The propagation principle for fractional H -measures

Marko Erceg
Department of Mathematics, Faculty of Science University of Zagreb

Zagreb, $14^{\text {th }}$ June, 2016

Joint work with Ivan Ivec

WeConMApp

Scalar first order pde

Let $\Omega \subseteq \mathbf{R}^{d}$ open and $u_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega)$ satisfies

$$
\mathrm{b} \cdot \nabla u_{n}+c u_{n}=f_{n},
$$

where $\mathrm{b} \in \mathrm{C}^{1}\left(\Omega ; \mathbf{R}^{d}\right), c \in \mathrm{C}(\Omega)$, and $f_{n} \longrightarrow 0$ in $\mathrm{H}_{\mathrm{loc}}^{-1}(\Omega)$.

Scalar first order pde

Let $\Omega \subseteq \mathbf{R}^{d}$ open and $u_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega)$ satisfies

$$
\mathrm{b} \cdot \nabla u_{n}+c u_{n}=f_{n},
$$

where $\mathrm{b} \in \mathrm{C}^{1}\left(\Omega ; \mathbf{R}^{d}\right), c \in \mathrm{C}(\Omega)$, and $f_{n} \longrightarrow 0$ in $\mathrm{H}_{\mathrm{loc}}^{-1}(\Omega)$.

Theorem (Tartar, 1990)

If $\mathrm{u}_{n} \rightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, then there exist a subsequence ($\left.\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu} \in \mathcal{M}\left(\Omega \times \mathrm{S}^{d-1} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ we have

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

Measure $\boldsymbol{\mu}$ we call the H-measure corresponding to the (sub)sequence $\left(\mathrm{u}_{n}\right)$.

Scalar first order pde

Let $\Omega \subseteq \mathbf{R}^{d}$ open and $u_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega)$ satisfies

$$
\mathrm{b} \cdot \nabla u_{n}+c u_{n}=f_{n},
$$

where $\mathrm{b} \in \mathrm{C}^{1}\left(\Omega ; \mathbf{R}^{d}\right), c \in \mathrm{C}(\Omega)$, and $f_{n} \longrightarrow 0$ in $\mathrm{H}_{\mathrm{loc}}^{-1}(\Omega)$.

Theorem (Tartar, 1990)

If $\mathrm{u}_{n} \rightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, then there exist a subsequence ($\left.\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu} \in \mathcal{M}\left(\Omega \times \mathrm{S}^{d-1} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ we have

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

Measure $\boldsymbol{\mu}$ we call the H-measure corresponding to the (sub)sequence $\left(\mathrm{u}_{n}\right)$.
$\mu \sim u_{n}$
What we can tell about (the support) of μ ?

Localisation principle

Theorem (Tartar, 1990)

Let $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, and let for a given $m \in \mathbf{N}$

$$
\sum_{|\alpha| \leqslant m} \partial_{\alpha}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { strongly in } \quad \mathrm{H}_{\text {loc }}^{-m}\left(\Omega ; \mathbf{C}^{q}\right),
$$

where $\mathbf{A}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{q \times r}(\mathbf{C})\right)$, then for the associated H -measure $\boldsymbol{\mu}$ we have

$$
\mathbf{p}_{p r} \boldsymbol{\mu}^{\top}=\mathbf{0},
$$

where

$$
\mathbf{p}_{p r}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{|\alpha|=m}(2 \pi i)^{m} \boldsymbol{\xi}^{\alpha} \mathbf{A}^{\alpha}(\mathbf{x}), \quad(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathrm{S}^{d-1}
$$

Localisation principle

Theorem (Tartar, 1990)

Let $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, and let for a given $m \in \mathbf{N}$

$$
\sum_{|\alpha| \leqslant m} \partial_{\alpha}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { strongly in } \quad \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{q}\right),
$$

where $\mathbf{A}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{q \times r}(\mathbf{C})\right)$, then for the associated H-measure $\boldsymbol{\mu}$ we have

$$
\mathbf{p}_{p r} \boldsymbol{\mu}^{\top}=\mathbf{0},
$$

where

$$
\mathbf{p}_{p r}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{|\alpha|=m}(2 \pi i)^{m} \boldsymbol{\xi}^{\alpha} \mathbf{A}^{\alpha}(\mathbf{x}), \quad(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathrm{S}^{d-1}
$$

$$
\operatorname{div}\left(\mathbf{b} u_{n}\right)+(c-\operatorname{div} \mathbf{b}) u_{n}=f_{n} \quad \Longrightarrow \quad \underbrace{(\boldsymbol{\xi} \cdot \mathbf{b})}_{p} \mu=0
$$

Propagation principle for $\mathrm{b} \cdot \nabla u_{n}+c u_{n}=f_{n}$

If in addition we assume:

- $f_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega)\left(\boldsymbol{\nu} \sim\left(u_{n}, f_{n}\right)\right.$, thus $\left.\mu=\nu^{11}\right)$
- $\mathbf{b} \in X^{1}\left(\mathbf{R}^{d}\right):=\left\{b \in \mathcal{S}^{\prime}: k \hat{b} \in \mathrm{~L}^{1}\left(\mathbf{R}^{d}\right)\right\}$, where $k(\boldsymbol{\xi}):=\left(1+|2 \pi \boldsymbol{\xi}|^{2}\right)^{\frac{1}{2}}$ then we have

Theorem (Tartar, 1990)

$\left(\forall \Phi \in \mathrm{C}_{c}^{1}\left(\Omega \times \mathrm{S}^{d-1}\right)\right) \quad\langle\mu,\{\Phi, p\}\rangle+\langle(-\operatorname{div} \mathrm{b}+2 \operatorname{Re} c), \Phi\rangle=\left\langle 2 \operatorname{Re} \nu^{12}, \Phi\right\rangle$
Poisson bracket: $\{\psi, \varphi\}:=\nabla^{\xi} \psi \cdot \nabla_{\mathbf{x}} \varphi-\nabla_{\mathbf{x}} \psi \cdot \nabla^{\xi} \varphi$

Propagation principle for $\mathrm{b} \cdot \nabla u_{n}+c u_{n}=f_{n}$

If in addition we assume:

- $f_{n} \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega)\left(\boldsymbol{\nu} \sim\left(u_{n}, f_{n}\right)\right.$, thus $\left.\mu=\nu^{11}\right)$
- $\mathrm{b} \in X^{1}\left(\mathbf{R}^{d}\right):=\left\{b \in \mathcal{S}^{\prime}: k \hat{b} \in \mathrm{~L}^{1}\left(\mathbf{R}^{d}\right)\right\}$, where $k(\boldsymbol{\xi}):=\left(1+|2 \pi \boldsymbol{\xi}|^{2}\right)^{\frac{1}{2}}$ then we have

Theorem (Tartar, 1990)

$\left(\forall \Phi \in \mathrm{C}_{c}^{1}\left(\Omega \times \mathrm{S}^{d-1}\right)\right) \quad\langle\mu,\{\Phi, p\}\rangle+\langle(-\operatorname{div} \mathrm{b}+2 \operatorname{Re} c), \Phi\rangle=\left\langle 2 \operatorname{Re} \nu^{12}, \Phi\right\rangle$
Poisson bracket: $\{\psi, \varphi\}:=\nabla^{\boldsymbol{\xi}} \psi \cdot \nabla_{\mathbf{x}} \varphi-\nabla_{\mathbf{x}} \psi \cdot \nabla^{\boldsymbol{\xi}} \varphi$
Conclusion: Oscillations and concentration effects propagate along bicharacteristic rays defined by

$$
\left\{\begin{array}{l}
\frac{d \mathbf{x}}{d s}=\nabla^{\boldsymbol{\xi}} p \\
\frac{d \boldsymbol{\xi}}{d s}=-\nabla_{\mathbf{x}} p
\end{array}\right.
$$

Second commutation lemma

Fourier multiplier: $\mathcal{A}_{\psi} u:=(\psi \hat{u})^{\vee} ;$ for $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ we have $\mathcal{A}_{\psi} \in \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$ Operator of multiplication: $B_{\varphi} u:=\varphi u$; for $\varphi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ we have $B_{\varphi} \in \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$
Commutator: $C:=\left[\mathcal{A}_{\psi}, B_{\varphi}\right]=\mathcal{A}_{\psi} B_{\varphi}-B_{\varphi} \mathcal{A}_{\psi}$

$$
X^{m}\left(\mathbf{R}^{d}\right):=\left\{u \in \mathcal{S}^{\prime}: k^{m} \hat{u} \in \mathrm{~L}^{1}\left(\mathbf{R}^{d}\right)\right\} \quad, \quad k(\boldsymbol{\xi}):=\left(1+|2 \pi \boldsymbol{\xi}|^{2}\right)^{\frac{1}{2}}
$$

Theorem (Tartar, 1990)

Let $\psi \in \mathrm{C}^{1}\left(\mathrm{~S}^{d-1}\right)$ and $\varphi \in X^{1}\left(\mathbf{R}^{d}\right)$, then C is continuous from $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ to $\mathrm{H}^{1}\left(\mathbf{R}^{d}\right)$, and up to a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ we have

$$
\partial_{j} C=\mathcal{A}_{\xi_{j} \nabla^{\boldsymbol{\xi}}} B_{\nabla_{\mathbf{x}} \varphi}
$$

where $\tilde{\psi}(\boldsymbol{\xi}):=\psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right)$.

Fractional H-measures

- surface: $\mathrm{S}^{d-1}:=\left\{\boldsymbol{\xi} \in \mathbf{R}^{d}: \xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{d}^{2}=1\right\}$,
- curves: $\mathbf{R}^{+} \ni s \mapsto s \boldsymbol{\eta} \in \mathbf{R}^{d} \backslash\{0\}\left(\boldsymbol{\eta} \in \mathrm{S}^{d-1}\right)$
- projection: $\boldsymbol{\pi}: \mathbf{R}^{d} \backslash\{0\} \longrightarrow \mathrm{S}^{d-1}$,

$$
\pi(\boldsymbol{\xi})=\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}
$$

Theorem

If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu} \in \mathcal{M}\left(\Omega \times \mathrm{S}^{d-1} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ we have

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right)(\psi \circ \boldsymbol{\pi})(\boldsymbol{\xi}) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

Measure $\boldsymbol{\mu}$ we call the H-measures corresponding to the (sub)sequence (u_{n}).

Fractional H-measures

- surface: $\mathrm{S}^{d-1}:=\left\{\boldsymbol{\xi} \in \mathbf{R}^{d}: \frac{\xi_{1}^{2}}{\alpha_{1}}+\frac{\xi_{2}^{2}}{\alpha_{2}}+\cdots+\frac{\xi_{d}^{2}}{\alpha_{d}}=\frac{1}{\alpha_{\text {min }}}\right\}, \alpha \in\langle 0,1]^{d}$
- curves: $\mathbf{R}^{+} \ni s \mapsto \operatorname{diag}\left\{s^{\frac{1}{\alpha_{1}}}, \ldots, s^{\frac{1}{\alpha_{d}}}\right\} \boldsymbol{\eta} \in \mathbf{R}^{d} \backslash\{0\}(\boldsymbol{\eta} \in Q)$
- projection: $\pi_{Q}: \mathbf{R}^{d} \backslash\{0\} \longrightarrow Q$,

$$
\boldsymbol{\pi}_{Q}(\boldsymbol{\xi})=\left(\frac{\xi_{1}}{s(\boldsymbol{\xi})^{\frac{1}{\alpha_{1}}}}, \ldots, \frac{\xi_{d}}{s(\boldsymbol{\xi})^{\frac{1}{\alpha_{d}}}}\right),
$$

where s is implicitly given.

Theorem

If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, then there exist a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\mu_{Q} \in \mathcal{M}\left(\Omega \times \mathrm{S}^{d-1} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}(Q)$ we have

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right)\left(\psi \circ \pi_{Q}\right)(\boldsymbol{\xi}) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{Q}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

Measure μ_{Q} we call the fractional H-measure corresponding to the (sub)sequence (u_{n}).

Fractional H-measures

- surface: $Q:=\left\{\boldsymbol{\xi} \in \mathbf{R}^{d}: \frac{\xi_{1}^{2}}{\alpha_{1}}+\frac{\xi_{2}^{2}}{\alpha_{2}}+\cdots+\frac{\xi_{d}^{2}}{\alpha_{d}}=\frac{1}{\alpha_{\text {min }}}\right\}, \boldsymbol{\alpha} \in\langle 0,1]^{d}$
- curves: $\mathbf{R}^{+} \ni s \mapsto \operatorname{diag}\left\{s^{\frac{1}{\alpha_{1}}}, \ldots, s^{\frac{1}{\alpha_{d}}}\right\} \boldsymbol{\eta} \in \mathbf{R}^{d} \backslash\{0\}(\boldsymbol{\eta} \in Q)$
- projection: $\boldsymbol{\pi}_{Q}: \mathbf{R}^{d} \backslash\{0\} \longrightarrow Q$,

$$
\boldsymbol{\pi}_{Q}(\boldsymbol{\xi})=\left(\frac{\xi_{1}}{s(\boldsymbol{\xi})^{\frac{1}{\alpha_{1}}}}, \ldots, \frac{\xi_{d}}{s(\boldsymbol{\xi})^{\frac{1}{\alpha_{d}}}}\right)
$$

where s is implicitly given.

Theorem

If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\mu_{Q} \in \mathcal{M}\left(\Omega \times \mathrm{S}^{d-1} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega)$ and $\psi \in \mathrm{C}(Q)$ we have

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right)\left(\psi \circ \boldsymbol{\pi}_{Q}\right)(\boldsymbol{\xi}) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{Q}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

Measure μ_{Q} we call the fractional H-measure corresponding to the (sub)sequence (u_{n}).
$\alpha_{1}=\cdots=\alpha_{d}=1 \quad \Longrightarrow \quad \mathrm{H}$-measure
$\alpha_{1}=\frac{1}{2}, \alpha_{2}=\cdots=\alpha_{d}=1 \quad \Longrightarrow \quad$ parabolic H-measure [Antonić, Lazar, '07]

Example (oscillations)

Let $\mathrm{k} \in \mathbf{R}^{d} \backslash\{0\}$ and let us define

$$
u_{n}(\mathbf{x}):=e^{2 \pi i \mathrm{k} \cdot\left(n^{2} x^{1}, n x^{2}, \ldots, n x^{d}\right)} \longrightarrow 0 \text { in } \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)
$$

Example (oscillations)

Let $\mathrm{k} \in \mathbf{R}^{d} \backslash\{0\}$ and let us define

$$
u_{n}(\mathbf{x}):=e^{2 \pi i \mathrm{k} \cdot\left(n^{2} x^{1}, n x^{2}, \ldots, n x^{d}\right)} \longrightarrow 0 \text { in } \mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)
$$

H-measure:

$$
\boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi})=\lambda(\mathbf{x}) \delta_{(1,0, \ldots, 0)}(\boldsymbol{\xi})
$$

Fractional H-measure (with $\alpha_{1}=\frac{1}{2}, \alpha_{2}=\cdots=\alpha_{d}=1$):

$$
\boldsymbol{\mu}_{Q}(\mathbf{x}, \boldsymbol{\xi})=\lambda(\mathbf{x}) \delta_{\boldsymbol{\pi}_{Q}(\mathrm{k})}
$$

Second commutation lemma (generalisation)

Fourier multiplier: $\mathcal{A}_{\psi} u:=(\psi \hat{u})^{\vee} ;$ for $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ we have $\mathcal{A}_{\psi} \in \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$ Operator of multiplication: $B_{\varphi} u:=\varphi u$; for $\varphi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ we have $B_{\varphi} \in \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$
Commutator: $C:=\left[\mathcal{A}_{\psi}, B_{\varphi}\right]=\mathcal{A}_{\psi} B_{\varphi}-B_{\varphi} \mathcal{A}_{\psi}$

$$
X^{m}\left(\mathbf{R}^{d}\right):=\left\{u \in \mathcal{S}^{\prime}: k^{m} \hat{u} \in \mathrm{~L}^{1}\left(\mathbf{R}^{d}\right)\right\} \quad, \quad k(\boldsymbol{\xi}):=\left(1+|2 \pi \boldsymbol{\xi}|^{2}\right)^{\frac{1}{2}}
$$

Theorem

Let $\psi \in \mathrm{C}^{1}\left(\mathrm{~S}^{d-1}\right)$ and $\varphi \in X^{1}\left(\mathbf{R}^{d}\right)$, then C is continuous from $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ to $\mathrm{H}^{1}\left(\mathbf{R}^{d}\right)$, and up to a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ we have

$$
\partial_{j} C=\mathcal{A}_{\xi_{j} \nabla \boldsymbol{\xi} \tilde{\psi} B_{\nabla_{\mathbf{x}} \varphi}, ~}
$$

where $\tilde{\psi}:=\psi \circ \boldsymbol{\pi}$.

Second commutation lemma (generalisation)

Fourier multiplier: $\mathcal{A}_{\psi} u:=(\psi \hat{u})^{\vee} ;$ for $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ we have $\mathcal{A}_{\psi} \in \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$ Operator of multiplication: $B_{\varphi} u:=\varphi u$; for $\varphi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ we have $B_{\varphi} \in \mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$
Commutator: $C:=\left[\mathcal{A}_{\psi}, B_{\varphi}\right]=\mathcal{A}_{\psi} B_{\varphi}-B_{\varphi} \mathcal{A}_{\psi}$
$X^{m \boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{\alpha}^{m} \hat{u} \in \mathrm{~L}^{1}\left(\mathbf{R}^{d}\right)\right\} \quad, \quad k_{\alpha}(\boldsymbol{\xi}):=1+\left|\xi_{1}\right|^{\alpha_{1}}+\cdots+\left|\xi_{d}\right|^{\alpha_{d}}$

$$
\mathrm{H}^{s \boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{\alpha}^{s} \hat{u} \in \mathrm{~L}^{2}\left(\mathbf{R}^{d}\right)\right\}
$$

For $m \in 0 . . d$ we assume $\alpha_{1}, \ldots, \alpha_{m} \in\langle 0,1\rangle, \alpha_{m+1}=\cdots=\alpha_{d}=1$. We also use $\mathbf{x}=\left(\overline{\mathbf{x}}, \mathbf{x}^{\prime}\right), \overline{\mathbf{x}}=\left(x^{1}, \ldots, x^{m}\right), \mathbf{x}^{\prime}=\left(x^{m+1}, \ldots, x^{d}\right)$.

Theorem

Let $\psi \in \mathrm{C}^{1}\left(\mathrm{~S}^{d-1}\right)$ and $\varphi \in X^{\alpha}\left(\mathbf{R}^{d}\right)$, then C is continuous from $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ to $\mathrm{H}^{\alpha}\left(\mathbf{R}^{d}\right)$, and up to a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ we have

$$
\partial_{j}^{\alpha_{j}} C=\mathcal{A}_{\frac{\left(2 \pi i \xi_{j}\right)^{\alpha_{j}}}{2 \pi i}} \nabla^{\xi^{\prime}} \tilde{\psi}^{2} B_{\mathrm{x}^{\prime} \phi} .
$$

where $\tilde{\psi}:=\psi \circ \pi_{Q}$.

Example 1/3

Let us consider

$$
i \partial_{t} u^{n}+\left(a u_{x x}^{n}\right)_{x x}=f^{n} \text { in } \mathbf{R} \times \mathbf{R}
$$

where $a \in X^{\left(\frac{1}{4}, 1\right)}\left(\mathbf{R}^{2}\right)$ is real and $f_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$. In addition, let us assume $u_{x x}^{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$.
We study a fractional H -measure with $\boldsymbol{\alpha}=\left(\frac{1}{4}, 1\right)$, i.e. on the

$$
Q \ldots \quad \tau^{2}+\frac{\xi^{2}}{4}=1
$$

We want to derive a transport equation for the corresponding fractional H -measure μ associated to $\left(u_{x x}^{n}\right)$.

Example 1/3

Let us consider

$$
i \partial_{t} u^{n}+\left(a u_{x x}^{n}\right)_{x x}=f^{n} \text { in } \mathbf{R} \times \mathbf{R}
$$

where $a \in X^{\left(\frac{1}{4}, 1\right)}\left(\mathbf{R}^{2}\right)$ is real and $f_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$. In addition, let us assume $u_{x x}^{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$.
We study a fractional H -measure with $\boldsymbol{\alpha}=\left(\frac{1}{4}, 1\right)$, i.e. on the

$$
Q \ldots \quad \tau^{2}+\frac{\xi^{2}}{4}=1
$$

We want to derive a transport equation for the corresponding fractional H -measure μ associated to ($u_{x x}^{n}$).
For $\psi \in \mathrm{C}^{1}(Q)$ and $\varphi \in \mathrm{C}_{c}^{1}\left(\mathbf{R}^{2}\right)$ we first apply $B_{\varphi} \mathcal{A}_{\psi}$ on the equation above, and then take the scalar product in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$ by u_{x}^{n} :

$$
\left\langle i \phi P_{\psi} u_{t} \mid u_{x}\right\rangle+\left\langle\phi P_{\psi}\left(a(x) u_{x x}\right)_{x x} \mid u_{x}\right\rangle=\left\langle\phi P_{\psi} f \mid u_{x}\right\rangle .
$$

Example 1/3

Let us consider

$$
i \partial_{t} u^{n}+\left(a u_{x x}^{n}\right)_{x x}=f^{n} \text { in } \mathbf{R} \times \mathbf{R}
$$

where $a \in X^{\left(\frac{1}{4}, 1\right)}\left(\mathbf{R}^{2}\right)$ is real and $f_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$. In addition, let us assume $u_{x x}^{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$.
We study a fractional H -measure with $\boldsymbol{\alpha}=\left(\frac{1}{4}, 1\right)$, i.e. on the

$$
Q \ldots \quad \tau^{2}+\frac{\xi^{2}}{4}=1
$$

We want to derive a transport equation for the corresponding fractional H -measure μ associated to $\left(u_{x x}^{n}\right)$.
For $\psi \in \mathrm{C}^{1}(Q)$ and $\varphi \in \mathrm{C}_{c}^{1}\left(\mathbf{R}^{2}\right)$ we first apply $B_{\varphi} \mathcal{A}_{\psi}$ on the equation above, and then take the scalar product in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$ by u_{x}^{n} :

$$
\left\langle i \phi P_{\psi} u_{t} \mid u_{x}\right\rangle+\left\langle\phi P_{\psi}\left(a(x) u_{x x}\right)_{x x} \mid u_{x}\right\rangle=\left\langle\phi P_{\psi} f \mid u_{x}\right\rangle .
$$

After some more calculation (mostly using partial integration), on the limit we get

$$
4\left\langle\mu, a \partial_{x} \varphi \psi\right\rangle-\left\langle\mu, \varphi \partial_{x} a \psi\right\rangle-\lim _{n}\left\langle\varphi \partial_{x}\left[\mathcal{A}_{\psi}, B_{a}\right] u_{x x}^{n} \mid u_{x x}^{n}\right\rangle=0
$$

Example 2/3

By the Second commutation lemma we have

$$
\begin{aligned}
\lim _{n}\left\langle\varphi \partial_{x}\left[\mathcal{A}_{\psi}, B_{a}\right] u_{x x}^{n} \mid u_{x x}^{n}\right\rangle & =\lim _{n}\left\langle\varphi \xi \partial^{\xi} \tilde{\psi} \partial_{x} a u_{x x}^{n} \mid u_{x x}^{n}\right\rangle \\
& =\lim _{n}\left\langle\varphi\left(\xi \partial^{\xi} \tilde{\psi}\right) \circ \boldsymbol{\pi}_{Q} \partial_{x} a u_{x x}^{n} \mid u_{x x}^{n}\right\rangle \\
& =\left\langle\mu, \varphi \partial_{x} a \xi \partial^{\xi} \tilde{\psi}\right\rangle
\end{aligned}
$$

Example 2/3

By the Second commutation lemma we have

$$
\begin{aligned}
\lim _{n}\left\langle\varphi \partial_{x}\left[\mathcal{A}_{\psi}, B_{a}\right] u_{x x}^{n} \mid u_{x x}^{n}\right\rangle & =\lim _{n}\left\langle\varphi \xi \partial^{\xi} \tilde{\psi} \partial_{x} a u_{x x}^{n} \mid u_{x x}^{n}\right\rangle \\
& =\lim _{n}\left\langle\varphi\left(\xi \partial^{\xi} \tilde{\psi}\right) \circ \boldsymbol{\pi}_{Q} \partial_{x} a u_{x x}^{n} \mid u_{x x}^{n}\right\rangle \\
& =\left\langle\mu, \varphi \partial_{x} a \xi \partial^{\xi} \tilde{\psi}\right\rangle
\end{aligned}
$$

so finally we obtain

$$
4\left\langle\mu, a \partial_{x} \varphi \psi\right\rangle-\left\langle\mu, \varphi \partial_{x} a \psi\right\rangle-\left\langle\mu, \varphi \partial_{x} a \xi \partial^{\xi} \tilde{\psi}\right\rangle
$$

Example 2/3

By the Second commutation lemma we have

$$
\begin{aligned}
\lim _{n}\left\langle\varphi \partial_{x}\left[\mathcal{A}_{\psi}, B_{a}\right] u_{x x}^{n} \mid u_{x x}^{n}\right\rangle & =\lim _{n}\left\langle\varphi \xi \partial^{\xi} \tilde{\psi} \partial_{x} a u_{x x}^{n} \mid u_{x x}^{n}\right\rangle \\
& =\lim _{n}\left\langle\varphi\left(\xi \partial^{\xi} \tilde{\psi}\right) \circ \pi_{Q} \partial_{x} a u_{x x}^{n} \mid u_{x x}^{n}\right\rangle \\
& =\left\langle\mu, \varphi \partial_{x} a \xi \partial^{\xi} \tilde{\psi}\right\rangle
\end{aligned}
$$

so finally we obtain

$$
4\left\langle\mu, a \partial_{x} \varphi \psi\right\rangle-\left\langle\mu, \varphi \partial_{x} a \psi\right\rangle-\left\langle\mu, \varphi \partial_{x} a \xi \partial^{\xi} \tilde{\psi}\right\rangle
$$

Now we want to rewrite the above equality in terms of the principle symbol $p(t, x ; \tau, \xi):=2 \pi \tau-16 \pi^{4} \xi^{4} a$. Taking $\Psi:=\varphi \psi$ we have

$$
\left\langle\frac{\mu}{\xi^{3}},\{\Psi, p\}\right\rangle+\left\langle\frac{\mu}{\xi^{4}}, \Psi \partial_{x} p\right\rangle \quad\left(\{\Psi, p\}=\partial^{\xi} \Psi \partial_{x} p-\partial_{x} \Psi \partial^{\xi} p\right)
$$

Example 2/3

By the Second commutation lemma we have

$$
\begin{aligned}
\lim _{n}\left\langle\varphi \partial_{x}\left[\mathcal{A}_{\psi}, B_{a}\right] u_{x x}^{n} \mid u_{x x}^{n}\right\rangle & =\lim _{n}\left\langle\varphi \xi \partial^{\xi} \tilde{\psi} \partial_{x} a u_{x x}^{n} \mid u_{x x}^{n}\right\rangle \\
& =\lim _{n}\left\langle\varphi\left(\xi \partial^{\xi} \tilde{\psi}\right) \circ \pi_{Q} \partial_{x} a u_{x x}^{n} \mid u_{x x}^{n}\right\rangle \\
& =\left\langle\mu, \varphi \partial_{x} a \xi \partial^{\xi} \tilde{\psi}\right\rangle
\end{aligned}
$$

so finally we obtain

$$
4\left\langle\mu, a \partial_{x} \varphi \psi\right\rangle-\left\langle\mu, \varphi \partial_{x} a \psi\right\rangle-\left\langle\mu, \varphi \partial_{x} a \xi \partial^{\xi} \tilde{\psi}\right\rangle
$$

Now we want to rewrite the above equality in terms of the principle symbol $p(t, x ; \tau, \xi):=2 \pi \tau-16 \pi^{4} \xi^{4} a$. Taking $\Psi:=\varphi \psi$ we have

$$
\left\langle\frac{\mu}{\xi^{3}},\{\Psi, p\}\right\rangle+\left\langle\frac{\mu}{\xi^{4}}, \Psi \partial_{x} p\right\rangle \quad\left(\{\Psi, p\}=\partial^{\xi} \Psi \partial_{x} p-\partial_{x} \Psi \partial^{\xi} p\right)
$$

Substituting ψ by $\xi^{3} \psi$ we get

$$
\langle\mu,\{\Psi, p\}\rangle+\left\langle\mu, \Psi \frac{3 \alpha^{2}\left(5-\alpha^{2}\right)}{16\left(\alpha^{2}-1\right)} \xi \partial_{x} p\right\rangle=0
$$

where $\alpha=\left(1-\frac{3}{16} \xi^{2}\right)^{-\frac{1}{2}}$.

Example 2/3

$\partial_{x} \mu\left(\partial^{\xi} p-\left(\frac{\alpha^{2}}{16}+\frac{\alpha^{2}}{4}+\frac{3 \alpha^{2}\left(5-\alpha^{2}\right)}{16\left(\alpha^{2}-1\right)}\right) p \xi\right)-\nabla^{\tau, \xi} \mu \cdot\left(\left[\begin{array}{c}0 \\ \partial_{x} p\end{array}\right]-\left(\left[\begin{array}{c}0 \\ \partial_{x} p\end{array}\right] \cdot \mathrm{n}\right) \mathrm{n}\right)=0$,
where $\mathrm{n}=\alpha[\tau \xi / 4]$ is the outwardly directed unit normal vector to Q.

