k}|}}(\boldsymbol{\xi})$$

$$\mu_{\mathbf{K}_{0,\infty}}^{(\omega_{n})} = \lambda(\mathbf{x}) \boxtimes \begin{cases} \delta_{0} \frac{k}{|\mathbf{k}|}(\boldsymbol{\xi}) &, & \lim_{n} n^{\beta} \omega_{n} = 0 \\ \delta_{ck}(\boldsymbol{\xi}) &, & \lim_{n} n^{\beta} \omega_{n} = c \in \langle 0, \infty \rangle \\ \delta_{\infty} \frac{k}{|\mathbf{k}|}(\boldsymbol{\xi}) &, & \lim_{n} n^{\beta} \omega_{n} = \infty \end{cases}$$

Lower order term n^{α} and corresponding direction of oscillations s we cannot resemble in any case.

Therefore, we need some new methods and/or tools.

In [T3] Tartar introduced multi-scale objects, called multi-scale H-measures. $\omega_n^1,\ldots,\omega_n^l\to 0^+,\ \varphi_1,\varphi_2\in \mathrm{C}_c(\Omega),\ \psi\in\mathrm{C}_0(\mathbf{R}^{ld})$:

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi(\omega_{n'}^1 \boldsymbol{\xi}, \dots, \omega_{n'}^l \boldsymbol{\xi}) d\boldsymbol{\xi} = \langle \boldsymbol{\mu}^{(\omega_{n'}^1), \dots, (\omega_{n'}^l)}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle.$$

Our approach: instead of $\psi(\omega_{n'}^1 \boldsymbol{\xi}, \dots, \omega_{n'}^l \boldsymbol{\xi})$ work with $\psi(\omega_n^1 \xi_1, \dots, \omega_n^d \xi_d)$.

For example, starting from parabolic H-measure construct parabolic one-scale H-measure (an object with two scales in the ratio 1:2).

$$\lim_{n'} \int_{\mathbf{R}^{d+1}} \widehat{\varphi_1 \mathbf{u}_{n'}}(\tau, \boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\tau, \boldsymbol{\xi}) \psi(\varepsilon_{n'}^2 \tau, \varepsilon_{n'} \boldsymbol{\xi}) \, d\tau d\boldsymbol{\xi} = \langle \boldsymbol{\nu}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle \,.$$

[T3] Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems - Series S (2015)

References & The End:) (thank you all)

Nenad Antonić, M.E., Martin Lazar: Localisation principle for one-scale H-measures, submitted (arXiv:1504.03956).

Patrick GÉRARD: Microlocal defect measures, Comm. Partial Diff. Eq., 16 (1991) 1761–1794.

Patrick GÉRARD: Mesures semi-classiques et ondes de Bloch, Sem. EDP 1990–91 (exp. 16), (1991)

Pierre Louis LIONS, Thierry PAUL: Sur les measures de Wigner, Revista Mat. Iberoamericana 9, (1993) 553-618

Luc Tartar: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proceedings of the Royal Society of Edinburgh, 115A (1990) 193–230.

Luc Tartar: The general theory of homogenization: A personalized introduction, Springer (2009)

Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77–90.