Friedrichs systems in a Hilbert space framework: solvability and multiplicity

Marko Erceg

SISSA - International School for Advanced Studies
and
Department of Mathematics, Faculty of Science, University of Zagreb
$5^{\text {th }}$ Najman Conference
Opatija, $11^{\text {th }}$ September 2017

Joint work with N. Antonić and A. Michelangeli

(1) Abstract Friedrichs operators

- Definition
- Classical Friedrichs operators
- Well-posedness
(2) Hilbert space framework
- Equivalent definition
- Bijective realisations with signed boundary map
- Solvability, infinity and classification

Abstract Friedrichs operators

$(L,\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(L^{\prime} \equiv L\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathcal{D} \subseteq L$ dense subspace

Definition

Let $T, \widetilde{T}: \mathcal{D} \rightarrow L$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{align*}
(\forall \phi, \psi \in \mathcal{D}) & \langle T \phi \mid \psi\rangle=\langle\phi \mid \widetilde{T} \psi\rangle ; \tag{T1}\\
(\exists c>0)(\forall \phi \in \mathcal{D}) & \|(T+\widetilde{T}) \phi\| \leqslant c\|\phi\| ; \tag{T2}\\
\left(\exists \mu_{0}>0\right)(\forall \phi \in \mathcal{D}) & \langle(T+\widetilde{T}) \phi \mid \phi\rangle \geqslant \mu_{0}\|\phi\|^{2} . \tag{T3}
\end{align*}
$$

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.

Example 1 (Classical Friedrichs operators)

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}(\Omega)^{r \times r}, k \in\{1, \ldots, d\}$, and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfying (a.e. on Ω):

$$
\begin{equation*}
\mathbf{A}_{k}=\mathbf{A}_{k}^{*} \tag{F1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} \tag{F2}
\end{equation*}
$$

$L:=\mathrm{L}^{2}(\Omega)^{r}, \mathcal{D}:=\mathrm{C}_{c}^{\infty}(\Omega)^{r}$;
Define $T, \widetilde{T}: \mathcal{D} \rightarrow L$ by

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u}
$$

(T, \widetilde{T}) is a joint pair of abstract Friedrichs operators.
To solve $T \mathrm{u}=\mathrm{f}$ for $\mathrm{f} \in L$.

The classical theory in short

國 K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.
Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...
- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 ;
$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

The classical theory in short

國 K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.
Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...
- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 ;
$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.

Back to the (new) abstract theory

(A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.
N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690-1715.

Definition

Let $T, \widetilde{T}: \mathcal{D} \rightarrow L$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{equation*}
(\forall \phi, \psi \in \mathcal{D}) \quad\langle T \phi \mid \psi\rangle=\langle\phi \mid \widetilde{T} \psi\rangle ; \tag{T1}
\end{equation*}
$$

$$
\begin{equation*}
(\exists c>0)(\forall \phi \in \mathcal{D}) \quad\|(T+\widetilde{T}) \phi\| \leqslant c\|\phi\| ; \tag{T2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right)(\forall \phi \in \mathcal{D}) \quad\langle(T+\widetilde{T}) \phi \mid \phi\rangle \geqslant \mu_{0}\|\phi\|^{2} . \tag{T3}
\end{equation*}
$$

Goal: To find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\widetilde{V})$ is a linear bijection.

Motivation

Goal: To find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\widetilde{V})$ is a linear bijection.

Motivation

Goal: To find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\widetilde{V})$ is a linear bijection. It is more convenient to first extend T and \widetilde{T} and then seek for suitable restrictions. In [Ern at al., 2007] a construction of $\left(T_{1}, \widetilde{T}_{1}\right)$ such that

$$
T \subseteq T_{1}, \quad \widetilde{T} \subseteq \widetilde{T}_{1}, \quad \operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: W
$$

and $\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right)$ is a Hilbert space $\left(\langle\cdot \mid \cdot\rangle_{T_{1}}:=\langle\cdot \mid \cdot\rangle+\left\langle T_{1} \cdot \mid T_{1} \cdot\right\rangle\right)$.
New goal: To find $V, \widetilde{V} \subseteq W$ such that $W_{0} \subseteq V, \widetilde{V}$ and restrictions $\left.T_{1}\right|_{V}: V \rightarrow L$, $\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are bijections (here $\left.W_{0}:=\overline{\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T_{1}}\right)}\right)$.

Motivation

Goal: To find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\widetilde{V})$ is a linear bijection. It is more convenient to first extend T and \widetilde{T} and then seek for suitable restrictions. In [Ern at al., 2007] a construction of $\left(T_{1}, \widetilde{T}_{1}\right)$ such that

$$
T \subseteq T_{1}, \quad \widetilde{T} \subseteq \widetilde{T}_{1}, \quad \operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: W
$$

and $\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right)$ is a Hilbert space $\left(\langle\cdot \mid \cdot\rangle_{T_{1}}:=\langle\cdot \mid \cdot\rangle+\left\langle T_{1} \cdot \mid T_{1} \cdot\right\rangle\right)$.
New goal: To find $V, \widetilde{V} \subseteq W$ such that $W_{0} \subseteq V, \widetilde{V}$ and restrictions $\left.T_{1}\right|_{V}: V \rightarrow L$, $\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are bijections (here $\left.W_{0}:=\overline{\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T_{1}}\right)}\right)$.

Questions:

1) Sufficient conditions on V
2) Existence of such V
3) Infinity of such V
4) Classification of such V

Well-posedness result

Boundary operator: $D:\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right) \rightarrow\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right)^{\prime}$,

$$
{ }_{W^{\prime}}\langle D u, v\rangle_{W}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle, \quad u, v \in W
$$

Properties: ker $D=W_{0}$ and D symmetric, i.e.

$$
(\forall u, v \in W) \quad W^{\prime}\langle D u, v\rangle_{W}={ }_{W^{\prime}}\langle D v, u\rangle_{W}
$$

Well-posedness result

Boundary operator: $D:\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right) \rightarrow\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right)^{\prime}$,

$$
{ }_{W^{\prime}}\langle D u, v\rangle_{W}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle, \quad u, v \in W
$$

Properties: ker $D=W_{0}$ and D symmetric, i.e.

$$
(\forall u, v \in W) \quad W^{\prime}\langle D u, v\rangle_{W}={ }_{W^{\prime}}\langle D v, u\rangle_{W}
$$

$$
\begin{array}{ll}
(\forall u \in V) & W^{\prime}\langle D u, u\rangle_{W} \geqslant 0 \\
(\forall v \in \widetilde{V}) & { }_{W^{\prime}}\langle D v, v\rangle_{W} \leqslant 0 \\
V=D(\widetilde{V})^{0}, & \tilde{V}=D(V)^{0} \tag{V2}
\end{array}
$$

Theorem (Ern, Guermond, Caplain, 2007)

Let (T, \widetilde{T}) be a joint pair of Friedrichs systems and let (V, \tilde{V}) satisfies (V1)-(V2). Then $\left.T_{1}\right|_{V}: V \rightarrow L$ and $\left.\widetilde{T}_{1}\right|_{\widetilde{V}}: \widetilde{V} \rightarrow L$ are closed bijective realisations of T and \widetilde{T}, respectively.

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
-\Delta u+\mu u=f
$$

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
-\Delta u+\mu u=f \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f
$$

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
-\Delta u+\mu u=f \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f \Longleftrightarrow\left\{\begin{array}{r}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right.
$$

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
\begin{aligned}
-\triangle u+\mu u=f \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f & \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T \mathrm{v}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathrm{v}\right)+\mathbf{C v}=\mathrm{g},
\end{aligned}
$$

where $\mathrm{v}:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 f]^{\top},\left(\mathbf{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}, \mathbf{C}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$. Assumtions (F1) and (F2) are satisfied.

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
\begin{aligned}
-\triangle u+\mu u=f \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f & \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T \mathrm{v}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathrm{v}\right)+\mathbf{C v}=\mathrm{g}
\end{aligned}
$$

where $\mathrm{v}:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 \mathrm{f}]^{\top},\left(\mathbf{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}, \mathbf{C}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$. Assumtions (F1) and (F2) are satisfied.
$L=\mathrm{L}^{2}(\Omega)^{d+1}, W=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$

- $V=\mathrm{L}_{\mathrm{div}}^{2}(\Omega) \times \mathrm{H}_{0}^{1}(\Omega) \ldots$ Dirichelt boundary condition $(u=0$ on $\Gamma)$
- $V=\mathrm{L}_{\mathrm{div}, 0}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega) \ldots$ Neumann boundary condition $(\mathrm{p} \cdot \nu=\nabla u \cdot \nu=0$ on Γ)

Hilbert space framework

Theorem (Ern, Guermond, Caplain, 2007)

Let (T, \widetilde{T}) be a joint pair of Friedrichs systems and let (V, \widetilde{V}) satisfies (V1)-(V2). Then $\left.T_{1}\right|_{V}: V \rightarrow L$ and $\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are closed bijective realisations of T and \widetilde{T}, respectively.

Can we say something more about extensions T_{1}, \widetilde{T}_{1}, and (V1)-(V2) conditions?

Hilbert space framework

Theorem (Ern, Guermond, Caplain, 2007)

Let (T, \widetilde{T}) be a joint pair of Friedrichs systems and let (V, $\widetilde{V})$ satisfies (V1)-(V2). Then $\left.T_{1}\right|_{V}: V \rightarrow L$ and $\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are closed bijective realisations of T and \widetilde{T}, respectively.

Can we say something more about extensions T_{1}, \widetilde{T}_{1}, and (V1)-(V2) conditions?

Theorem

Let $T, \widetilde{T}: \mathcal{D} \rightarrow L$. The pair (T, \widetilde{T}) is a joint pair of abstract Friedrichs operators iff
(i) $T \subseteq \widetilde{T}^{*}$ and $\widetilde{T} \subseteq T^{*}$;
(ii) $\overline{T+\widetilde{T}}$ is a bounded self-adjoint operator in L with strictly positive bottom;
(iii) $\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}}=W_{0}$ and $\operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}=W$.

Hilbert space framework

Theorem (Ern, Guermond, Caplain, 2007)

Let (T, \widetilde{T}) be a joint pair of Friedrichs systems and let (V, $\widetilde{V})$ satisfies (V1)-(V2). Then $\left.T_{1}\right|_{V}: V \rightarrow L$ and $\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are closed bijective realisations of T and \widetilde{T}, respectively.

Can we say something more about extensions T_{1}, \widetilde{T}_{1}, and (V1)-(V2) conditions?

Theorem

Let $T, \widetilde{T}: \mathcal{D} \rightarrow L$. The pair (T, \widetilde{T}) is a joint pair of abstract Friedrichs operators iff
(i) $T \subseteq \widetilde{T}^{*}$ and $\widetilde{T} \subseteq T^{*}$;
(ii) $\overline{T+\widetilde{T}}$ is a bounded self-adjoint operator in L with strictly positive bottom;
(iii) $\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}}=W_{0}$ and $\operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}=W$.

Theorem

(i) $\operatorname{dom} \bar{T}=\operatorname{dom} \widetilde{\widetilde{T}}=W_{0}$ and $\operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}=W$;
(ii) $T_{1}=\widetilde{T}^{*}$ and $\widetilde{T}_{1}=T^{*}$.

Theorem

Let (T, \widetilde{T}) be a pair of operators on the Hilbert space L satisfying conditions (T1)-(T2), and let (V, \widetilde{V}) be a pair of subspaces of L. Then

$$
\text { condition }(\mathrm{V} 2) \Longleftrightarrow\left\{\begin{array}{l}
W_{0} \subseteq V \subseteq W, W_{0} \subseteq \tilde{V} \subseteq W \\
V \text { and } \widetilde{V} \text { closed in } W \\
\left(\widetilde{T}^{*} \mid V\right)^{*}=\left.T^{*}\right|_{\tilde{V}} \\
\left(\left.T^{*}\right|_{\tilde{V}}\right)^{*}=\left.\widetilde{T}^{*}\right|_{V}
\end{array}\right.
$$

Theorem

Let (T, \widetilde{T}) be a pair of operators on the Hilbert space L satisfying conditions (T1)-(T2), and let (V, \widetilde{V}) be a pair of subspaces of L. Then

$$
\text { condition }(\mathrm{V} 2) \Longleftrightarrow\left\{\begin{array}{l}
W_{0} \subseteq V \subseteq W, W_{0} \subseteq \widetilde{V} \subseteq W \\
V \text { and } \widetilde{V} \text { closed in } W \\
\left(\left.\widetilde{T}^{*}\right|_{V}\right)^{*}=\left.T^{*}\right|_{\tilde{V}} \\
\left(\left.T^{*}\right|_{\tilde{V}}\right)^{*}=\left.\widetilde{T}^{*}\right|_{V}
\end{array}\right.
$$

We are seeking for bijective closed operators $\left.S \equiv \widetilde{T}^{*}\right|_{V}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$.

Theorem

Let (T, \widetilde{T}) be a pair of operators on the Hilbert space L satisfying conditions (T1)-(T2), and let (V, \widetilde{V}) be a pair of subspaces of L. Then

$$
\text { condition }(\mathrm{V} 2) \Longleftrightarrow\left\{\begin{array}{l}
W_{0} \subseteq V \subseteq W, W_{0} \subseteq \widetilde{V} \subseteq W \\
V \text { and } \widetilde{V} \text { closed in } W \\
\left(\left.\widetilde{T}^{*}\right|_{V}\right)^{*}=\left.T^{*}\right|_{\tilde{V}} \\
\left(\left.T^{*}\right|_{\tilde{V}}\right)^{*}=\left.\widetilde{T}^{*}\right|_{V} .
\end{array}\right.
$$

We are seeking for bijective closed operators $\left.S \equiv \widetilde{T}^{*}\right|_{V}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*},
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$.
In the rest we work with closed T and \widetilde{T}.

Definition

Let (T, \widetilde{T}) be a joint pair of closed abstract Friedrichs operators on the Hilbert space L. For a closed $T \subseteq S \subseteq \widetilde{T}^{*}$ such that ($\operatorname{dom} S$, $\operatorname{dom} S^{*}$) satisfies $(V 1)$ we call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).

Questions:

1) Sufficient conditions on V

Questions:

1) Sufficient conditions on $V \checkmark$
2) Existence of $V \subseteq W$ such that $\left(\left.\widetilde{T}^{*}\right|_{V},\left(\left.\widetilde{T}^{*}\right|_{V}\right)^{*}\right)$ is an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T})
3) Infinity of such V
4) Classification of such V

Existence and infinity of V 's

Theorem (Antonić, E., Michelangeli, 2017)

Let (T, \widetilde{T}) be a joint pair of closed abstract Friedrichs operators on the Hilbert space L.
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}). Moreover, there is an adjoint pair $\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)$ of bijective realisations with signed boundary map relative to (T, \widetilde{T}) such that

$$
W_{0}+\operatorname{ker} T^{*} \subseteq \operatorname{dom} T_{\mathrm{r}} \quad \text { and } \quad W_{0}+\operatorname{ker} \widetilde{T}^{*} \subseteq \operatorname{dom} T_{\mathrm{r}}^{*}
$$

(ii) If both $\operatorname{ker} \widetilde{T}^{*} \neq\{0\}$ and $\operatorname{ker} T^{*} \neq\{0\}$, then the pair (T, \widetilde{T}) admits uncountably many adjoint pairs of bijective realisations with signed boundary map. On the other hand, if either $\operatorname{ker} \widetilde{T}^{*}=\{0\}$ or $\operatorname{ker} T^{*}=\{0\}$, then there is exactly one adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}). Such a pair is precisely $\left(\widetilde{T}^{*}, \widetilde{T}\right)$ when $\operatorname{ker} \widetilde{T}^{*}=\{0\}$, and $\left(T, T^{*}\right)$ when $\operatorname{ker} T^{*}=\{0\}$.

Questions:

1) Sufficient conditions on $V \checkmark$
2) Existence of $V \subseteq W$ such that $\left(\left.\widetilde{T}^{*}\right|_{V},\left(\left.\widetilde{T}^{*}\right|_{V}\right)^{*}\right)$ is an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T})
3) Infinity of such V
4) Classification of such V

Grubb's universal classification $1 / 2$

$$
A_{0} \subseteq\left(A_{0}^{\prime}\right)^{*}=: A_{1} \quad \text { and } \quad A_{0}^{\prime} \subseteq\left(A_{0}\right)^{*}=: A_{1}^{\prime}
$$

$\left(A_{\mathrm{r}}, A_{\mathrm{r}}^{*}\right)$ are closed, satisfy $A_{0} \subseteq A_{\mathrm{r}} \subseteq A_{1}$, equivalently $A_{0}^{\prime} \subseteq A_{\mathrm{r}}^{*} \subseteq A_{1}^{\prime}$, and are invertible with everywhere defined bounded inverses A_{r}^{-1} and $\left(A_{\mathrm{r}}^{*}\right)^{-1}$

$$
\left.\begin{array}{r}
\operatorname{dom} A_{1}=\operatorname{dom} A_{\mathrm{r}}+\operatorname{ker} A_{1} \quad \text { and } \quad \operatorname{dom} A_{1}^{\prime}=\operatorname{dom} A_{\mathrm{r}}^{*} \dot{+} \operatorname{ker} A_{1}^{\prime} \\
p_{\mathrm{r}}=A_{\mathrm{r}}^{-1} A_{1}, \quad p_{\mathrm{r}^{\prime}}=\left(A_{\mathrm{r}}^{*}\right)^{-1} A_{1}^{\prime} \\
p_{\mathrm{k}}=\mathbb{1}-p_{\mathrm{r}}, \quad p_{\mathrm{k}^{\prime}}=\mathbb{1}-p_{\mathrm{r}^{\prime}} \\
\left(A, A^{*}\right) \\
A_{0} \subseteq A \subseteq A_{1} \\
A_{0}^{\prime} \subseteq A^{*} \subseteq A_{1}^{\prime}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
\left(B, B^{*}\right) \\
\mathcal{V} \subseteq \text { ker } A_{1} \text { closed } \\
\mathcal{W} \subseteq \operatorname{ker} A_{1}^{\prime} \text { closed } \\
B: \mathcal{V} \rightarrow \mathcal{W} \text { densely defined }
\end{array}\right] \begin{aligned}
& B \mapsto A_{B}: \quad \operatorname{dom} A_{B}=\left\{u \in \operatorname{dom} A_{1}: p_{\mathrm{k}} u \in \operatorname{dom} B, P_{\mathcal{W}}\left(A_{1} u\right)=B\left(p_{\mathrm{k}} u\right)\right\} \\
& A \mapsto B_{A}: \quad \operatorname{dom} B_{A}=p_{\mathrm{k}} \operatorname{dom} A, \quad \mathcal{V}=\overline{\operatorname{dom} B_{A}}, \quad B_{A}\left(p_{\mathrm{k}} u\right)=P_{\mathcal{W}}\left(A_{1} u\right)
\end{aligned}
$$

where $P_{\mathcal{W}}$ is the orthogonal projections from L onto \mathcal{W}.
Important: A is injective, resp. surjective, resp. bijective, if and only if so is B.

Grubb's universal classification 2/2

When A_{B} corresponds to B as above, then

$$
\begin{gathered}
\operatorname{dom} A_{B}=\left\{w_{0}+\left(A_{\mathrm{r}}\right)^{-1}\left(B \nu+\nu^{\prime}\right)+\nu \left\lvert\, \begin{array}{c}
w_{0} \in \operatorname{dom} A_{0} \\
\nu \in \operatorname{dom} B \\
\nu^{\prime} \in \operatorname{ker} A_{1}^{\prime} \ominus \mathcal{W}
\end{array}\right.\right\} \\
A_{B}\left(w_{0}+\left(A_{\mathrm{r}}\right)^{-1}\left(B \nu+\nu^{\prime}\right)+\nu\right)=A_{0} w_{0}+B \nu+\nu^{\prime}
\end{gathered}
$$G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.

Grubb's universal classification 2/2

When A_{B} corresponds to B as above, then

$$
\begin{gathered}
\operatorname{dom} A_{B}=\left\{\begin{array}{l|l}
w_{0}+\left(A_{\mathrm{r}}\right)^{-1}\left(B \nu+\nu^{\prime}\right)+\nu \left\lvert\, \begin{array}{c}
w_{0} \in \operatorname{dom} A_{0} \\
\nu \in \operatorname{dom} B \\
\nu^{\prime} \in \operatorname{ker} A_{1}^{\prime} \ominus \mathcal{W}
\end{array}\right.
\end{array}\right\} \\
A_{B}\left(w_{0}+\left(A_{\mathrm{r}}\right)^{-1}\left(B \nu+\nu^{\prime}\right)+\nu\right)=A_{0} w_{0}+B \nu+\nu^{\prime}
\end{gathered}
$$

嘈
G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.

We shall apply this theory on a joint pair of closed abstract Friedrichs systems.

Classification of bijective realisations with signed boundary map $1 / 2$

For simplicity here we use the notation of Grubb's universal classification. $\left(A_{0}, A_{0}^{\prime}\right)$ a joint pair of closed abstract Friedrichs operators, $A_{1}:=\left(A_{0}^{\prime}\right)^{*}, A_{1}^{\prime}:=A_{0}^{*}$, and let $\left(A_{\mathrm{r}}, A_{\mathrm{r}}^{*}\right)$ be an adjoint pair of bijective realisations with signed boundary map relative to $\left(A_{0}, A_{0}^{\prime}\right)$.
$\left(A_{B}, A_{B}^{*}\right)$ a generic pair of closed extensions $A_{0} \subseteq A_{B} \subseteq A_{1}$.

Classification of bijective realisations with signed boundary map 2/2

$$
\begin{align*}
& (\forall \nu \in \operatorname{dom} B) \\
& \left(\forall \nu^{\prime} \in \operatorname{ker} A_{1}^{\prime} \ominus \mathcal{W}\right) \tag{1}
\end{align*}
$$

$$
\left\{\begin{array}{r}
\left\langle\nu \mid A_{1}^{\prime} \nu\right\rangle-2 \mathfrak{R e}\left\langle p_{\mathrm{k}^{\prime}} \nu \mid B \nu\right\rangle \\
\left\langle p_{\mathrm{k}^{\prime}} \nu \mid \nu^{\prime}\right\rangle
\end{array}\right.
$$

$$
\begin{align*}
& \left(\forall \mu^{\prime} \in \operatorname{dom} B^{*}\right) \tag{2}\\
& \left(\forall \mu \in \operatorname{ker} A_{1} \ominus \mathcal{V}\right)
\end{align*}
$$

$$
\left\{\begin{array}{r}
\left\langle A_{1} \mu^{\prime} \mid \mu^{\prime}\right\rangle-2 \mathfrak{R e}\left\langle B^{*} \mu^{\prime} \mid p_{\mathrm{k}} \mu^{\prime}\right\rangle \leqslant 0 \\
\left\langle\mu \mid p_{\mathrm{k}} \mu^{\prime}\right\rangle=0,
\end{array}\right.
$$

Theorem (Antonić, E., Michelangeli, 2017)

Any of the following three facts,
(a) conditions (1) and (2) hold true, or
(b) condition (1) holds true and $B: \operatorname{dom} B \rightarrow \mathcal{W}$ is a bijection, or
(c) condition (2) holds true and $B^{*}: \operatorname{dom} B^{*} \rightarrow \mathcal{V}$ is a bijection, is sufficient for $\left(A_{B}, A_{B}^{*}\right)$ to be another adjoint pair of bijective realisations with signed boundary map relative to $\left(A_{0}, A_{0}^{\prime}\right)$.
Assume further that $\operatorname{dom} A_{\mathrm{r}}=\operatorname{dom} A_{\mathrm{r}}^{*}$. Then the following properties are equivalent:
(a) $\left(A_{B}, A_{B}^{*}\right)$ is another adjoint pair of bijective realisations with signed boundary map relative to $\left(A_{0}, A_{0}^{\prime}\right)$;
(b) the mirror conditions (1) and (2) are satisfied.

Example 3 (First order ode on an interval) 1/2

$L:=\mathrm{L}^{2}(0,1), \mathcal{D}:=\mathrm{C}_{c}^{\infty}(0,1)$
$T, \widetilde{T}: \mathcal{D} \rightarrow L$,

$$
T \phi:=\frac{\mathrm{d}}{\mathrm{~d} x} \phi+\phi \quad \text { and } \quad \widetilde{T} \phi:=-\frac{\mathrm{d}}{\mathrm{~d} x} \phi+\phi .
$$

We have

$$
\begin{aligned}
\operatorname{dom} \bar{T} & =\operatorname{dom} \widetilde{\widetilde{T}}=\mathrm{H}_{0}^{1}(0,1)=: W_{0} \\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=\mathrm{H}^{1}(0,1)=: W,
\end{aligned}
$$

Define

$$
A_{0}:=\bar{T}, \quad, A_{0}^{\prime}:=\overline{\widetilde{T}}, \quad A_{1}:=\widetilde{T}^{*}, A_{1}^{\prime}:=T^{*}
$$

As ${ }_{W}\langle D u, v\rangle_{W}=u(1) \overline{v(1)}-u(0) \overline{v(0)}$, for

$$
V:=\widetilde{V}:=\left\{u \in \mathrm{H}^{1}(0,1): u(0)=u(1)\right\}
$$

we have that $A_{\mathrm{r}}:=\left.A_{1}\right|_{V}, A_{\mathrm{r}}^{*}=\left.A_{1}^{\prime}\right|_{V}$ for an adjoint pair of bijective realisations with signed boundary map.
$\operatorname{ker} A_{1}=\operatorname{span}\left\{e^{-x}\right\}$ and $\operatorname{ker} A_{1}^{\prime}=\operatorname{span}\left\{e^{x}\right\}$, so

$$
p_{\mathrm{k}} u=-\frac{u(1)-u(0)}{1-e^{-1}} e^{-x}, \quad p_{\mathrm{k}^{\prime}} u=\frac{u(1)-u(0)}{e-1} e^{x} .
$$

Example 3 (First order ode on an interval) 2/2

$\mathcal{V}=\operatorname{ker} A_{1}, \mathcal{W}=\operatorname{ker} A_{1}^{\prime}, B_{\alpha, \beta}: \mathcal{V} \rightarrow \mathcal{W}$,

$$
B_{\alpha, \beta} e^{-x}=(\alpha+\mathrm{i} \beta) e^{x}
$$

where $(\alpha, \beta) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
(1) simplifies to check

$$
\begin{aligned}
&\left\langle e^{-x} \mid A_{1}^{\prime} e^{-x}\right\rangle-2 \Re\left\langle p_{\mathrm{k}^{\prime} e^{-x}} \mid B_{\alpha, \beta} e^{-x}\right\rangle \leqslant 0 \\
& \Longleftrightarrow \alpha \leqslant-e^{-1} \\
&\left\{\left(A_{\alpha, \beta}, A_{\alpha, \beta}^{*}\right): \alpha \leqslant-e^{-1}, \beta \in \mathbb{R}\right\} \cup\left\{\left(A_{\mathrm{r}}, A_{\mathrm{r}}^{*}\right)\right\}
\end{aligned}
$$

$$
\begin{array}{r}
\operatorname{dom} A_{\alpha, \beta}^{(*)}=\left\{u \in \mathrm{H}^{1}(0,1):\left(2 e^{-1}-(+) \alpha(1+e)-\mathrm{i} \beta(1+e)\right) u(1)\right. \\
=(2+\alpha(1+e)-(+) \mathrm{i} \beta(1+e)) u(0)\}
\end{array}
$$

And...

...thank you for your attention :)

N. Antonić, M.E., A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differential Equations, 31 pp, doi: 10.1016/j.jde.2017.08.051