One-scale H-measures and variants

Marko Erceg
Department of Mathematics, Faculty of Science University of Zagreb

doctoral thesis defense
Zagreb, $17^{\text {th }}$ June, 2016

WeConMApp

Introduction

If we have $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega), \Omega \subseteq \mathbf{R}^{d}$ open, what we can say about $\left|u_{n}\right|^{2}$?

Introduction

If we have $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega), \Omega \subseteq \mathbf{R}^{d}$ open, what we can say about $\left|u_{n}\right|^{2}$? Example:

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n x} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0
$$

but

$$
\left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}(\mathbf{R})
$$

Introduction

If we have $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega), \Omega \subseteq \mathbf{R}^{d}$ open, what we can say about $\left|u_{n}\right|^{2}$? Example:

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n x} \xrightarrow{\mathrm{~L}_{\mathrm{oc}}^{2}} 0,
$$

but

$$
\left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}(\mathbf{R})
$$

It is bounded in $\mathrm{L}_{\mathrm{loc}}^{1}(\Omega) \hookrightarrow \mathcal{M}(\Omega)=\left(\mathrm{C}_{c}(\Omega)\right)^{\prime}$, so

$$
\left|u_{n^{\prime}}\right|^{2} \stackrel{*}{\rightharpoonup} \nu .
$$

ν is called the defect measure.
Of course, we have

$$
u_{n^{\prime}} \xrightarrow{\mathrm{L}_{\text {log }}^{2}} 0 \Longleftrightarrow \nu=0 .
$$

Introduction

If we have $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega), \Omega \subseteq \mathbf{R}^{d}$ open, what we can say about $\left|u_{n}\right|^{2}$?
Example:

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n x} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0,
$$

but

$$
\left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}(\mathbf{R})
$$

It is bounded in $\mathrm{L}_{\text {loc }}^{1}(\Omega) \hookrightarrow \mathcal{M}(\Omega)=\left(\mathrm{C}_{c}(\Omega)\right)^{\prime}$, so

$$
\left|u_{n^{\prime}}\right|^{2} \xrightarrow{*} \nu .
$$

ν is called the defect measure.
Of course, we have

$$
u_{n^{\prime}} \xrightarrow{\mathrm{L}_{\mathrm{log}}^{2}} 0 \Longleftrightarrow \nu=0 .
$$

If the defect measure is not trivial we need another objects to determine all the properties of the sequence:

- H-measures
- semiclassical measures
- ...

H-measures

$\Omega \subseteq \mathbf{R}^{d}$ open.

Theorem (Tartar, 1990)

If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and
$\boldsymbol{\mu}_{H} \in \mathcal{M}\left(\Omega \times \mathrm{S}^{d-1} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{H}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

(Unbounded) Radon measure μ_{H} we call the H-measure corresponding to the (sub)sequence (u_{n}).

Notation:
$\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{d}\right) \in \Omega, \boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right) \in \mathbf{R}^{d}$
$\hat{\mathbf{u}}(\boldsymbol{\xi})=\int_{\mathbf{R}^{d}} e^{-2 \pi i \boldsymbol{\xi} \cdot \mathbf{x}} d \mathbf{x}$
$\mathrm{a} \cdot \mathrm{b}=\sum_{i=1}^{d} a^{i} \bar{b}^{i}\left(\mathrm{a}, \mathrm{b} \in \mathbf{C}^{r}\right)$
$(\mathrm{a} \otimes \mathrm{b}) \mathrm{v}=(\mathrm{v} \cdot \mathrm{b}) \mathrm{a} \quad \Longrightarrow \quad[\mathrm{a} \otimes \mathrm{b}]_{i j}=a^{i} \bar{b}^{j}$
$\langle\cdot, \cdot\rangle$ sesquilinear dual product; $\langle\mathbf{A}, \varphi\rangle:=\left[A^{i j}, \varphi\right]_{i j}$
$\mathcal{M}(X)=\left(\mathrm{C}_{c}(X)\right)^{\prime}$

H-measures

$\Omega \subseteq \mathbf{R}^{d}$ open.

Theorem (Tartar, 1990)

If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{H} \in \mathcal{M}\left(\Omega \times \mathrm{S}^{d-1} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{H}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

(Unbounded) Radon measure $\boldsymbol{\mu}_{H}$ we call the H-measure corresponding to the (sub)sequence (u_{n}).

Corollary

$$
\mathbf{u}_{n} \xrightarrow{\mathrm{~L}_{\text {loo }}^{2}} 0 \Longleftrightarrow \boldsymbol{\mu}_{H}=\mathbf{0}
$$

Semiclassical measures

Theorem (Gérard, 1991)

If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{M}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}^{\prime}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

(Unbounded) measure $\boldsymbol{\mu}_{s c}^{\left(\omega_{n^{\prime}}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ corresponding to the (sub)sequence $\left(\mathrm{u}_{n^{\prime}}\right)$.

Semiclassical measures

Theorem (Gérard, 1991)

If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{M}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}^{\prime}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

(Unbounded) measure $\boldsymbol{\mu}_{s c}^{\left(\omega_{n^{\prime}}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ corresponding to the (sub)sequence $\left(\mathrm{u}_{n^{\prime}}\right)$.

Theorem

$$
\mathrm{u}_{n} \xrightarrow{\mathrm{~L}_{\text {loc }}^{2}} 0 \Longleftrightarrow \boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}=\mathbf{0} \quad \& \quad\left(\mathbf{u}_{n}\right) \text { is }\left(\omega_{n}\right) \text { - oscillatory } .
$$

Semiclassical measures

Theorem (Gérard, 1991)

If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{M}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}^{\prime}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

(Unbounded) measure $\boldsymbol{\mu}_{s c}^{\left(\omega_{n^{\prime}}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ corresponding to the (sub)sequence $\left(\mathrm{u}_{n^{\prime}}\right)$.

Definition

$\left(\mathrm{u}_{n}\right)$ is $\left(\omega_{n}\right)$-oscillatory if
$\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\boldsymbol{\xi}| \geqslant \frac{R}{\omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.

Theorem

$$
\mathbf{u}_{n} \xrightarrow{\mathrm{~L}_{\text {loo }}^{2}} 0 \Longleftrightarrow \boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}=\mathbf{0} \quad \& \quad\left(\mathbf{u}_{n}\right) \text { is }\left(\omega_{n}\right) \text {-oscillatory }
$$

Example 1: Oscillations - one characteristic length

$\alpha>0, k \in \mathbf{Z}^{d} \backslash\{0\}$,

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
$$

but

$$
\left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)
$$

Example 1: Oscillations - one characteristic length

$\alpha>0, k \in \mathbf{Z}^{d} \backslash\{0\}$,

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
$$

but

$$
\begin{aligned}
& \left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right) . \\
& \quad \nu=\lambda
\end{aligned}
$$

Example 1: Oscillations - one characteristic length

$\alpha>0, k \in \mathbf{Z}^{d} \backslash\{0\}$,

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
$$

but

$$
\begin{aligned}
& \left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right) . \\
& \quad \begin{array}{l}
\quad=\lambda \\
\mu_{H}=\lambda \boxtimes \delta_{\frac{\mathrm{k}}{}} \mathrm{k\mid}
\end{array}
\end{aligned}
$$

Example 1: Oscillations - one characteristic length

$\alpha>0, k \in \mathbf{Z}^{d} \backslash\{0\}$,

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
$$

but

$$
\left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)
$$

$$
\begin{aligned}
\nu & =\lambda \\
\mu_{H} & =\lambda \boxtimes \delta_{\frac{\mathrm{k}}{|k|}}
\end{aligned}
$$

$$
\mu_{s c}^{\left(\omega_{n}\right)}=\lambda \boxtimes\left\{\begin{array}{ccc}
\delta_{0} & , & \lim _{n} n^{\alpha} \omega_{n}=0 \\
\delta_{c k} & , & \lim _{n} n^{\alpha} \omega_{n}=c \in\langle 0, \infty\rangle \\
0 & , & \lim _{n} n^{\alpha} \omega_{n}=\infty
\end{array}\right.
$$

Example 1: Oscillations - one characteristic length

$\alpha>0, k \in \mathbf{Z}^{d} \backslash\{0\}$,

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
$$

but

$$
\left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)
$$

$$
\begin{aligned}
\nu & =\lambda \\
\mu_{H} & =\lambda \boxtimes \delta_{\frac{\mathrm{k}}{|k|}}
\end{aligned}
$$

$$
\mu_{s c}^{\left(\omega_{n}\right)}=\lambda \boxtimes\left\{\begin{array}{ccc}
\delta_{0} & , & \lim _{n} n^{\alpha} \omega_{n}=0 \\
\delta_{c k} & , & \lim _{n} n^{\alpha} \omega_{n}=c \in\langle 0, \infty\rangle \\
0 & , & \lim _{n} n^{\alpha} \omega_{n}=\infty
\end{array}\right.
$$

Example 1: Oscillations - one characteristic length

$\alpha>0, k \in \mathbf{Z}^{d} \backslash\{0\}$,

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathrm{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
$$

but

$$
\begin{gathered}
\left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right) . \\
\nu=\lambda \\
\mu_{H}=\lambda \boxtimes \delta_{\frac{\mathrm{k}}{|k|}} \\
\mu_{s c}^{\left(\omega_{n}\right)}=\lambda \boxtimes\left\{\begin{array}{ccc}
\delta_{0} & , & \lim _{n} n^{\alpha} \omega_{n}=0 \\
\delta_{c \mathrm{k}} & , & \lim _{n} n^{\alpha} \omega_{n}=c \in\langle 0, \infty\rangle \\
0 & , & \lim _{n} n^{\alpha} \omega_{n}=\infty
\end{array}\right. \\
\left\langle\mu_{H}, \varphi \boxtimes \psi\right\rangle=\left\langle\mu_{s c}^{\left(\omega_{n}\right)}, \varphi \boxtimes \psi\left(\frac{\cdot}{|\cdot|}\right)\right\rangle
\end{gathered}
$$

Example 1: Oscillations - one characteristic length

$\alpha>0, k \in \mathbf{Z}^{d} \backslash\{0\}$,

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
$$

but

$$
\left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)
$$

$$
\begin{aligned}
\nu & =\lambda \\
\mu_{H} & =\lambda \boxtimes \delta_{\frac{\mathrm{k}}{|k|}} \\
\mu_{s c}^{\left(\omega_{n}\right)} & =\lambda \boxtimes\left\{\begin{array}{ccc}
\delta_{0} & , & \lim _{n} n^{\alpha} \omega_{n}=0 \\
\delta_{c k} & , & \lim _{n} n^{\alpha} \omega_{n}=c \in\langle 0, \infty\rangle \\
0 & , & \lim _{n} n^{\alpha} \omega_{n}=\infty
\end{array}\right.
\end{aligned}
$$

Theorem

If $\mathrm{u}_{n} \longrightarrow \mathrm{u}$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ is $\left(\omega_{n}\right)$-oscillatory and $\operatorname{tr} \boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}(\Omega \times\{0\})=0$, then

$$
\left\langle\boldsymbol{\mu}_{H}, \varphi \boxtimes \psi\right\rangle=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi \boxtimes \psi\left(\frac{\cdot}{|\cdot|}\right)\right\rangle .
$$

Example 1: Oscillations - one characteristic length

$\alpha>0, k \in \mathbf{Z}^{d} \backslash\{0\}$,

$$
u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
$$

but

$$
\left|u_{n}(\mathbf{x})\right|=1 \quad \Longrightarrow \quad u_{n} \nrightarrow 0 \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)
$$

$$
\begin{aligned}
\nu & =\lambda \\
\mu_{H} & =\lambda \boxtimes \delta_{\frac{\mathrm{k}}{|k|}} \\
\mu_{s c}^{\left(\omega_{n}\right)} & =\lambda \boxtimes\left\{\begin{array}{ccc}
\delta_{0} & , & \lim _{n} n^{\alpha} \omega_{n}=0 \\
\delta_{c k} & , & \lim _{n} n^{\alpha} \omega_{n}=c \in\langle 0, \infty\rangle \\
0 & , & \lim _{n} n^{\alpha} \omega_{n}=\infty
\end{array}\right.
\end{aligned}
$$

Theorem

If $\mathbf{u}_{n} \longrightarrow \mathrm{u}$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ is $\left(\omega_{n}\right)$-oscillatory and $\operatorname{tr} \mu_{s c}^{\left(\omega_{n}\right)}(\Omega \times\{0\})=0$, then

$$
\left\langle\boldsymbol{\mu}_{H}, \varphi \boxtimes \psi\right\rangle=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi \boxtimes \psi\left(\frac{\cdot}{|\cdot|}\right)\right\rangle .
$$

$\left(\omega_{n}\right)$-concentrating property

Definition

(u_{n}) is (ω_{n})-oscillatory if
$\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\xi| \geqslant \frac{R}{\omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.

$\left(\omega_{n}\right)$-concentrating property

Definition

(u_{n}) is (ω_{n})-oscillatory if
$\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\xi| \geqslant \frac{R}{\omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.
(u_{n}) is (ω_{n})-concentrating if
$\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\boldsymbol{\xi}| \leqslant \frac{1}{R \omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.

$\left(\omega_{n}\right)$-concentrating property

Definition

(u_{n}) is (ω_{n})-oscillatory if
$\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\xi| \geqslant \frac{R}{\omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.
$\left(\mathrm{u}_{n}\right)$ is $\left(\omega_{n}\right)$-concentrating if
$\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\boldsymbol{\xi}| \leqslant \frac{1}{R \omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.

Lemma

$$
\left(\mathbf{u}_{n}\right) \omega_{n} \text {-concentrating } \Longleftrightarrow \operatorname{tr} \mu_{s c}^{\left(\omega_{n}\right)}(\Omega \times\{0\})=0 .
$$

$\left(\omega_{n}\right)$-concentrating property

Definition

(u_{n}) is (ω_{n})-oscillatory if
$\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\xi| \geqslant \frac{R}{\omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.
(u_{n}) is $\left(\omega_{n}\right)$-concentrating if
$\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\boldsymbol{\xi}| \leqslant \frac{1}{R \omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.

Lemma

$$
\left(\mathbf{u}_{n}\right) \omega_{n} \text {-concentrating } \Longleftrightarrow \operatorname{tr} \mu_{s c}^{\left(\omega_{n}\right)}(\Omega \times\{0\})=0
$$

Theorem

If $\mathrm{u}_{n} \longrightarrow \mathrm{u}$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ is $\left(\omega_{n}\right)$-oscillatory and $\left(\omega_{n}\right)$-concentrating, then

$$
\left\langle\boldsymbol{\mu}_{H}, \varphi \boxtimes \psi\right\rangle=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi \boxtimes \psi\left(\frac{\cdot}{|\cdot|}\right)\right\rangle .
$$

For an arbitrary bounded sequence $\left(\mathrm{u}_{n}\right)$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ is there a characteristic length $\omega_{n} \rightarrow 0^{+}$such that (u_{n}) is

1) $\left(\omega_{n}\right)$-oscillatory?
2) $\left(\omega_{n}\right)$-concentrating?
$3)$ both $\left(\omega_{n}\right)$-oscillatory and $\left(\omega_{n}\right)$-concentrating?

For an arbitrary bounded sequence $\left(\mathrm{u}_{n}\right)$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ is there a characteristic length $\omega_{n} \rightarrow 0^{+}$such that (u_{n}) is

1) $\left(\omega_{n}\right)$-oscillatory?
2) $\left(\omega_{n}\right)$-concentrating?
$3)$ both (ω_{n})-oscillatory and (ω_{n})-concentrating?

Theorem

(1) is valid and (2) is valid under the additional assumption that $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$.

For an arbitrary bounded sequence $\left(\mathrm{u}_{n}\right)$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ is there a characteristic length $\omega_{n} \rightarrow 0^{+}$such that $\left(\mathbf{u}_{n}\right)$ is

1) $\left(\omega_{n}\right)$-oscillatory?
2) $\left(\omega_{n}\right)$-concentrating?
$3)$ both $\left(\omega_{n}\right)$-oscillatory and (ω_{n})-concentrating?

Theorem

(1) is valid and (2) is valid under the additional assumption that $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$.

Theorem

For $\mathrm{u}_{n} \longrightarrow \mathrm{u}$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ we have

$$
\begin{aligned}
\mathrm{u}_{n} \rightarrow \mathrm{u} \text { in } \mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right) & \Longleftrightarrow\left(\forall \omega_{n} \rightarrow 0^{+}\right) \quad\left(\mathbf{u}_{n}\right) \text { is }\left(\omega_{n}\right) \text { - oscillatory } \\
\mathbf{u}=0 \& \mathrm{u}_{n} \rightarrow 0 \text { in } \mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right) & \Longleftrightarrow\left(\forall \omega_{n} \rightarrow 0^{+}\right) \quad\left(\mathbf{u}_{n}\right) \text { is }\left(\omega_{n}\right) \text { - concen. }
\end{aligned}
$$

Example 2: Oscillations - two characteristic length

$$
\begin{aligned}
0<\alpha<\beta, \mathrm{k}, \mathrm{~s} \in \mathbf{Z}^{d} & \backslash\{0\}, \\
& u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathrm{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty \\
& v_{n}(\mathbf{x}):=e^{2 \pi i n^{\beta} \mathrm{s} \cdot \mathbf{x}} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
\end{aligned}
$$

Example 2: Oscillations - two characteristic length

$$
\begin{aligned}
0<\alpha<\beta, \mathbf{k}, \mathbf{s} \in \mathbf{Z}^{d} & \backslash\{0\}, \\
& u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathrm{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty \\
& v_{n}(\mathbf{x}):=e^{2 \pi i n^{\beta} \mathrm{s} \cdot \mathbf{x}} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
\end{aligned}
$$

$\mu_{H}\left(\mu_{s c}^{\left(\omega_{n}\right)}\right)$ is H -measure (semiclassical measure with characteristic length $\left.\left(\omega_{n}\right), \omega_{n} \rightarrow 0^{+}\right)$associated to $\left(u_{n}+v_{n}\right)$.

$$
\mu_{H}=\lambda \boxtimes\left(\delta_{\frac{\mathrm{k}}{|k|}}+\delta_{\frac{\mathrm{s}}{|s|}}\right)
$$

Example 2: Oscillations - two characteristic length

$$
\begin{aligned}
0<\alpha<\beta, \mathbf{k}, \mathbf{s} \in \mathbf{Z}^{d} & \backslash\{0\}, \\
& u_{n}(\mathbf{x}):=e^{2 \pi i n^{\alpha} \mathrm{k} \cdot \mathbf{x}} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty \\
& v_{n}(\mathbf{x}):=e^{2 \pi i n^{\beta} \mathrm{s} \cdot \mathbf{x}} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
\end{aligned}
$$

$\mu_{H}\left(\mu_{s c}^{\left(\omega_{n}\right)}\right)$ is H -measure (semiclassical measure with characteristic length $\left.\left(\omega_{n}\right), \omega_{n} \rightarrow 0^{+}\right)$associated to $\left(u_{n}+v_{n}\right)$.

$$
\begin{gathered}
\mu_{H}=\lambda \boxtimes\left(\delta_{\frac{\mathrm{k}}{}}^{\mid \mathrm{k||}}+\delta_{\frac{\mathrm{s}}{}}^{|\mathrm{s}|}\right) \\
\mu_{s c}^{\left(\omega_{n}\right)}=\lambda \boxtimes\left\{\begin{array}{ccc}
2 \delta_{0} & , & \lim _{n} n^{\beta} \omega_{n}=0 \\
\left(\delta_{c \mathrm{~s}}+\delta_{0}\right) & , & \lim _{n} n^{\beta} \omega_{n}=c \in\langle 0, \infty\rangle \\
\delta_{0} & , & \lim _{n} n^{\beta} \omega_{n}=\infty \& \lim _{n} n^{\alpha} \omega_{n}=0 \\
\delta_{c \mathrm{k}} & , & \lim _{n} n^{\alpha} \omega_{n}=c \in\langle 0, \infty\rangle \\
0 & , & \lim _{n} n^{\alpha} \omega_{n}=\infty
\end{array}\right.
\end{gathered}
$$

Outline

$\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

$\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$ is a compactification of \mathbf{R}_{*}^{d} homeomorphic to a spherical layer (i.e. an annulus in \mathbf{R}^{2}):

Precise description of $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) 1 / 3$

For fixed $r_{0}>0$ let us define $r_{1}=\frac{r_{0}}{\sqrt{r_{0}^{2}+1}}$, and denote by

$$
A\left[0, r_{1}, 1\right]:=\left\{\boldsymbol{\zeta} \in \mathbf{R}^{d}: r_{1} \leqslant|\boldsymbol{\zeta}| \leqslant 1\right\}
$$

closed d-dimensional spherical layer equipped with the standard topology (inherited from \mathbf{R}^{d}). In addition let us define $A\left(0, r_{1}, 1\right):=\operatorname{lnt} A\left[0, r_{1}, 1\right]$, and by $A_{0}\left[0, r_{1}, 1\right]:=\mathrm{S}^{d-1}\left(0 ; r_{1}\right)$ and $A_{\infty}\left[0, r_{1}, 1\right]:=\mathrm{S}^{d-1}$ we denote boundary spheres.

We want to construct a homeomorphism $\mathcal{J}: \mathbf{R}_{*}^{d} \longrightarrow A\left(0, r_{1}, 1\right)$.

Precise description of $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) 2 / 3$

From the previous construction we get that $\mathcal{J}: \mathbf{R}_{*}^{d} \longrightarrow A\left(0, r_{1}, 1\right)$ is given by

$$
\mathcal{J}(\boldsymbol{\xi})=\frac{\boldsymbol{\xi}}{\sqrt{|\boldsymbol{\xi}|^{2}+\left(\frac{|\boldsymbol{\xi}|}{|\boldsymbol{\xi}|+r_{0}}\right)^{2}}}=\frac{|\boldsymbol{\xi}|+r_{0}}{|\boldsymbol{\xi}| K(\boldsymbol{\xi})} \boldsymbol{\xi}
$$

where $K(\boldsymbol{\xi})=K(|\boldsymbol{\xi}|):=\sqrt{1+\left(|\boldsymbol{\xi}|+r_{0}\right)^{2}}$.
$\boldsymbol{\xi}$ and $\mathcal{J}(\boldsymbol{\xi})$ lie on the same line:

$$
\frac{\mathcal{J}(\boldsymbol{\xi})}{|\mathcal{J}(\boldsymbol{\xi})|}=\frac{\frac{|\boldsymbol{\xi}|+r_{0}}{|\boldsymbol{\xi}| K(\boldsymbol{\xi})} \boldsymbol{\xi}}{\frac{|\boldsymbol{\xi}|+r_{0}}{|\boldsymbol{\xi}| K(\boldsymbol{\xi})}|\boldsymbol{\xi}|}=\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}
$$

\mathcal{J} is homeomorphism and its inverse $\mathcal{J}^{-1}: A\left(0, r_{1}, 1\right) \longrightarrow \mathbf{R}_{*}^{d}$ is given by

$$
\mathcal{J}^{-1}(\boldsymbol{\zeta})=\frac{|\boldsymbol{\zeta}|-r_{0} \sqrt{1-|\boldsymbol{\zeta}|^{2}}}{|\boldsymbol{\zeta}| \sqrt{1-|\boldsymbol{\zeta}|^{2}}} \boldsymbol{\zeta}=\boldsymbol{\zeta}\left(1-|\boldsymbol{\zeta}|^{2}\right)^{-\frac{1}{2}}-r_{0} \boldsymbol{\zeta}|\boldsymbol{\zeta}|^{-1}
$$

resulting that $\left(A\left[0, r_{1}, 1\right], \mathcal{J}\right)$ is a compactification of \mathbf{R}_{*}^{d}.

Precise description of $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) 3 / 3$

Now we define

$$
\Sigma_{0}:=\left\{0^{\mathrm{e}}: \mathrm{e} \in \mathrm{~S}^{d-1}\right\} \quad \text { and } \quad \Sigma_{\infty}:=\left\{\infty^{\mathrm{e}}: \mathrm{e} \in \mathrm{~S}^{d-1}\right\}
$$

and $K_{0, \infty}\left(\mathbf{R}^{d}\right):=\mathbf{R}_{*}^{d} \cup \Sigma_{0} \cup \Sigma_{\infty}$.
Let us extend \mathcal{J} to the whole $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$ by $\mathcal{J}\left(0^{\mathrm{e}}\right):=r_{1} \mathrm{e}$ and $\mathcal{J}\left(\infty^{\mathrm{e}}\right)=\mathrm{e}$, which gives $\mathcal{J}^{\rightarrow}\left(\Sigma_{0}\right)=A_{0}\left[0, r_{1}, 1\right]$ and $\mathcal{J}^{\rightarrow}\left(\Sigma_{\infty}\right)=A_{\infty}\left[0, r_{1}, 1\right]$.
$d_{*}\left(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}\right):=\left|\mathcal{J}\left(\boldsymbol{\xi}_{1}\right)-\mathcal{J}\left(\boldsymbol{\xi}_{2}\right)\right|$ is a metric on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$, so $\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right), d_{*}\right)$ is a metric space isomorphic to $A\left[0, r_{1}, 1\right]$.

$$
\begin{gathered}
\lim _{|\boldsymbol{\xi}| \rightarrow 0}\left|\mathcal{J}(\boldsymbol{\xi})-\mathcal{J}\left(0^{\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}}\right)\right|=0, \quad \lim _{|\boldsymbol{\xi}| \rightarrow \infty}\left|\mathcal{J}(\boldsymbol{\xi})-\mathcal{J}\left(\infty^{\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}}\right)\right|=0 \\
\lim _{|\boldsymbol{\zeta}| \rightarrow r_{1}}\left|\mathcal{J}^{-1}(\boldsymbol{\zeta})\right|=0, \quad \lim _{|\boldsymbol{\zeta}| \rightarrow 1}\left|\mathcal{J}^{-1}(\boldsymbol{\zeta})\right|=+\infty
\end{gathered}
$$

Continuous functions on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

Lemma

For $\psi: \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) \longrightarrow \mathbf{C}$ the following is equivalent:
a) $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$,
b) $\left(\exists \tilde{\psi} \in \mathrm{C}\left(A\left[0, r_{1}, 1\right]\right)\right) \psi=\tilde{\psi} \circ \mathcal{J}$,
c) $\psi_{\mathbf{R}_{*}^{d}} \in \mathrm{C}\left(\mathbf{R}_{*}^{d}\right)$, and

Continuous functions on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

Lemma

For $\psi: \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) \longrightarrow \mathbf{C}$ the following is equivalent:
a) $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$,
b) $\left(\exists \tilde{\psi} \in \mathrm{C}\left(A\left[0, r_{1}, 1\right]\right)\right) \psi=\tilde{\psi} \circ \mathcal{J}$,
c) $\psi_{\mathbf{R}_{*}^{d}} \in \mathrm{C}\left(\mathbf{R}_{*}^{d}\right)$, and

For $\psi \in \mathrm{C}\left(\mathbf{R}_{*}^{d}\right)$ we have $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ iff there exist $\psi_{0}, \psi_{\infty} \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ such that

$$
\begin{aligned}
& \psi(\boldsymbol{\xi})-\psi_{0}\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \rightarrow 0, \quad|\boldsymbol{\xi}| \rightarrow 0 \\
& \psi(\boldsymbol{\xi})-\psi_{\infty}\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \rightarrow 0, \quad|\boldsymbol{\xi}| \rightarrow \infty
\end{aligned}
$$

In particular, $\psi-\psi_{0}(\dot{\Gamma \cdot}) \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right)$ (uniformly continuous bounded functions).

Continuous functions on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

Lemma

For $\psi: \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) \longrightarrow \mathbf{C}$ the following is equivalent:
a) $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$,
b) $\left(\exists \tilde{\psi} \in \mathrm{C}\left(A\left[0, r_{1}, 1\right]\right)\right) \psi=\tilde{\psi} \circ \mathcal{J}$,
c) $\psi_{\mathbf{R}_{*}^{d}} \in \mathrm{C}\left(\mathbf{R}_{*}^{d}\right)$, and

$$
\lim _{|\boldsymbol{\xi}| \rightarrow 0}\left|\psi(\boldsymbol{\xi})-\psi\left(0^{\frac{\boldsymbol{\xi}}{\boldsymbol{\xi} \mid}}\right)\right|=0 \quad \text { and } \quad \lim _{|\boldsymbol{\xi}| \rightarrow \infty} \left\lvert\, \psi(\boldsymbol{\xi})-\psi\left(\infty^{\left.\frac{\boldsymbol{\xi}}{\boldsymbol{\xi} \mid}\right) \mid=0 . .}\right.\right.
$$

For $\psi \in \mathrm{C}\left(\mathbf{R}_{*}^{d}\right)$ we have $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ iff there exist $\psi_{0}, \psi_{\infty} \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ such that

$$
\begin{aligned}
& \psi(\boldsymbol{\xi})-\psi_{0}\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \rightarrow 0, \quad|\boldsymbol{\xi}| \rightarrow 0 \\
& \psi(\boldsymbol{\xi})-\psi_{\infty}\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \rightarrow 0, \quad|\boldsymbol{\xi}| \rightarrow \infty
\end{aligned}
$$

In particular, $\psi-\psi_{0}(\dot{\Gamma \cdot}) \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right)$ (uniformly continuous bounded functions).

Lemma

i) $\mathrm{C}_{0}\left(\mathbf{R}^{d}\right) \hookrightarrow \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, and
ii) $\left\{\psi \circ \boldsymbol{\pi}: \psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)\right\} \hookrightarrow \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

One-scale H-measures

Theorem (Tartar, 2009)

If $\mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes\left(\widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty},}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

(Unbounded) Radon measure $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ we call the one-scale H-measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ corresponding to the (sub)sequence $\left(\mathrm{u}_{n^{\prime}}\right)$.

One-scale H-measures

Theorem (Tartar, 2009)

If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes \widehat{\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

(Unbounded) Radon measure $\mu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n^{\prime}}\right)}$ we call the one-scale H-measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ corresponding to the (sub)sequence $\left(\mathrm{u}_{n^{\prime}}\right)$.

The original proof:

- $\mathrm{v}_{n}\left(\mathbf{x}, x^{d+1}\right):=\mathrm{u}_{n}(\mathbf{x}) e^{\frac{2 \pi i x^{d+1}}{\omega_{n}}} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega \times \mathbf{R} ; \mathbf{C}^{r}\right)$
- $\nu_{H} \in \mathcal{M}\left(\Omega \times \mathbf{R} \times S^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is obtained from $\boldsymbol{\nu}_{H}$ (suitable projection in x^{d+1} and ξ_{d+1})

Alternative proof (Antonić, E., Lazar)

- Cantor diagonal procedure (separability)
- commutation lemma

Lemma

Let $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right), \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$.
Then the commutator can be expressed as a sum

$$
C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=\tilde{C}_{n}+K
$$

where K is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$, while $\tilde{C}_{n} \longrightarrow 0$ in the operator norm on $\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$.

- variant of the kernel lemma

Lemma

Let X and Y be two Hausdorff second countable topological manifolds (with or without a boundary), and let B be a non-negative continuous bilinear form on $\mathrm{C}_{c}(X) \times \mathrm{C}_{c}(Y)$. Then there exists a Radon measure $\mu \in \mathcal{M}(X \times Y)$ such that

$$
\left(\forall f \in \mathrm{C}_{c}(X)\right)\left(\forall g \in \mathrm{C}_{c}(Y)\right) \quad B(f, g)=\langle\mu, f \boxtimes g\rangle
$$

Furthermore, the above remains valid if we replace C_{c} by C_{0}, and \mathcal{M} by \mathcal{M}_{b} (the space of bounded Radon measures, i.e. the dual of Banach space C_{0}).

Some properties of $\mu_{\mathrm{K}_{0, \infty}}$

Theorem

a) $\quad \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{*}=\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \quad \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}} \geqslant \mathbf{0}$
c)
$\mathrm{u}_{n} \xrightarrow{\mathrm{~L}_{\text {lof }}^{2}} 0$
\Longleftrightarrow
$\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}=\mathbf{0}$
d) $\quad \operatorname{tr} \mu_{\mathrm{K}_{0, \infty}}\left(\Omega \times \Sigma_{\infty}\right)=0$

$\left(\mathrm{u}_{n}\right)$ is $\left(\omega_{n}\right)$ - oscillatory

Theorem

$\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega), \psi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \tilde{\psi} \in \mathrm{C}\left(\mathrm{S}^{d-1}\right), \omega_{n} \rightarrow 0^{+}$,
a) $\quad\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \psi\right\rangle \quad=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \psi\right\rangle$,
b) $\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \tilde{\psi} \circ \boldsymbol{\pi}\right\rangle \quad=\left\langle\boldsymbol{\mu}_{H}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \tilde{\psi}\right\rangle$,
where $\boldsymbol{\pi}(\boldsymbol{\xi})=\boldsymbol{\xi} /|\boldsymbol{\xi}|$.

Example 1 revisited

$$
\begin{aligned}
& u_{n}(\mathbf{x})=e^{2 \pi i n^{\alpha} \mathrm{k} \cdot \mathbf{x}}, \\
& \mu_{H}=\lambda \boxtimes \delta_{\frac{\mathrm{k}}{|\mathrm{k}|}} \\
& \mu_{s c}^{\left(\omega_{n}\right)}=\lambda \boxtimes\left\{\begin{array}{ccc}
\delta_{0} & , & \lim _{n} n^{\alpha} \omega_{n}=0 \\
\delta_{c \mathrm{k}} & , & \lim _{n} n^{\alpha} \omega_{n}=c \in\langle 0, \infty\rangle \\
0 & , & \lim _{n} n^{\alpha} \omega_{n}=\infty
\end{array}\right. \\
& \mu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)}=\lambda \boxtimes\left\{\begin{array}{ccc}
\delta_{0}^{\frac{\mathrm{k}}{}} & , & \lim _{n} n^{\alpha} \omega_{n}=0 \\
\delta_{c \mathrm{k}}^{|\mathrm{k}|} & , & \lim _{n} n^{\alpha} \omega_{n}=c \in\langle 0, \infty\rangle \\
\delta_{\infty}^{\frac{\mathrm{k}}{|\mathrm{k}|}} & , & \lim _{n} n^{\alpha} \omega_{n}=\infty
\end{array}\right.
\end{aligned}
$$

Example 2 - revisited

$$
u_{n}(\mathbf{x})=e^{2 \pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}}, v_{n}(\mathbf{x})=e^{2 \pi i n^{\beta} \mathbf{s} \cdot \mathbf{x}}
$$

associated objects to $\left(u_{n}+v_{n}\right)$:

$$
\begin{aligned}
& \mu_{H}=\lambda \boxtimes\left(\delta_{\frac{\mathrm{k}}{|\mathrm{k}|}}+\delta_{\frac{\mathrm{s}}{|\mathrm{~s}|}}\right) \\
& \mu_{s c}^{\left(\omega_{n}\right)}=\lambda \boxtimes\left\{\begin{array}{ccc}
2 \delta_{0} & , & \lim _{n} n^{\beta} \omega_{n}=0 \\
\left(\delta_{0}+\delta_{c s}\right) & , & \lim _{n} n^{\beta} \omega_{n}=c \in\langle 0, \infty\rangle \\
\delta_{0} & , & \lim _{n} n^{\beta} \omega_{n}=\infty \& \lim _{n} n^{\alpha} \omega_{n}=0 \\
\delta_{c k} & , & \lim _{n} n^{\alpha} \omega_{n}=c \in\langle 0, \infty\rangle \\
0 & , & \lim _{n} n^{\alpha} \omega_{n}=\infty
\end{array}\right.
\end{aligned}
$$

Localisation principle - assumptions

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\begin{equation*}
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega \tag{*}
\end{equation*}
$$

where

- $l \in 0 . . m$
- $\varepsilon_{n}>0$ bounded
- $\mathbf{A}_{n}^{\alpha} \rightarrow \mathbf{A}^{\alpha}$ in $\mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\begin{equation*}
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \mathbf{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) \tag{**}
\end{equation*}
$$

Localisation principle - assumptions

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\begin{equation*}
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega \tag{*}
\end{equation*}
$$

where

- $l \in 0 . . m$
- $\varepsilon_{n}>0$ bounded
- $\mathbf{A}_{n}^{\alpha} \rightarrow \mathbf{A}^{\alpha}$ in $\mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\text {loc }}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\begin{equation*}
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \mathbf{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) \tag{**}
\end{equation*}
$$

For $l=0$ the condition on $\left(\mathrm{f}_{n}\right)$ is equivalent to

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\|\varphi \mathrm{f}_{n}\right\|_{\mathrm{H}_{\varepsilon_{n}}^{-m}} \rightarrow 0
$$

where $\|\mathbf{u}\|_{\mathbf{H}_{h}^{s}}^{2}=\int_{\mathbf{R}^{d}}\left(1+2 \pi|h \boldsymbol{\xi}|^{2}\right)^{s}|\hat{\mathrm{u}}(\boldsymbol{\xi})|^{2} d \boldsymbol{\xi}$ is the semiclassical norm of $\mathbf{u} \in \mathrm{H}^{s}\left(\Omega ; \mathbf{R}^{d}\right)$.

Localisation principle - theorem

(*) $\quad \sum_{l \leqslant|\alpha| \leqslant m} \varepsilon_{n}^{|\alpha|-l} \partial_{\alpha}\left(\mathbf{A}_{n}^{\alpha} \mathrm{u}_{n}\right)=\mathrm{f}_{n}$
$(* *) \quad\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi f_{n}}}{1+\sum_{s=\varepsilon}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad$ in $\quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$

Localisation principle - theorem

(*) $\quad \sum_{l \leqslant|\alpha| \leqslant m} \varepsilon_{n}^{|\alpha|-l} \partial_{\alpha}\left(\mathbf{A}_{n}^{\alpha} \mathrm{u}_{n}\right)=\mathrm{f}_{n}$
$(* *) \quad\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi f_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\xi|^{s}} \longrightarrow 0 \quad$ in $\quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$

Theorem (Tartar, 2009)

Under previous assumptions and $l=1, \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\varepsilon_{n}\right)}$ associated to $\left(\mathrm{u}_{n}\right)$ satisfies

$$
\operatorname{supp}\left(\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}\right) \subseteq \Omega \times \Sigma_{0},
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{1 \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x}) .
$$

Localisation principle - theorem

(*) $\quad \sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n}$
$(* *) \quad\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \mathrm{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad$ in $\quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$

Theorem (Antonić, E., Lazar, 2015)

Under previous assumptions, $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\varepsilon_{n}\right)}$ associated to $\left(\mathbf{u}_{n}\right)$ satisfies

$$
\mathbf{p}_{1} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}_{1}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})
$$

Localisation principle - theorem

$(*) \quad \sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\alpha} \mathrm{u}_{n}\right)=\mathrm{f}_{n}$
$(* *) \quad\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\digamma_{n}}}{1+\sum_{s=t}^{m} t_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad$ in $\quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$

Theorem

For $\omega_{n} \rightarrow 0^{+}$such that $c:=\lim _{n} \frac{\varepsilon_{n}}{\omega_{n}} \in[0, \infty]$, corresponding one-scale H-measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length (ω_{n}) satisfies

$$
\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}_{c}(\mathbf{x}, \boldsymbol{\xi}):=\left\{\begin{array}{ccc}
\sum_{|\boldsymbol{\alpha}|=l} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , & c=0 \\
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i c)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , & c \in\langle 0, \infty\rangle \\
\sum_{|\boldsymbol{\alpha}|=m} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , & c=\infty
\end{array}\right.
$$

Moreover, if there exists $\varepsilon_{0}>0$ such that $\varepsilon_{n}>\varepsilon_{0}, n \in \mathbf{N}$, we can take

$$
\mathbf{p}_{\infty}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{|\boldsymbol{\alpha}|=m} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})
$$

Localisation principle for H-measures

Theorem

$\infty>\varepsilon_{\infty} \geqslant \varepsilon_{n} \geqslant \varepsilon_{0}>0, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$,

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n}
$$

where $\mathbf{A}_{n}^{\boldsymbol{\alpha}} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{q}}(r)\right), \mathbf{A}_{n}^{\boldsymbol{\alpha}} \longrightarrow \mathbf{A}^{\boldsymbol{\alpha}}$ in $\mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{q}}(r)\right)$, and $\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{H}_{\text {loc }}^{-m}\left(\Omega ; \mathbf{C}^{q}\right)$.
Then the associated H-measure $\boldsymbol{\mu}_{H}$ satisfies

$$
\mathbf{p}_{p r} \boldsymbol{\mu}_{H}=\mathbf{0}
$$

Localisation principle for H-measures

Theorem

$$
\begin{aligned}
\infty>\varepsilon_{\infty} \geqslant \varepsilon_{n} \geqslant \varepsilon_{0}>0, \mathbf{u}_{n} \rightharpoonup 0 \text { in } \mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \\
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n},
\end{aligned}
$$

where $\mathbf{A}_{n}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{q}}(r)\right), \mathbf{A}_{n}^{\alpha} \longrightarrow \mathbf{A}^{\alpha}$ in $\mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{q}}(r)\right)$, and $\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{H}_{\text {loc }}^{-m}\left(\Omega ; \mathbf{C}^{q}\right)$.
Then the associated H -measure $\boldsymbol{\mu}_{H}$ satisfies

$$
\mathbf{p}_{p r} \boldsymbol{\mu}_{H}=\mathbf{0}
$$

Sketch of the proof:

- If $\left(\varepsilon_{n}\right)$ is bounded from below and above by positive constants, $(* *)$ is equivalent to the strong convergence to zero in $\mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{q}\right)$.
- μ_{H} and $\mu_{\mathrm{K}_{0, \infty}}$ coincide on the space of homogeneous functions of the zero order (in $\boldsymbol{\xi}$).
- $\mathbf{p}_{p r}$ is homogeneous of the zero order in $\boldsymbol{\xi}$.

Localisation principle for semiclassical measures

Theorem

$\varepsilon_{n}>0$ bounded, $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$,

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n},
$$

where $\mathbf{A}_{n}^{\boldsymbol{\alpha}} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{q}}(r)\right), \mathbf{A}_{n}^{\boldsymbol{\alpha}} \longrightarrow \mathbf{A}^{\boldsymbol{\alpha}}$ in $\mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{q}}(r)\right)$, and $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{q}\right)$ satisfies ($* *$).
Then the associated semiclassical measure $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ satisfies

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})\left(\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}\right)^{\top}=\mathbf{0}
$$

where $c:=\lim _{n} \frac{\varepsilon_{n}}{\omega_{n}}$ and

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\left\{\begin{array}{ccc}
\sum_{|\boldsymbol{\alpha}|=l} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , & c=0 \\
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i c)^{|\boldsymbol{\alpha}|} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , \quad c \in\langle 0, \infty\rangle \\
\sum_{|\boldsymbol{\alpha}|=m} \boldsymbol{\xi}^{\alpha} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , & c=\infty
\end{array}\right.
$$

Proof (only the case $\lim _{n} \frac{\omega_{n}}{\varepsilon_{n}}=c \in\langle 0, \infty\rangle$)

$$
\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right) \quad \Longrightarrow \quad \boldsymbol{\xi} \mapsto\left(|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}\right) \psi(\boldsymbol{\xi}) \in \mathrm{C}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)
$$

Proof (only the case $\lim _{n} \frac{\omega_{n}}{\varepsilon_{n}}=c \in\langle 0, \infty\rangle$)

$$
\begin{aligned}
\psi & \in \mathcal{S}\left(\mathbf{R}^{d}\right) \Longrightarrow \boldsymbol{\xi} \mapsto\left(|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}\right) \psi(\boldsymbol{\xi}) \in \mathrm{C}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \\
\mathbf{0} & =\left\langle\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i c)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}, \varphi \boxtimes\left(|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}\right) \psi\right\rangle \\
& =\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}\left\langle\mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}, \overline{(2 \pi i c)^{|\boldsymbol{\alpha}|}} \varphi \boxtimes \boldsymbol{\xi}^{\boldsymbol{\alpha}} \psi\right\rangle \\
& =\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}\left\langle\mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{s c}^{\top}, \overline{(2 \pi i c)^{|\boldsymbol{\alpha}|}} \varphi \boxtimes \boldsymbol{\xi}^{\boldsymbol{\alpha}} \psi\right\rangle=\left\langle\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i c)^{|\boldsymbol{\alpha}|} \boldsymbol{\xi}^{\alpha} \mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\mu}_{s c}^{\top}, \varphi \boxtimes \psi\right\rangle
\end{aligned}
$$

where in the third equality the fact that $\xi^{\alpha} \psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ was used.

Example 3: equations with characteristic length (1/2)

Let $\Omega \subseteq \mathbf{R}^{2}$ be open, and let $\mathbf{u}_{n}:=\left(u_{n}^{1}, u_{n}^{2}\right) \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
u_{n}^{1}+\varepsilon_{n} \partial_{x_{1}}\left(a_{1} u_{n}^{1}\right)=f_{n}^{1} \\
u_{n}^{2}+\varepsilon_{n} \partial_{x_{2}}\left(a_{2} u_{n}^{2}\right)=f_{n}^{2}
\end{array}\right.
$$

where $\varepsilon_{n} \rightarrow 0^{+}, \mathrm{f}_{n}:=\left(f_{n}^{1}, f_{n}^{2}\right) \in \mathrm{H}_{\mathrm{loc}}^{-1}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\|\varphi \mathrm{f}_{n}\right\|_{\mathrm{H}_{\varepsilon_{n}}^{-1}} \rightarrow 0
$$

while $a_{1}, a_{2} \in \mathrm{C}(\Omega ; \mathbf{R}), a_{1}, a_{2} \neq 0$ everywhere.

Example 3: equations with characteristic length (1/2)

Let $\Omega \subseteq \mathbf{R}^{2}$ be open, and let $\mathbf{u}_{n}:=\left(u_{n}^{1}, u_{n}^{2}\right) \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
u_{n}^{1}+\varepsilon_{n} \partial_{x_{1}}\left(a_{1} u_{n}^{1}\right)=f_{n}^{1} \\
u_{n}^{2}+\varepsilon_{n} \partial_{x_{2}}\left(a_{2} u_{n}^{2}\right)=f_{n}^{2}
\end{array}\right.
$$

where $\varepsilon_{n} \rightarrow 0^{+}, \mathrm{f}_{n}:=\left(f_{n}^{1}, f_{n}^{2}\right) \in \mathrm{H}_{\mathrm{loc}}^{-1}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\|\varphi \mathrm{f}_{n}\right\|_{\mathrm{H}_{\varepsilon_{n}}^{-1}} \rightarrow 0
$$

while $a_{1}, a_{2} \in \mathrm{C}(\Omega ; \mathbf{R}), a_{1}, a_{2} \neq 0$ everywhere.
By the localisation principle for one-scale H -measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\varepsilon_{n}\right)$ (i.e. $c=1$) associated to (u_{n}) we get the relation

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{2 \pi i \xi_{1}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
a_{1}(\mathbf{x}) & 0 \\
0 & 0
\end{array}\right]+\frac{2 \pi i \xi_{2}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
0 & 0 \\
0 & a_{2}(\mathbf{x})
\end{array}\right]\right) \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

Example 3: equations with characteristic length (1/2)

Let $\Omega \subseteq \mathbf{R}^{2}$ be open, and let $\mathbf{u}_{n}:=\left(u_{n}^{1}, u_{n}^{2}\right) \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
u_{n}^{1}+\varepsilon_{n} \partial_{x_{1}}\left(a_{1} u_{n}^{1}\right)=f_{n}^{1} \\
u_{n}^{2}+\varepsilon_{n} \partial_{x_{2}}\left(a_{2} u_{n}^{2}\right)=f_{n}^{2}
\end{array}\right.
$$

where $\varepsilon_{n} \rightarrow 0^{+}, \mathrm{f}_{n}:=\left(f_{n}^{1}, f_{n}^{2}\right) \in \mathrm{H}_{\mathrm{loc}}^{-1}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\|\varphi \mathrm{f}_{n}\right\|_{\mathrm{H}_{n}^{-1}} \rightarrow 0
$$

while $a_{1}, a_{2} \in \mathrm{C}(\Omega ; \mathbf{R}), a_{1}, a_{2} \neq 0$ everywhere.
By the localisation principle for one-scale H -measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\varepsilon_{n}\right)$ (i.e. $c=1$) associated to (u_{n}) we get the relation

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{2 \pi i \xi_{1}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
a_{1}(\mathbf{x}) & 0 \\
0 & 0
\end{array}\right]+\frac{2 \pi i \xi_{2}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
0 & 0 \\
0 & a_{2}(\mathbf{x})
\end{array}\right]\right) \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

whose $(1,1)$ component reads

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}+i \frac{2 \pi \xi_{1}}{1+|\boldsymbol{\xi}|} a_{1}(\mathbf{x})\right) \mu_{\mathrm{K}_{0, \infty}}^{11}=0
$$

hence

$$
\frac{1}{1+|\boldsymbol{\xi}|} \mu_{\mathrm{K}_{0, \infty}}^{11}=0, \quad \frac{\xi_{1}}{1+|\boldsymbol{\xi}|} \mu_{\mathrm{K}_{0, \infty}}^{11}=0
$$

Example 3: equations with characteristic length (1/2)

Let $\Omega \subseteq \mathbf{R}^{2}$ be open, and let $\mathrm{u}_{n}:=\left(u_{n}^{1}, u_{n}^{2}\right) \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
u_{n}^{1}+\varepsilon_{n} \partial_{x_{1}}\left(a_{1} u_{n}^{1}\right)=f_{n}^{1} \\
u_{n}^{2}+\varepsilon_{n} \partial_{x_{2}}\left(a_{2} u_{n}^{2}\right)=f_{n}^{2}
\end{array}\right.
$$

where $\varepsilon_{n} \rightarrow 0^{+}, \mathrm{f}_{n}:=\left(f_{n}^{1}, f_{n}^{2}\right) \in \mathrm{H}_{\text {loc }}^{-1}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\|\varphi \mathbf{f}_{n}\right\|_{\mathrm{H}_{\varepsilon_{n}}^{-1}} \rightarrow 0,
$$

while $a_{1}, a_{2} \in \mathrm{C}(\Omega ; \mathbf{R}), a_{1}, a_{2} \neq 0$ everywhere.
By the localisation principle for one-scale H -measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\varepsilon_{n}\right)$ (i.e. $c=1$) associated to (\mathbf{u}_{n}) we get the relation

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{2 \pi i \xi_{1}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
a_{1}(\mathbf{x}) & 0 \\
0 & 0
\end{array}\right]+\frac{2 \pi i \xi_{2}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
0 & 0 \\
0 & a_{2}(\mathbf{x})
\end{array}\right]\right) \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

whose $(1,1)$ component reads

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}+i \frac{2 \pi \xi_{1}}{1+|\boldsymbol{\xi}|} a_{1}(\mathbf{x})\right) \mu_{\mathrm{K}_{0, \infty}}^{11}=0
$$

hence

$$
\operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{11} \subseteq \Omega \times \Sigma_{\infty}, \quad \frac{\xi_{1}}{1+|\boldsymbol{\xi}|} \mu_{\mathrm{K}_{0, \infty}}^{11}=0
$$

Example 3: equations with characteristic length (1/2)

Let $\Omega \subseteq \mathbf{R}^{2}$ be open, and let $\mathrm{u}_{n}:=\left(u_{n}^{1}, u_{n}^{2}\right) \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
u_{n}^{1}+\varepsilon_{n} \partial_{x_{1}}\left(a_{1} u_{n}^{1}\right)=f_{n}^{1} \\
u_{n}^{2}+\varepsilon_{n} \partial_{x_{2}}\left(a_{2} u_{n}^{2}\right)=f_{n}^{2}
\end{array}\right.
$$

where $\varepsilon_{n} \rightarrow 0^{+}, \mathrm{f}_{n}:=\left(f_{n}^{1}, f_{n}^{2}\right) \in \mathrm{H}_{\text {loc }}^{-1}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\|\varphi \mathbf{f}_{n}\right\|_{\mathrm{H}_{\varepsilon_{n}}^{-1}} \rightarrow 0,
$$

while $a_{1}, a_{2} \in \mathrm{C}(\Omega ; \mathbf{R}), a_{1}, a_{2} \neq 0$ everywhere.
By the localisation principle for one-scale H -measure $\mu_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\varepsilon_{n}\right)$ (i.e. $c=1$) associated to (\mathbf{u}_{n}) we get the relation

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{2 \pi i \xi_{1}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
a_{1}(\mathbf{x}) & 0 \\
0 & 0
\end{array}\right]+\frac{2 \pi i \xi_{2}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
0 & 0 \\
0 & a_{2}(\mathbf{x})
\end{array}\right]\right) \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

whose $(1,1)$ component reads

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}+i \frac{2 \pi \xi_{1}}{1+|\boldsymbol{\xi}|} a_{1}(\mathbf{x})\right) \mu_{\mathrm{K}_{0, \infty}}^{11}=0
$$

hence

$$
\operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{11} \subseteq \Omega \times \Sigma_{\infty}, \quad \operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{11} \subseteq \Omega \times\left(\Sigma_{0} \cup\left\{\xi_{1}=0\right\}\right)
$$

Example 3: equations with characteristic length (1/2)

Let $\Omega \subseteq \mathbf{R}^{2}$ be open, and let $\mathrm{u}_{n}:=\left(u_{n}^{1}, u_{n}^{2}\right) \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
u_{n}^{1}+\varepsilon_{n} \partial_{x_{1}}\left(a_{1} u_{n}^{1}\right)=f_{n}^{1} \\
u_{n}^{2}+\varepsilon_{n} \partial_{x_{2}}\left(a_{2} u_{n}^{2}\right)=f_{n}^{2}
\end{array}\right.
$$

where $\varepsilon_{n} \rightarrow 0^{+}, \mathrm{f}_{n}:=\left(f_{n}^{1}, f_{n}^{2}\right) \in \mathrm{H}_{\text {loc }}^{-1}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\|\varphi \mathbf{f}_{n}\right\|_{\mathrm{H}_{\varepsilon_{n}}^{-1}} \rightarrow 0,
$$

while $a_{1}, a_{2} \in \mathrm{C}(\Omega ; \mathbf{R}), a_{1}, a_{2} \neq 0$ everywhere.
By the localisation principle for one-scale H -measure $\mu_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\varepsilon_{n}\right)$ (i.e. $c=1$) associated to (\mathbf{u}_{n}) we get the relation

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{2 \pi i \xi_{1}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
a_{1}(\mathbf{x}) & 0 \\
0 & 0
\end{array}\right]+\frac{2 \pi i \xi_{2}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
0 & 0 \\
0 & a_{2}(\mathbf{x})
\end{array}\right]\right) \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

whose $(1,1)$ component reads

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}+i \frac{2 \pi \xi_{1}}{1+|\boldsymbol{\xi}|} a_{1}(\mathbf{x})\right) \mu_{\mathrm{K}_{0, \infty}}^{11}=0
$$

hence

$$
\operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{11} \subseteq \Omega \times \Sigma_{\infty}, \quad \operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{11} \subseteq \Omega \times\left(\Sigma_{0} \cup\left\{\xi_{1}=0\right\}\right)
$$

Example 3: equations with characteristic length (1/2)

Let $\Omega \subseteq \mathbf{R}^{2}$ be open, and let $\mathbf{u}_{n}:=\left(u_{n}^{1}, u_{n}^{2}\right) \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
u_{n}^{1}+\varepsilon_{n} \partial_{x_{1}}\left(a_{1} u_{n}^{1}\right)=f_{n}^{1} \\
u_{n}^{2}+\varepsilon_{n} \partial_{x_{2}}\left(a_{2} u_{n}^{2}\right)=f_{n}^{2}
\end{array}\right.
$$

where $\varepsilon_{n} \rightarrow 0^{+}, \mathrm{f}_{n}:=\left(f_{n}^{1}, f_{n}^{2}\right) \in \mathrm{H}_{\mathrm{loc}}^{-1}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\|\varphi \mathrm{f}_{n}\right\|_{\mathrm{H}_{\varepsilon_{n}}^{-1}} \rightarrow 0
$$

while $a_{1}, a_{2} \in \mathrm{C}(\Omega ; \mathbf{R}), a_{1}, a_{2} \neq 0$ everywhere.
By the localisation principle for one-scale H -measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\varepsilon_{n}\right)$ (i.e. $c=1$) associated to (u_{n}) we get the relation

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{2 \pi i \xi_{1}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
a_{1}(\mathbf{x}) & 0 \\
0 & 0
\end{array}\right]+\frac{2 \pi i \xi_{2}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
0 & 0 \\
0 & a_{2}(\mathbf{x})
\end{array}\right]\right) \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

whose $(1,1)$ component reads

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}+i \frac{2 \pi \xi_{1}}{1+|\boldsymbol{\xi}|} a_{1}(\mathbf{x})\right) \mu_{\mathrm{K}_{0, \infty}}^{11}=0
$$

hence

$$
\operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{11} \subseteq \Omega \times\left\{\infty^{(0,-1)}, \infty^{(0,1)}\right\}
$$

Example 3: equations with characteristic length (1/2)

Let $\Omega \subseteq \mathbf{R}^{2}$ be open, and let $\mathbf{u}_{n}:=\left(u_{n}^{1}, u_{n}^{2}\right) \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left\{\begin{array}{l}
u_{n}^{1}+\varepsilon_{n} \partial_{x_{1}}\left(a_{1} u_{n}^{1}\right)=f_{n}^{1} \\
u_{n}^{2}+\varepsilon_{n} \partial_{x_{2}}\left(a_{2} u_{n}^{2}\right)=f_{n}^{2}
\end{array}\right.
$$

where $\varepsilon_{n} \rightarrow 0^{+}, \mathrm{f}_{n}:=\left(f_{n}^{1}, f_{n}^{2}\right) \in \mathrm{H}_{\mathrm{loc}}^{-1}\left(\Omega ; \mathbf{C}^{2}\right)$ satisfies

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\|\varphi \mathrm{f}_{n}\right\|_{\mathrm{H}_{\varepsilon_{n}}^{-1}} \rightarrow 0
$$

while $a_{1}, a_{2} \in \mathrm{C}(\Omega ; \mathbf{R}), a_{1}, a_{2} \neq 0$ everywhere.
By the localisation principle for one-scale H -measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\varepsilon_{n}\right)$ (i.e. $c=1$) associated to (u_{n}) we get the relation

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{2 \pi i \xi_{1}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
a_{1}(\mathbf{x}) & 0 \\
0 & 0
\end{array}\right]+\frac{2 \pi i \xi_{2}}{1+|\boldsymbol{\xi}|}\left[\begin{array}{cc}
0 & 0 \\
0 & a_{2}(\mathbf{x})
\end{array}\right]\right) \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

whose $(1,1)$ component reads

$$
\left(\frac{1}{1+|\boldsymbol{\xi}|}+i \frac{2 \pi \xi_{1}}{1+|\boldsymbol{\xi}|} a_{1}(\mathbf{x})\right) \mu_{\mathrm{K}_{0, \infty}}^{11}=0
$$

hence

$$
\operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{11} \subseteq \Omega \times\left\{\infty^{(0,-1)}, \infty^{(0,1)}\right\}
$$

Example 3: equations with characteristic length (2/2)

Analogously, from the $(2,2)$ component we get

$$
\operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{22} \subseteq \Omega \times\left\{\infty^{(-1,0)}, \infty^{(1,0)}\right\}
$$

hence supp $\mu_{\mathrm{K}_{0, \infty}}^{11} \cap \operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{22}=\emptyset$ which implies $\mu_{\mathrm{K}_{0, \infty}}^{12}=\mu_{\mathrm{K}_{0, \infty}}^{21}=0$.

Example 3: equations with characteristic length (2/2)

Analogously, from the $(2,2)$ component we get

$$
\operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{22} \subseteq \Omega \times\left\{\infty^{(-1,0)}, \infty^{(1,0)}\right\}
$$

hence $\operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{11} \cap \operatorname{supp} \mu_{\mathrm{K}_{0, \infty}}^{22}=\emptyset$ which implies $\mu_{\mathrm{K}_{0, \infty}}^{12}=\mu_{\mathrm{K}_{0, \infty}}^{21}=0$.
The very definition of one-scale H-measures gives $u_{n}^{1} \overline{u_{n}^{2}} \xrightarrow{*} 0$.

This approach can be systematically generalised by introducing a variant of compensated compactness suitable for problems with characteristic length.

Compactness by compensation with a characteristic length

Let $\mathrm{u}_{n} \longrightarrow \mathrm{u}$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ satisfy

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n}
$$

where $\mathbf{A}_{n}^{\boldsymbol{\alpha}} \longrightarrow \mathbf{A}^{\boldsymbol{\alpha}}$ in $\mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{q} \times \mathrm{r}}(\mathbf{C})\right)$, let $\varepsilon_{n} \rightarrow 0^{+}$, and $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{q}\right)$ be such that for any $\varphi \in \mathrm{C}_{c}^{\infty}(\Omega)$

$$
\frac{\widehat{\varphi \mathrm{f}_{n}}}{1+k_{n}}
$$

is precompact in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right)$. Furthermore, let $Q(\mathbf{x} ; \boldsymbol{\lambda}):=\mathbf{Q}(\mathbf{x}) \boldsymbol{\lambda} \cdot \boldsymbol{\lambda}$, where $\mathbf{Q} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right), \mathbf{Q}^{*}=\mathbf{Q}$, is such that $Q\left(\cdot ; \mathbf{u}_{n}\right) \xrightarrow{*} \nu$ in $\mathcal{M}(\Omega)$.
Then we have
a) $(\exists c \in[0, \infty])\left(\forall(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) \mathbf{R}^{d}\right)\left(\forall \boldsymbol{\lambda} \in \Lambda_{c ; \mathbf{x}, \boldsymbol{\xi}}\right) Q(\mathbf{x} ; \boldsymbol{\lambda}) \geqslant 0 \quad \Longrightarrow$ $\nu \geqslant Q(\cdot, \mathbf{u})$,
b) $(\exists c \in[0, \infty])\left(\forall(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) \mathbf{R}^{d}\right)\left(\forall \boldsymbol{\lambda} \in \Lambda_{c ; \mathbf{x}, \boldsymbol{\xi}}\right) Q(\mathbf{x} ; \boldsymbol{\lambda})=0 \quad \Longrightarrow$ $\nu=Q(\cdot, \mathbf{u})$,
where

$$
\Lambda_{c ; \mathbf{x}, \boldsymbol{\xi}}:=\left\{\boldsymbol{\lambda} \in \mathbf{C}^{r}: \mathbf{p}_{c}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\lambda}=0\right\}
$$

and \mathbf{p}_{c} is given as before.

Outline

One-scale H-measures

$$
\Omega \subseteq \mathbf{R}^{d} \text { open }
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} u_{n^{\prime}}}(\boldsymbol{\xi}) \overline{\overline{\varphi_{2} v_{n^{\prime}}}(\boldsymbol{\xi})} \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The measure $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.

One-scale H-measures

$$
\Omega \subseteq \mathbf{R}^{d} \text { open }
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x}=\left\langle\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The measure $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.

$$
\mathcal{A}_{\psi}(u)=(\psi \hat{u})^{\vee}, \psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)
$$

One-scale H-

$$
\Omega \subseteq \mathbf{R}^{d} \text { open }
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p^{\prime}}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in E$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x}=\left\langle\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-distribution with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.
$\mathcal{A}_{\psi}(u)=(\psi \hat{u})^{\vee}, \psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$

One-scale H-distributions

$$
\Omega \subseteq \mathbf{R}^{d} \text { open, } p \in\langle 1, \infty\rangle, \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Theorem

If $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p}(\Omega), v_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{p^{\prime}}(\Omega)$ and $\omega_{n} \rightarrow 0^{+}$, then there exist $\left(u_{n^{\prime}}\right)$, $\left(v_{n^{\prime}}\right)$ and $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in E$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x}=\left\langle\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ is called the one-scale H-distribution with characteristic length $\left(\omega_{n^{\prime}}\right)$ associated to the (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.
$\mathcal{A}_{\psi}(u)=(\psi \hat{u})^{\vee}, \psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$

Determine E such that

- $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ is continuous
- The First commutation lemma is valid

Differential structure on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

For $\kappa \in \mathbf{N}_{0} \cup\{\infty\}$ let us define

$$
\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right):=\left\{\psi \in \mathrm{C}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right): \psi^{*}:=\psi \circ \mathcal{J}^{-1} \in \mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right)\right\} .
$$

It is not hard to check that $\mathrm{C}^{0}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ coincide.

Differential structure on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

For $\kappa \in \mathbf{N}_{0} \cup\{\infty\}$ let us define

$$
\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right):=\left\{\psi \in \mathrm{C}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right): \psi^{*}:=\psi \circ \mathcal{J}^{-1} \in \mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right)\right\} .
$$

It is not hard to check that $\mathrm{C}^{0}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ coincide.
For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we define $\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}:=\left\|\psi^{*}\right\|_{\mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right)}$.

$$
\begin{aligned}
\mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right) \text { Banach algebra } & \Longrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \text { Banach algebra } \\
A\left[0, r_{1}, 1\right] \text { compact } & \Longrightarrow \mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right) \text { separable } \\
& \Longrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \text { separable }
\end{aligned}
$$

Differential structure on $\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)$

For $\kappa \in \mathbf{N}_{0} \cup\{\infty\}$ let us define

$$
\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right):=\left\{\psi \in \mathrm{C}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right): \psi^{*}:=\psi \circ \mathcal{J}^{-1} \in \mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right)\right\} .
$$

It is not hard to check that $\mathrm{C}^{0}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ coincide.
For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we define $\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}:=\left\|\psi^{*}\right\|_{\mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right)}$.

$$
\begin{aligned}
\mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right) \text { Banach algebra } & \Longrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \text { Banach algebra } \\
A\left[0, r_{1}, 1\right] \text { compact } & \Longrightarrow \mathrm{C}^{\kappa}\left(A\left[0, r_{1}, 1\right]\right) \text { separable } \\
& \Longrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \text { separable }
\end{aligned}
$$

Is $\mathcal{A}_{\psi}=\left(\psi^{\bullet}\right)^{\vee}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ continuous?

Theorem (Hörmander-Mihlin)
If for $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ there exists $C>0$ such that

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}\right)\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d},|\boldsymbol{\alpha}| \leqslant \kappa\right) \quad\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right| \leqslant \frac{C}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}
$$

where $\kappa=\left\lfloor\frac{d}{2}\right\rfloor+1$, then ψ is a Fourier multiplier. Moreover, we have

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)} \leqslant C_{d} \max \left\{p, \frac{1}{p-1}\right\} C
$$

Theorem (Hörmander-Mihlin)

If for $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ there exists $C>0$ such that

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}\right)\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d},|\boldsymbol{\alpha}| \leqslant \kappa\right) \quad\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right| \leqslant \frac{C}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}
$$

where $\kappa=\left\lfloor\frac{d}{2}\right\rfloor+1$, then ψ is a Fourier multiplier. Moreover, we have

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)} \leqslant C_{d} \max \left\{p, \frac{1}{p-1}\right\} C
$$

We shall use Faá di Bruno formula: for sufficiently smooth functions $\mathrm{g}: \mathbf{R}^{d} \longrightarrow \mathbf{R}^{r}$ and $f: \mathbf{R}^{r} \longrightarrow \mathbf{R}$ we have

$$
\partial^{\boldsymbol{\alpha}}(f \circ \mathrm{~g})(\boldsymbol{\xi})=|\boldsymbol{\alpha}|!\sum_{1 \leqslant|\boldsymbol{\beta}| \leqslant|\boldsymbol{\alpha}|, \boldsymbol{\beta} \in \mathbf{N}_{0}^{r}} C(\boldsymbol{\beta}, \boldsymbol{\alpha}),
$$

where

$$
C(\boldsymbol{\beta}, \boldsymbol{\alpha})=\frac{\left(\partial^{\boldsymbol{\beta}} f\right)(\mathrm{g}(\boldsymbol{\xi}))}{\boldsymbol{\beta}!} \sum_{\substack{\sum_{i=1}^{r} \boldsymbol{\alpha}_{i}=\boldsymbol{\alpha}, \boldsymbol{\alpha}_{i} \in \mathbf{N}_{0}^{d}}} \prod_{j=1}^{r} \sum_{\substack{\sum_{i}^{\beta_{j}=1} \\ \boldsymbol{\gamma}_{i} \in \mathbf{N}_{0}^{d} \backslash\{0\}}} \prod_{s=1}^{\boldsymbol{\gamma}_{j}} \prod_{s=1} \frac{\partial^{\boldsymbol{\gamma}_{s}} g_{j}(\boldsymbol{\xi})}{\boldsymbol{\gamma}_{s}!} .
$$

Lemma

For every $j \in 1$..d and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ we have

$$
\partial^{\boldsymbol{\alpha}}\left(\mathcal{J}_{j}\right)(\boldsymbol{\xi})=P_{\boldsymbol{\alpha}}\left(\boldsymbol{\xi}, \frac{1}{|\boldsymbol{\xi}|}\right) K(\boldsymbol{\xi})^{-1-2|\boldsymbol{\alpha}|}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}
$$

where $P_{\boldsymbol{\alpha}}(\boldsymbol{\xi}, \eta)$ is a polynomial of degree less or equal to $|\boldsymbol{\alpha}|+1$ in $\boldsymbol{\xi}$ and $2|\boldsymbol{\alpha}|+1$ in η, in addition that in the expression $\lambda^{|\boldsymbol{\alpha}|} P_{\boldsymbol{\alpha}}\left(\lambda, \ldots, \lambda, \frac{1}{\lambda}\right)$ we do not have terms of the negative order. Precisely, polynomial $P_{\boldsymbol{\alpha}}(\boldsymbol{\xi}, \eta)$ has only terms of the form $C \boldsymbol{\xi}^{\boldsymbol{\beta}} \eta^{k}$ where $|\boldsymbol{\beta}|+|\boldsymbol{\alpha}| \geqslant k$.

Lemma

For every $j \in 1$..d and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ we have

$$
\left|\partial^{\boldsymbol{\alpha}}\left(\mathcal{J}_{j}\right)(\boldsymbol{\xi})\right| \leqslant \frac{C_{\boldsymbol{\alpha}, d}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}
$$

Theorem

Let $\kappa \in \mathbf{N}_{0}$. For every $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ such that $|\boldsymbol{\alpha}| \leqslant \kappa$ we have

$$
\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right| \leqslant C_{\kappa, d} \frac{\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}
$$

Theorem

Let $\kappa \in \mathbf{N}_{0}$. For every $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ such that $|\boldsymbol{\alpha}| \leqslant \kappa$ we have

$$
\left|\partial^{\alpha} \psi(\boldsymbol{\xi})\right| \leqslant C_{\kappa, d} \frac{\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d} .
$$

Theorem

Let $\kappa \in \mathbf{N}_{0}$. For every $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ such that $|\boldsymbol{\alpha}| \leqslant \kappa$ we have

$$
\left|\partial^{\alpha} \psi(\boldsymbol{\xi})\right| \leqslant C_{\kappa, d} \frac{\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}}{|\boldsymbol{\xi}|^{\mid \boldsymbol{\alpha}} \mid}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d} .
$$

Therefore, for $\kappa \geqslant\left\lfloor\frac{d}{2}\right\rfloor+1$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we have

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)} \leqslant C_{d, p}\|\psi\|_{\mathrm{C}^{k}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

Theorem

Let $\kappa \in \mathbf{N}_{0}$. For every $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ such that $|\boldsymbol{\alpha}| \leqslant \kappa$ we have

$$
\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right| \leqslant C_{\kappa, d} \frac{\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_{*}^{d}
$$

Therefore, for $\kappa \geqslant\left\lfloor\frac{d}{2}\right\rfloor+1$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we have

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)} \leqslant C_{d, p}\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

Lemma

i) $\mathcal{S}\left(\mathbf{R}^{d}\right) \hookrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, and
ii) $\left\{\psi \circ \pi: \psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)\right\} \hookrightarrow \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

Commutation lemma

$B_{\varphi} u:=\varphi u, \mathcal{A}_{\psi} u:=(\psi \hat{u})^{\vee}$.

Lemma

Let $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right), \kappa \geqslant\left\lfloor\frac{d}{2}\right\rfloor+1, \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator can be expressed as a sum

$$
C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=\tilde{C}_{n}+K
$$

where for any $p \in\langle 1, \infty\rangle$ we have that K is a compact operator on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, while $\tilde{C}_{n} \longrightarrow 0$ in the operator norm on $\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)$.

Commutation lemma

$B_{\varphi} u:=\varphi u, \mathcal{A}_{\psi} u:=(\psi \hat{u})^{\vee}$.

Lemma

Let $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right), \kappa \geqslant\left\lfloor\frac{d}{2}\right\rfloor+1, \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator can be expressed as a sum

$$
C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=\tilde{C}_{n}+K
$$

where for any $p \in\langle 1, \infty\rangle$ we have that K is a compact operator on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, while $\tilde{C}_{n} \longrightarrow 0$ in the operator norm on $\mathcal{L}\left(\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)\right)$.

Dem.

$$
\mathcal{A}_{\psi_{n}}=\underbrace{\mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}}_{\tilde{C}_{n}}+\underbrace{\mathcal{A}_{\psi_{0} \circ \pi}}_{K},
$$

where $\boldsymbol{\pi}(\boldsymbol{\xi}):=\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}$ and

$$
\psi(\boldsymbol{\xi})-\left(\psi_{0} \circ \boldsymbol{\pi}\right)(\boldsymbol{\xi}) \longrightarrow 0, \quad|\boldsymbol{\xi}| \rightarrow 0
$$

Let $r \in\langle 1, \infty\rangle$ and $\theta \in\langle 0,1\rangle$ such that $\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{r}$.

Proof of Comm. Lemma: $\tilde{C}_{n}:=\mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}$

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad \tilde{C}_{n} \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Proof of Comm. Lemma: $\tilde{C}_{n}:=\mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}$

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad \tilde{C}_{n} \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 2009)

Let $\psi \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator $C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=B_{\varphi} \mathcal{A}_{\psi_{n}}-\mathcal{A}_{\psi_{n}} B_{\varphi}$ tends to zero in the operator norm on $\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$.

Proof of Comm. Lemma: $\tilde{C}_{n}:=\mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}$

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad \tilde{C}_{n} \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 2009)

Let $\psi \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator $C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=B_{\varphi} \mathcal{A}_{\psi_{n}}-\mathcal{A}_{\psi_{n}} B_{\varphi}$ tends to zero in the operator norm on $\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$.

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right) \quad \Longrightarrow \quad \tilde{C}_{n} \longrightarrow 0 \text { in } \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)
$$

Proof of Comm. Lemma: $\tilde{C}_{n}:=\mathcal{A}_{\psi_{n}-\psi_{0} \circ \pi}$

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad \tilde{C}_{n} \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 2009)

Let $\psi \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$.
Then the commutator $C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=B_{\varphi} \mathcal{A}_{\psi_{n}}-\mathcal{A}_{\psi_{n}} B_{\varphi}$ tends to zero in the operator norm on $\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$.

$$
\psi_{n}-\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}_{u b}\left(\mathbf{R}^{d}\right) \quad \Longrightarrow \quad \tilde{C}_{n} \longrightarrow 0 \text { in } \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)
$$

By the Riesz-Thorin interpolation theorem we have

$$
\left\|\tilde{C}_{n}\right\|_{\mathcal{L}\left(\mathbf{L}^{p}\left(\mathbf{R}^{d}\right)\right)} \leqslant\left\|\tilde{C}_{n}\right\|_{\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)}^{\theta}\left\|\tilde{C}_{n}\right\|_{\mathcal{L}\left(\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)\right)}^{1-\theta},
$$

implying $\tilde{C}_{n} \longrightarrow 0$ in the operator norm on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.

Proof of Comm. Lemma: $K:=\mathcal{A}_{\psi_{0} \circ \pi}$

$$
\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad K \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Proof of Comm. Lemma: $K:=\mathcal{A}_{\psi_{0} \circ \pi}$

$$
\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad K \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 1990)

For $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ and $\varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ the commutator $C:=\left[B_{\varphi}, \mathcal{A}_{\psi}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.

Proof of Comm. Lemma: $K:=\mathcal{A}_{\psi_{0} \circ \pi}$

$$
\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad K \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 1990)

For $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ and $\varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ the commutator $C:=\left[B_{\varphi}, \mathcal{A}_{\psi}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.

$$
\psi_{0} \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right) \quad \Longrightarrow \quad K \text { compact on } \mathrm{L}^{2}\left(\mathbf{R}^{d}\right)
$$

Proof of Comm. Lemma: $K:=\mathcal{A}_{\psi_{0} o \pi}$

$$
\psi_{0} \circ \boldsymbol{\pi} \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right) \quad \Longrightarrow \quad K \text { bounded on } \mathrm{L}^{r}\left(\mathbf{R}^{d}\right)
$$

Lemma (Tartar, 1990)

For $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ and $\varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ the commutator $C:=\left[B_{\varphi}, \mathcal{A}_{\psi}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.

$$
\psi_{0} \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right) \quad \Longrightarrow \quad K \text { compact on } \mathrm{L}^{2}\left(\mathbf{R}^{d}\right)
$$

Lemma (Antonić, Mišur, Mitrović, 2016)

Let A be compact on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and bounded on $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 1, \infty\rangle \backslash\{2\}$. Then A is also compact on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any p between 2 and r (i.e. such that $1 / p=\theta / 2+(1-\theta) / r$, for some $\theta \in\langle 0,1\rangle$).

$$
\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{r} \quad \Longrightarrow \quad K \text { compact on } \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

One-scale H-distributions

Theorem

If $u_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{p}(\Omega)$ and $\left(v_{n}\right)$ is bounded in $\mathrm{L}_{\mathrm{loc}}^{q}(\Omega)$, for some $p \in\langle 1, \infty\rangle$ and $q \geqslant p^{\prime}$, and $\omega_{n} \rightarrow 0^{+}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex distribution of finite order $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, where $\kappa=\left\lfloor\frac{d}{2}\right\rfloor+1$, we have

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right) \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \varphi_{1} u_{n^{\prime}} \overline{\mathcal{A}_{\bar{\psi}_{n^{\prime}}}\left(\varphi_{2} v_{n^{\prime}}\right)} d \mathbf{x} \\
& =\left\langle\nu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
\end{aligned}
$$

where $\psi_{n}:=\psi\left(\omega_{n} \cdot\right)$. The distribution $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ we call one-scale H-distribution (with characteristic length $\left(\omega_{n^{\prime}}\right)$) associated to (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.

One-scale H-distributions

Theorem

If $u_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{p}(\Omega)$ and $\left(v_{n}\right)$ is bounded in $\mathrm{L}_{\mathrm{loc}}^{q}(\Omega)$, for some $p \in\langle 1, \infty\rangle$ and $q \geqslant p^{\prime}$, and $\omega_{n} \rightarrow 0^{+}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex distribution of finite order $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, where $\kappa=\left\lfloor\frac{d}{2}\right\rfloor+1$, we have

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right) \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \varphi_{1} u_{n^{\prime}} \overline{\mathcal{A}_{\bar{\psi}_{n^{\prime}}}\left(\varphi_{2} v_{n^{\prime}}\right)} d \mathbf{x} \\
& =\left\langle\nu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
\end{aligned}
$$

where $\psi_{n}:=\psi\left(\omega_{n} \cdot\right)$. The distribution $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}$ we call one-scale H-distribution (with characteristic length $\left(\omega_{n^{\prime}}\right)$) associated to (sub)sequences $\left(u_{n^{\prime}}\right)$ and $\left(v_{n^{\prime}}\right)$.

$$
\int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right) \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x}=\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle
$$

K_{m} compacts such that $K_{m} \subseteq \operatorname{lnt} K_{m+1}$ and $\bigcup_{m} K_{m}=\Omega$.

The existence of one-scale H-distributions: proof $1 / 2$

For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ such that $\operatorname{supp} \varphi_{1}, \operatorname{supp} \varphi_{2} \subseteq K_{m}$, we have

$$
\left|\left\langle\varphi_{2} v_{n}, \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n}\right)\right\rangle\right| \leqslant C_{m, d}\left\|\varphi_{1}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\left\|\varphi_{2}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

The existence of one-scale H-distributions: proof $1 / 2$

For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ such that $\operatorname{supp} \varphi_{1}, \operatorname{supp} \varphi_{2} \subseteq K_{m}$, we have

$$
\left|\left\langle\varphi_{2} v_{n}, \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n}\right)\right\rangle\right| \leqslant C_{m, d}\left\|\varphi_{1}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\left\|\varphi_{2}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

By the Cantor diagonal procedure (we have separability) ... we get trilinear form L :

$$
L\left(\varphi_{1}, \varphi_{2}, \psi\right)=\lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle
$$

The existence of one-scale H-distributions: proof $1 / 2$

For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ and $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ such that $\operatorname{supp} \varphi_{1}, \operatorname{supp} \varphi_{2} \subseteq K_{m}$, we have

$$
\left|\left\langle\varphi_{2} v_{n}, \mathcal{A}_{\psi_{n}}\left(\varphi_{1} u_{n}\right)\right\rangle\right| \leqslant C_{m, d}\left\|\varphi_{1}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\left\|\varphi_{2}\right\|_{\mathrm{L}^{\infty}\left(K_{m}\right)}\|\psi\|_{\mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)} .
$$

By the Cantor diagonal procedure (we have separability) ... we get trilinear form L :

$$
L\left(\varphi_{1}, \varphi_{2}, \psi\right)=\lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle
$$

L depends only on the product $\varphi_{1} \bar{\varphi}_{2}: \zeta_{i} \in \mathrm{C}_{c}(\Omega)$ such that $\zeta_{i} \equiv 1$ on $\operatorname{supp} \varphi_{i}$, $i=1,2$,

$$
\begin{aligned}
& \lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle=\lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \varphi_{1} \mathcal{A}_{\psi_{n^{\prime}}}\left(\zeta_{1} u_{n}\right)\right\rangle \\
&=\lim _{n^{\prime}}\left\langle\bar{\varphi}_{1} \varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\zeta_{1} u_{n}\right)\right\rangle \\
&=\lim _{n^{\prime}}\left\langle\zeta_{1} \zeta_{2} v_{n^{\prime}}, \varphi_{1} \bar{\varphi}_{2} \mathcal{A}_{\psi_{n^{\prime}}}\left(\zeta_{1} u_{n}\right)\right\rangle \\
&=\lim _{n^{\prime}}\left\langle\zeta_{1} \zeta_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} \bar{\varphi}_{2} u_{n}\right)\right\rangle \\
& \Longrightarrow \quad L\left(\varphi_{1}, \varphi_{2}, \psi\right)=L\left(\varphi_{1} \bar{\varphi}_{2}, \zeta_{1} \zeta_{2}, \psi\right) .
\end{aligned}
$$

The existence of one-scale H-distributions: proof $2 / 2$

For $\varphi \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we define

$$
\mathcal{L}(\varphi, \psi):=L(\varphi, \zeta, \psi),
$$

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$.
\mathcal{L} is continuous bilinear form on $\mathrm{C}_{c}(\Omega) \times \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

The existence of one-scale H-distributions: proof 2/2

For $\varphi \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we define

$$
\mathcal{L}(\varphi, \psi):=L(\varphi, \zeta, \psi),
$$

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$.
\mathcal{L} is continuous bilinear form on $\mathrm{C}_{c}(\Omega) \times \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

Theorem

Let $\Omega \subseteq \mathbf{R}^{d}$ be open, and let B be a continuous bilinear form on $\mathrm{C}_{c}^{\infty}(\Omega) \times \mathrm{C}^{\infty}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$. Then there exists a unique distribution $\nu \in \mathcal{D}^{\prime}\left(\Omega \times K_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that

$$
\left(\forall f \in \mathrm{C}_{c}^{\infty}(\Omega)\right)\left(\forall g \in \mathrm{C}^{\infty}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)\right) \quad B(f, g)=\langle\nu, f \boxtimes g\rangle .
$$

Moreover, if B is continuous on $\mathrm{C}_{c}^{k}(\Omega) \times \mathrm{C}^{l}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ for some $k, l \in \mathbf{N}_{0}, \nu$ is of a finite order $q \leqslant k+l+2 d+1$.

The existence of one-scale H-distributions: proof 2/2

For $\varphi \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ we define

$$
\mathcal{L}(\varphi, \psi):=L(\varphi, \zeta, \psi),
$$

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$.
\mathcal{L} is continuous bilinear form on $\mathrm{C}_{c}(\Omega) \times \mathrm{C}^{\kappa}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

Theorem

Let $\Omega \subseteq \mathbf{R}^{d}$ be open, and let B be a continuous bilinear form on $\mathrm{C}_{c}^{\infty}(\Omega) \times \mathrm{C}^{\infty}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$. Then there exists a unique distribution $\nu \in \mathcal{D}^{\prime}\left(\Omega \times K_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that

$$
\left(\forall f \in \mathrm{C}_{c}^{\infty}(\Omega)\right)\left(\forall g \in \mathrm{C}^{\infty}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)\right) \quad B(f, g)=\langle\nu, f \boxtimes g\rangle .
$$

Moreover, if B is continuous on $\mathrm{C}_{c}^{k}(\Omega) \times \mathrm{C}^{l}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ for some $k, l \in \mathbf{N}_{0}, \nu$ is of a finite order $q \leqslant k+l+2 d+1$.

Therefore, we have that there exists $\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)} \in \mathcal{D}_{\kappa+2 d+1}^{\prime}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$ such that

$$
\begin{aligned}
\left\langle\nu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n^{\prime}}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle & =\mathcal{L}\left(\varphi_{1} \bar{\varphi}_{2}, \psi\right) \\
& =L\left(\varphi_{1} \bar{\varphi}_{2}, \zeta_{1} \zeta_{2}, \psi\right) \\
& =L\left(\varphi_{1}, \varphi_{2}, \psi\right)=\lim _{n^{\prime}}\left\langle\varphi_{2} v_{n^{\prime}}, \mathcal{A}_{\psi_{n^{\prime}}}\left(\varphi_{1} u_{n^{\prime}}\right)\right\rangle
\end{aligned}
$$

Localisation principle: assumptions

$$
\begin{aligned}
\mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right) & :=\left\{u \in \mathcal{S}^{\prime}: \mathcal{A}_{\left(1+|\xi|^{2}\right)^{\frac{s}{2}}} u \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)\right\} \\
\mathrm{H}_{\mathrm{loc}}^{s, p}(\Omega) & :=\left\{u \in \mathcal{D}^{\prime}:\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \varphi u \in \mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right)\right\}
\end{aligned}
$$

Localisation principle: assumptions

$$
\begin{aligned}
\mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right) & :=\left\{u \in \mathcal{S}^{\prime}: \mathcal{A}_{\left(1+|\xi|^{2} \frac{s}{2}\right.} u \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)\right\} \\
\mathrm{H}_{\mathrm{loc}}^{s, p}(\Omega) & :=\left\{u \in \mathcal{D}^{\prime}:\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \varphi u \in \mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right)\right\}
\end{aligned}
$$

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{p}\left(\Omega ; \mathbf{C}^{r}\right), p \in\langle 1, \infty\rangle$, and

$$
\sum_{0 \leqslant|\alpha| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\alpha} \in \mathrm{C}^{\infty}\left(\Omega ; \mathrm{M}_{\mathrm{q} \times \mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m, p}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \mathcal{A}_{\left(1+\left|\varepsilon_{n} \xi\right|^{2}\right)^{-\frac{m}{2}}}\left(\varphi \mathrm{f}_{n}\right) \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right)
$$

Localisation principle: assumptions

$$
\begin{aligned}
\mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right) & :=\left\{u \in \mathcal{S}^{\prime}: \mathcal{A}_{\left(1+|\xi|^{2} \frac{s}{2}\right.} u \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)\right\} \\
\mathrm{H}_{\mathrm{loc}}^{s, p}(\Omega) & :=\left\{u \in \mathcal{D}^{\prime}:\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \varphi u \in \mathrm{H}^{s, p}\left(\mathbf{R}^{d}\right)\right\}
\end{aligned}
$$

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {floc }}^{p}\left(\Omega ; \mathbf{C}^{r}\right), p \in\langle 1, \infty\rangle$, and

$$
\sum_{0 \leqslant|\alpha| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\alpha} \in \mathrm{C}^{\infty}\left(\Omega ; \mathrm{M}_{\mathrm{q} \times \mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\text {lac }}^{-m, p}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\begin{equation*}
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \mathcal{A}_{\left(1+\left|\varepsilon_{n} \xi\right|^{2}\right)^{-\frac{m}{2}}\left(\varphi f_{n}\right) \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right) ~} \tag{**}
\end{equation*}
$$

$$
\begin{aligned}
& \left(1+|\boldsymbol{\xi}|^{2}\right)^{-\frac{m}{2}} \text { is a Fourier multiplier } \\
& \left|\partial^{\alpha}\left(\left(\frac{1+\left|\varepsilon_{n} \boldsymbol{\xi}\right|^{2}}{1+|\boldsymbol{\xi}|^{2}}\right)^{\frac{m}{2}}\right)\right| \leqslant \frac{2^{\kappa}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}} \Longrightarrow\left(\mathrm{f}_{n} \xrightarrow{\mathrm{~L}_{\mathrm{oc}}^{p}} 0 \quad \Longrightarrow \quad(\star \star) \quad \Longrightarrow \quad \mathrm{f}_{n} \xrightarrow{\mathrm{H}_{\mathrm{oc}}^{-m, p}} 0\right)
\end{aligned}
$$

Localisation principle

Theorem

Under previous assumptions let $\left(\mathrm{v}_{n}\right)$ be a bounded sequence in $\mathrm{L}_{\mathrm{loc}}^{p^{\prime}}\left(\Omega ; \mathbf{C}^{r}\right)$. Then one-scale H-distribution $\nu_{\mathrm{K}_{0, \infty}}$ associated to (sub)sequences (v_{n}) and $\left(\mathbf{u}_{n}\right)$ with characteristic length $\left(\varepsilon_{n}\right)$ satisfies:

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\nu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{\left(1+|\boldsymbol{\xi}|^{2}\right)^{\frac{m}{2}+q+1}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}),
$$

while q is order of $\nu_{\mathrm{K}_{0, \infty}}$.

Localisation principle

Theorem

Under previous assumptions let $\left(\mathrm{v}_{n}\right)$ be a bounded sequence in $\mathrm{L}_{\mathrm{loc}}^{p^{\prime}}\left(\Omega ; \mathbf{C}^{r}\right)$. Then one-scale H-distribution $\nu_{\mathrm{K}_{0, \infty}}$ associated to (sub)sequences (v_{n}) and $\left(\mathrm{u}_{n}\right)$ with characteristic length $\left(\varepsilon_{n}\right)$ satisfies:

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\nu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{\left(1+|\boldsymbol{\xi}|^{2}\right)^{\frac{m}{2}+q+1}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})
$$

while q is order of $\boldsymbol{\nu}_{\mathrm{K}_{0, \infty}}$.

Dem. Multiplying (\star) by $\varphi \in \mathrm{C}_{c}^{\infty}(\Omega)$ and using the Leibniz rule we get

$$
\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m} \sum_{0 \leqslant \boldsymbol{\beta} \leqslant \boldsymbol{\alpha}}(-1)^{|\boldsymbol{\beta}|}\binom{\boldsymbol{\alpha}}{\boldsymbol{\beta}} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}-\boldsymbol{\beta}}\left(\left(\partial_{\boldsymbol{\beta}} \varphi\right) \mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\varphi \mathrm{f}_{n}
$$

Localisation principle: proof $1 / 2$

Lemma

Let $\left(\varepsilon_{n}\right)$ be a sequence in \mathbf{R}^{+}bounded from above and let $\left(\mathrm{f}_{n}\right)$ be a sequence of vector valued functions such that for some $k \in 0 . . m$ it converges strongly to zero in $\mathrm{H}^{-k, p}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right)$. Then $\left(\varepsilon_{n}^{k} \mathrm{f}_{n}\right)$ satisfies ($\star \star$).

$$
\boldsymbol{\beta} \neq 0 \quad \Longrightarrow \quad \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}-\boldsymbol{\beta}}\left(\left(\partial_{\boldsymbol{\beta}} \varphi\right) \mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right) \text { satisfies }(\star \star)
$$

Localisation principle: proof $1 / 2$

Lemma

Let $\left(\varepsilon_{n}\right)$ be a sequence in \mathbf{R}^{+}bounded from above and let $\left(\mathrm{f}_{n}\right)$ be a sequence of vector valued functions such that for some $k \in 0 . . m$ it converges strongly to zero in $\mathrm{H}^{-k, p}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right)$. Then $\left(\varepsilon_{n}^{k} \mathrm{f}_{n}\right)$ satisfies ($\star \star$).

$$
\boldsymbol{\beta} \neq 0 \quad \Longrightarrow \quad \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}-\boldsymbol{\beta}}\left(\left(\partial_{\boldsymbol{\beta}} \varphi\right) \mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right) \text { satisfies }(\star \star)
$$

Thus, we have

$$
\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \varphi \mathbf{u}_{n}\right)=\tilde{\mathrm{f}}_{n}
$$

where $\left(\tilde{f}_{n}\right)$ satisfies $(\star \star)$.

Localisation principle: proof $1 / 2$

Lemma

Let $\left(\varepsilon_{n}\right)$ be a sequence in \mathbf{R}^{+}bounded from above and let $\left(f_{n}\right)$ be a sequence of vector valued functions such that for some $k \in 0 . . m$ it converges strongly to zero in $\mathrm{H}^{-k, p}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right)$. Then $\left(\varepsilon_{n}^{k} \mathrm{f}_{n}\right)$ satisfies ($\star \star$).

$$
\boldsymbol{\beta} \neq 0 \quad \Longrightarrow \quad \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}-\boldsymbol{\beta}}\left(\left(\partial_{\boldsymbol{\beta}} \varphi\right) \mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right) \text { satisfies }(\star \star)
$$

Thus, we have

$$
\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \varphi \mathbf{u}_{n}\right)=\tilde{\mathrm{f}}_{n}
$$

where $\left(\tilde{f}_{n}\right)$ satisfies $(\star \star)$.

Lemma

For $m \in \mathbf{N}$ and $\boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}$ such that $m \geqslant 2 q+|\boldsymbol{\alpha}|+2$ we have
$\frac{\boldsymbol{\xi}^{\alpha}}{\left(1+|\boldsymbol{\xi}|^{2}\right)^{\frac{m}{2}}} \in \mathrm{C}^{q}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.

$$
(\forall|\boldsymbol{\alpha}| \leqslant m) \quad \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{\left(1+|\boldsymbol{\xi}|^{2}\right)^{\frac{m}{2}+q+1}} \in \mathrm{C}^{q}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)
$$

Localisation principle: proof $2 / 2$

Applying $\mathcal{A}_{\psi_{n}^{m+2 q+2,0}}$ we get

$$
\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m} \mathcal{A}_{(2 \pi i)|\boldsymbol{\alpha}|} \psi_{n}^{m+2 q+2, \boldsymbol{\alpha}}\left(\varphi \mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right)
$$

where $\psi_{n}^{m+2 q+2, \boldsymbol{\alpha}}:=\frac{\left(\varepsilon_{n} \boldsymbol{\xi}\right)^{\boldsymbol{\alpha}}}{\left(1+\left|\varepsilon_{n} \boldsymbol{\xi}\right|^{2}\right)^{\frac{m}{2}+q+1}}$.

Localisation principle: proof 2/2

Applying $\mathcal{A}_{\psi_{n}^{m+2 q+2,0}}$ we get

$$
\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m} \mathcal{A}_{(2 \pi i)|\boldsymbol{\alpha}| \psi_{n}^{m+2 q+2, \boldsymbol{\alpha}}}\left(\varphi \mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{q}\right)
$$

where $\psi_{n}^{m+2 q+2, \boldsymbol{\alpha}}:=\frac{\left(\varepsilon_{n} \boldsymbol{\xi}\right)^{\boldsymbol{\alpha}}}{\left(1+\left|\varepsilon_{n} \boldsymbol{\xi}\right|^{2}\right)^{\frac{m}{2}+q+1}}$.
After applying $\mathcal{A}_{\psi\left(\varepsilon_{n} \cdot\right)}$, for $\psi \in \mathrm{C}^{q}\left(\mathrm{~K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, to the above sum, forming a tensor product with $\varphi_{1} \mathrm{v}_{n}$, for $\varphi_{1} \in \mathrm{C}_{c}^{\infty}(\Omega)$, and taking the complex conjugation, for the (i, j) component of the above sum we get

$$
\begin{aligned}
0 & =\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m} \sum_{s=1}^{d} \overline{\lim _{n} \int_{\mathbf{R}^{d}} \mathcal{A}_{(2 \pi i)^{|\boldsymbol{\alpha}|} \psi_{n} \psi_{n}^{m+2 q+2, \boldsymbol{\alpha}}}\left(\varphi A_{j s}^{\boldsymbol{\alpha}} u_{n}^{s}\right) \overline{\varphi_{1} v_{n}^{k}} d \mathbf{x}} \\
& =\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m} \sum_{s=1}^{d}\left\langle(2 \pi i)^{|\boldsymbol{\alpha}|} \psi^{m+2 q+2, \boldsymbol{\alpha}} A_{j s}^{\boldsymbol{\alpha}} \nu_{\mathrm{K}_{0, \infty}}^{k s}, \bar{\varphi} \varphi_{1} \boxtimes \bar{\psi}\right\rangle \\
& =\left\langle\sum_{0 \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{\left(1+|\boldsymbol{\xi}|^{2}\right)^{\frac{m}{2}+q+1}}\left[\mathbf{A}^{\boldsymbol{\alpha}} \boldsymbol{\nu}_{\mathrm{K}_{0, \infty}}^{\top}\right]_{j k}, \bar{\varphi} \varphi_{1} \boxtimes \bar{\psi}\right\rangle .
\end{aligned}
$$

Outline

Example 4: oscillations - two characteristic length

$$
0<\alpha<\beta, \mathrm{k}, \mathrm{~s} \in \mathbf{Z}^{d} \backslash\{0\},
$$

$$
u_{n}(\mathbf{x}):=e^{2 \pi i\left(n^{\alpha} \mathrm{s}+n^{\beta} \mathrm{k}\right) \cdot \mathbf{x}} \xrightarrow{\mathrm{L}_{\mathrm{loc}}^{2}} 0, n \rightarrow \infty
$$

Example 4: oscillations - two characteristic length

$0<\alpha<\beta, \mathbf{k}, \mathbf{s} \in \mathbf{Z}^{d} \backslash\{0\}$,

$$
\begin{aligned}
& u_{n}(\mathbf{x}):=e^{2 \pi i\left(n^{\alpha}+n^{\beta} \mathrm{k}\right) \cdot \mathbf{x}} \xrightarrow{\mathrm{L}_{\text {loc }}^{2}} 0, n \rightarrow \infty \\
& \mu_{H}=\lambda(\mathbf{x}) \boxtimes \delta_{\frac{k}{|k|}}(\boldsymbol{\xi}) \\
& \mu_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)}=\lambda(\mathbf{x}) \boxtimes\left\{\begin{array}{cc}
\delta_{0^{\frac{k}{|k|}}(\boldsymbol{\xi})}, & \lim _{n} n^{\beta} \omega_{n}=0 \\
\delta_{c k}(\boldsymbol{\xi}) & , \quad \lim _{n} n^{\beta} \omega_{n}=c \in\langle 0, \infty\rangle \\
\delta_{\infty^{\frac{k}{k \mid}}(\boldsymbol{\xi})}, & \lim _{n} n^{\beta} \omega_{n}=\infty
\end{array}\right.
\end{aligned}
$$

Lower order term n^{α} and corresponding direction of oscillations s we cannot resemble in any case.
Therefore, we need some new methods and/or tools.

Multi-scale H-measures and variants

In [T3] Tartar introduced multi-scale objects, called multi-scale H-measures. $\omega_{n}^{1}, \ldots, \omega_{n}^{l} \rightarrow 0^{+}, \varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega), \psi \in \mathrm{C}_{0}\left(\mathbf{R}^{l d}\right):$

Our approach: instead of $\psi\left(\omega_{n^{\prime}}^{1} \boldsymbol{\xi}, \ldots, \omega_{n}^{l}, \boldsymbol{\xi}\right)$ work with $\psi\left(\omega_{n}^{1} \xi_{1}, \ldots, \omega_{n}^{d} \xi_{d}\right)$.
For example, starting from parabolic H -measure construct parabolic one-scale H -measure (an object with two scales in the ratio 1:2).

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d+1}} \widehat{\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}}(\tau, \boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\tau, \boldsymbol{\xi}) \psi\left(\varepsilon_{n^{\prime}}^{2} \tau, \varepsilon_{n^{\prime}} \boldsymbol{\xi}\right) d \tau d \boldsymbol{\xi}=\left\langle\boldsymbol{\nu}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

[T3] Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems - Series S (2015)

References \& The End :) (thank you all)

Nenad Antonić, M.E., Martin Lazar: Localisation principle for one-scale H-measures, submitted (arXiv:1504.03956).

Patrick Gérard: Microlocal defect measures, Comm. Partial Diff. Eq., 16 (1991) 1761-1794.

Patrick GÉrard: Mesures semi-classiques et ondes de Bloch, Sem. EDP 1990-91 (exp. 16), (1991)

Pierre Louis Lions, Thierry Paul: Sur les measures de Wigner, Revista Mat. Iberoamericana 9, (1993) 553-618

Luc TARTAR: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proceedings of the Royal Society of Edinburgh, 115A (1990) 193-230.

Luc Tartar: The general theory of homogenization: A personalized introduction, Springer (2009)

Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77-90.

