Friedrichs operators as dual pairs and contact interactions

Marko Erceg
Department of Mathematics, Faculty of Science, University of Zagreb

Mathematical Challenges in Quantum Mechanics
Rome, $22^{\text {th }}$ February 2018

Joint work with N. Antonić and A. Michelangeli

WeConMApp

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}(\Omega)^{r \times r}, k \in\{1, \ldots, d\}$, and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfying (a.e. on Ω):
(F1)

$$
\begin{aligned}
\mathbf{A}_{k} & =\mathbf{A}_{k}^{*} ; \\
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} & \geqslant \mu_{0} \mathbf{I} .
\end{aligned}
$$

Define $\mathcal{L}, \tilde{\mathcal{L}}: \mathrm{L}^{2}(\Omega)^{r} \rightarrow \mathcal{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \quad \widetilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}(\Omega)^{r \times r}, k \in\{1, \ldots, d\}$, and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfying (a.e. on Ω):

$$
\begin{align*}
\mathbf{A}_{k} & =\mathbf{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} & \geqslant \mu_{0} \mathbf{I}
\end{align*}
$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: \mathrm{L}^{2}(\Omega)^{r} \rightarrow \mathcal{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \quad \widetilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

Aim: impose boundary conditions such that for any $\mathrm{f} \in \mathrm{L}^{2}(\Omega)^{r}$ we have a unique solution of $\mathcal{L} \mathrm{u}=\mathrm{f}$.
Gain: many important (semi)linear equations of mathematical physics can be written in the form of classical Friedrichs operators.

The classical theory in short

R. K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.
Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...
- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 ;
$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.

The classical theory in short

R K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.
Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...
- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 ;
$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.
\rightsquigarrow development of the abstract theory

Abstract Friedrichs operators

$(L,\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(L^{\prime} \equiv L\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathcal{D} \subseteq L$ dense subspace

Definition

Let $T, \widetilde{T}: \mathcal{D} \rightarrow L$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{align*}
(\forall \phi, \psi \in \mathcal{D}) & \langle T \phi \mid \psi\rangle=\langle\phi \mid \widetilde{T} \psi\rangle ; \tag{T1}\\
(\exists c>0)(\forall \phi \in \mathcal{D}) & \|(T+\widetilde{T}) \phi\| \leqslant c\|\phi\| ; \tag{T2}\\
\left(\exists \mu_{0}>0\right)(\forall \phi \in \mathcal{D}) & \langle(T+\widetilde{T}) \phi \mid \phi\rangle \geqslant \mu_{0}\|\phi\|^{2} . \tag{T3}
\end{align*}
$$

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.
N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690-1715.

Classical is abstract

$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}(\Omega)^{r \times r}$ and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfy (F1)-(F2):
(F1)

$$
\mathbf{A}_{k}=\mathbf{A}_{k}^{*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} \tag{F2}
\end{equation*}
$$

$\mathcal{D}:=\mathrm{C}_{c}^{\infty}(\Omega)^{r}, L:=\mathrm{L}^{2}(\Omega)^{r}$, and

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

Classical is abstract

$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}(\Omega)^{r \times r}$ and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfy (F1)-(F2):
(F1)

$$
\mathbf{A}_{k}=\mathbf{A}_{k}^{*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} \tag{F2}
\end{equation*}
$$

$\mathcal{D}:=\mathrm{C}_{c}^{\infty}(\Omega)^{r}, L:=\mathrm{L}^{2}(\Omega)^{r}$, and

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

$(\mathrm{T} 1)\langle T \mathbf{u} \mid \mathrm{v}\rangle_{\mathrm{L}^{2}}=\left\langle\mathbf{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{*} \mathbf{v}\right)+\left(\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{v}\right\rangle_{\mathrm{L}^{2}} \stackrel{(\mathrm{~F} 1)}{=}\langle\mathbf{u} \mid \widetilde{T} \mathbf{v}\rangle_{\mathrm{L}^{2}}$.

Classical is abstract

$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}(\Omega)^{r \times r}$ and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfy (F1)-(F2):

$$
\begin{equation*}
\mathbf{A}_{k}=\mathbf{A}_{k}^{*} \tag{F1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} \tag{F2}
\end{equation*}
$$

$\mathcal{D}:=\mathrm{C}_{c}^{\infty}(\Omega)^{r}, L:=\mathrm{L}^{2}(\Omega)^{r}$, and

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

$(\mathrm{T} 1)\langle T \mathbf{u} \mid \mathrm{v}\rangle_{\mathrm{L}^{2}}=\left\langle\mathbf{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{*} \mathbf{v}\right)+\left(\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{v}\right\rangle_{\mathrm{L}^{2}} \stackrel{(\mathrm{~F} 1)}{=}\langle\mathbf{u} \mid \widetilde{T} \mathbf{v}\rangle_{\mathrm{L}^{2}}$.
Since $(T+\widetilde{T}) \mathbf{u}=\left(\mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u}$,
$(\mathrm{T} 2)\|(T+\widetilde{T}) \mathbf{u}\|_{\mathrm{L}^{2}} \leqslant\left(2\|\mathbf{C}\|_{\mathrm{L}^{\infty}}+\sum_{k=1}^{d}\left\|\mathbf{A}_{k}\right\|_{\mathrm{W}^{1, \infty}}\right)\|\mathbf{u}\|_{\mathrm{L}^{2}}$,
$(\mathrm{T} 3)\langle(T+\widetilde{T}) \mathbf{u} \mid \mathbf{u}\rangle_{\mathrm{L}^{2}} \stackrel{(\mathrm{~F} 2)}{\geqslant} \mu_{0}\|\mathbf{u}\|_{\mathrm{L}^{2}}^{2}$.

Well-posedness result

Goal: For (T, \widetilde{T}) satisfying (T1)-(T3) find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\tilde{V})$ is a linear bijection.

Well-posedness result

Goal: For (T, \widetilde{T}) satisfying $(\mathrm{T} 1)-(\mathrm{T} 3)$ find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\widetilde{V})$ is a linear bijection.
\exists maximal operators: $\quad T_{1}: W \subseteq L \rightarrow L, \quad T \subseteq T_{1}$, $\left(\operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: W\right)$

Boundary map (form): $D: W \times W \rightarrow \mathbb{C}$,

$$
D[u, v]:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle .
$$

$$
(D[u, v]=\overline{D[v, u]})
$$

Well-posedness result

Goal: For (T, \widetilde{T}) satisfying (T1)-(T3) find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\widetilde{V})$ is a linear bijection.
\exists maximal operators: $\quad T_{1}: W \subseteq L \rightarrow L, \quad T \subseteq T_{1}$,

$$
T_{1}: W \subseteq L \rightarrow L, \quad T \subseteq T_{1} .
$$

$\left(\operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: W\right)$

Boundary map (form): $D: W \times W \rightarrow \mathbb{C}$,

$$
\begin{aligned}
& D: W \times W \rightarrow \mathbb{C}, \\
& D[u, v]:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle . \quad(D[u, v]=\overline{D[v, u]})
\end{aligned}
$$

For $V, \widetilde{V} \subseteq W$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in V) & D[u, u] \geqslant 0 \\
(\forall v \in \widetilde{V}) & D[v, v] \leqslant 0
\end{array}
$$

$$
V=\{u \in W:(\forall v \in \widetilde{V}) \quad D[v, u]=0\}
$$

$$
\widetilde{V}=\{v \in W:(\forall u \in V) \quad D[u, v]=0\}
$$

$$
(\Longrightarrow \mathcal{D} \subseteq V \cap \tilde{V})
$$

Well-posedness result

Goal: For (T, \widetilde{T}) satisfying (T1)-(T3) find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\tilde{V})$ is a linear bijection.
\exists maximal operators: $\quad T_{1}: W \subseteq L \rightarrow L, \quad T \subseteq T_{1}$,

$$
T_{1}: W \subseteq L \rightarrow L, \quad T \subseteq T_{1}
$$

$$
\left(\operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: W\right)
$$

Boundary map (form): $D: W \times W \rightarrow \mathbb{C}$,

$$
\begin{aligned}
& D[u, v]:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle . \quad(D[u, v]=\overline{D[v, u]}),
\end{aligned}
$$

For $V, \widetilde{V} \subseteq W$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in V) & D[u, u] \geqslant 0 \\
(\forall v \in \widetilde{V}) & D[v, v] \leqslant 0
\end{array}
$$

$$
\begin{equation*}
(\Longrightarrow \mathcal{D} \subseteq V \cap \tilde{V}) \tag{V2}
\end{equation*}
$$

$$
V=\{u \in W:(\forall v \in \widetilde{V}) \quad D[v, u]=0\}
$$

$$
\widetilde{V}=\{v \in W:(\forall u \in V) \quad D[u, v]=0\}
$$

Theorem (Ern, Guermond, Caplain, 2007)

$(T 1)-(T 3)+(V 1)-\left.(V 2) \Longrightarrow T_{1}\right|_{V},\left.\widetilde{T}_{1}\right|_{\widetilde{V}}$ bijective realisations

Hilbert space framework

Theorem

$(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}T \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*} ; \\ T+\widetilde{T} \text { bounded self-adjoint in } L \text { with strictly positive bottom; } \\ \operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \quad \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .\end{array}\right.$

Theorem

$$
T_{1}=\widetilde{T}^{*} \text { and } \widetilde{T}_{1}=T^{*} .
$$

Hilbert space framework

Theorem

$(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}T \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*} ; \\ T+\widetilde{T} \text { bounded self-adjoint in } L \text { with strictly positive bottom; } \\ \operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \quad \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .\end{array}\right.$

Theorem

$T_{1}=\widetilde{T}^{*}$ and $\widetilde{T}_{1}=T^{*}$.

$$
\left.\left.T \subseteq \widetilde{T}^{*}\right|_{V} \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*}\right|_{\tilde{V}} \subseteq T^{*}
$$

Hilbert space framework

Theorem

$$
(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}
T \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*} ; \\
T+\widetilde{T} \text { bounded self-adjoint in } L \text { with strictly positive bottom; } \\
\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .
\end{array}\right.
$$

Theorem

$T_{1}=\widetilde{T}^{*}$ and $\widetilde{T}_{1}=T^{*}$.

$$
\left.\left.T \subseteq \widetilde{T}^{*}\right|_{V} \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*}\right|_{\tilde{V}} \subseteq T^{*}
$$

Theorem

If (T, \widetilde{T}) satisfies ($T 1$)-(T2), then

$$
(V 2) \Longleftrightarrow\left\{\begin{array}{l}
\mathcal{D} \subseteq V, \widetilde{V} \subseteq W \\
\left(\left.\widetilde{T^{*}}\right|_{V}\right)^{*}=\left.T^{*}\right|_{\tilde{V}} \\
\left(\left.T^{*}\right|_{\widetilde{V}}\right)^{*}=\left.\widetilde{T}^{*}\right|_{V} .
\end{array}\right.
$$

Bijective realisations with signed boundary map

We are seeking for bijective closed operators $\left.S \equiv \widetilde{T}^{*}\right|_{V}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$. If ($\operatorname{dom} S$, $\operatorname{dom} S^{*}$) satisfies (V1) we call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).

Bijective realisations with signed boundary map

We are seeking for bijective closed operators $\left.S \equiv \widetilde{T}^{*}\right|_{V}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$. If (dom S, dom S^{*}) satisfies ($V 1$) we call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).

Theorem

Let (T, \widetilde{T}) satisfies (T1)-(T3).
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).
(ii)

$$
\begin{aligned}
& \operatorname{ker} \widetilde{T}^{*} \neq\{0\} \& \operatorname{ker} T^{*} \neq\{0\} \Longrightarrow \begin{array}{l}
\text { uncountably many adjoint pairs of bijective } \\
\text { realisations with signed boundary map }
\end{array} \\
& \operatorname{ker} \widetilde{T}^{*}=\{0\} \text { or } \operatorname{ker} T^{*}=\{0\} \Longrightarrow \begin{array}{l}
\text { only one adjoint pair of bijective realisations } \\
\text { with signed boundary map }
\end{array}
\end{aligned}
$$

Classification

For (T, \widetilde{T}) satisfying (T1)-(T3) we have

$$
\bar{T} \subseteq \widetilde{T}^{*} \quad \text { and } \quad \overline{\widetilde{T}} \subseteq T^{*}
$$

while by the previous theorem there exists closed T_{r} such that

- $\bar{T} \subseteq T_{\mathrm{r}} \subseteq \widetilde{T}^{*}\left(\Longleftrightarrow \widetilde{\widetilde{T}} \subseteq T_{\mathrm{r}}^{*} \subseteq T^{*}\right)$,
- $T_{\mathrm{r}}: \operatorname{dom} T_{\mathrm{r}} \rightarrow L$ bijection,
- $\left(T_{\mathrm{r}}\right)^{-1}: L \rightarrow \operatorname{dom} T_{\mathrm{r}}$ bounded.

Thus, we can apply a universal classification (classification of dual (adjoint) pairs).
We used Grubb's universal classification

围
G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.

Result: complete classification of all adjoint pairs of bijective realisations with signed boundary map.
To do: apply this result to general classical Friedrichs operators form the beginning (nice class of non-self-adjoint differential operators of interest)

On $L^{2}(\mathbb{R})$ we consider

$$
\stackrel{\circ}{H}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}, \quad \operatorname{dom} \stackrel{\circ}{H}:=\mathrm{C}_{c}^{\infty}(\mathbb{R} \backslash\{0\}) .
$$

$\stackrel{\circ}{H}$ symmetric, but not bounded, so cannot satisfy (T2).

' δ-extensions' realised as Friedrichs systems 1/4

On $L^{2}(\mathbb{R})$ we consider

$$
\stackrel{\circ}{H}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}, \quad \operatorname{dom} \stackrel{\circ}{H}:=\mathrm{C}_{c}^{\infty}(\mathbb{R} \backslash\{0\}) .
$$

$\stackrel{\circ}{H}$ symmetric, but not bounded, so cannot satisfy (T2).

Order reduction

$$
f=\dot{H} u \Longleftrightarrow\binom{\dot{u}}{f}=\underbrace{\left(\begin{array}{cc}
0 & \frac{d}{d} \\
\frac{d}{d x} & 0
\end{array}\right)}_{=: S}\binom{-\dot{u}}{u}
$$

($S,-S$) satisfies (T 1) and (T 2), but not coercivity condition (T3). Thus, on $L:=L^{2}(\mathbb{R}) \oplus \mathrm{L}^{2}(\mathbb{R})$ we define

$$
\begin{aligned}
& T:=S+\mathbb{1} \\
& \widetilde{T}:=-S+\mathbb{1}, \quad \operatorname{dom} T:=\operatorname{dom} \widetilde{T}:=\mathrm{C}_{c}^{\infty}(\mathbb{R} \backslash\{0\}) \oplus \mathrm{C}_{c}^{\infty}(\mathbb{R} \backslash\{0\}) .
\end{aligned}
$$

On $L^{2}(\mathbb{R})$ we consider

$$
\stackrel{\circ}{H}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}, \quad \operatorname{dom} \stackrel{\circ}{H}:=\mathrm{C}_{c}^{\infty}(\mathbb{R} \backslash\{0\}) .
$$

$\stackrel{\circ}{H}$ symmetric, but not bounded, so cannot satisfy (T2).

Order reduction

$$
f=\dot{H} u \Longleftrightarrow\binom{\dot{u}}{f}=\underbrace{\left(\begin{array}{cc}
0 & \frac{d}{d} \\
\frac{d}{d x} x & 0
\end{array}\right)}_{=: S}\binom{-\dot{u}}{u}
$$

($S,-S$) satisfies (T 1) and (T 2), but not coercivity condition (T3). Thus, on $L:=L^{2}(\mathbb{R}) \oplus \mathrm{L}^{2}(\mathbb{R})$ we define

$$
\begin{aligned}
& T:=S+\mathbb{1} \\
& \widetilde{T}:=-S+\mathbb{1}
\end{aligned}, \quad \operatorname{dom} T:=\operatorname{dom} \widetilde{T}:=\mathrm{C}_{c}^{\infty}(\mathbb{R} \backslash\{0\}) \oplus \mathrm{C}_{c}^{\infty}(\mathbb{R} \backslash\{0\}) .
$$

How to return to the second order differential operator?

' δ-extensions' realised as Friedrichs systems 2/4

Definition

$$
\begin{aligned}
\Phi & : \mathfrak{L}\left(\mathrm{L}^{2}(\mathbb{R}) \oplus \mathrm{L}^{2}(\mathbb{R})\right) \longrightarrow \mathfrak{L}\left(\mathrm{L}^{2}(\mathbb{R})\right) \\
\operatorname{dom} \Phi(A) & :=\left\{u \in \mathrm{~L}^{2}(\mathbb{R}):\left(\exists!v_{u} \in \mathrm{~L}^{2}(\mathbb{R})\right)\binom{v_{u}}{u} \in \operatorname{dom} A \cap \operatorname{ker} P_{1} A\right\} \\
\Phi(A) u & :=P_{2} A\binom{v_{u}}{u}
\end{aligned}
$$

where $\mathfrak{L}(X)$ is the space of linear (not necessarily bounded) maps on the vector space X and $P_{j}: L^{2}(\mathbb{R}) \oplus L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R}), j \in\{1,2\}$, is the orthogonal projection onto the j-th component of L.

$$
\begin{aligned}
\binom{v}{u} & \in \operatorname{ker} P_{1} T \Longleftrightarrow \dot{u}+v=0 \Longleftrightarrow-\dot{u}=v=: v_{u} \\
& \Longrightarrow \Phi(T) u=\dot{v}_{u}+u=-\ddot{u}+u
\end{aligned}
$$

Lemma

(i) (T, \widetilde{T}) satisfies (T1)-(T3)
(ii) $\operatorname{dom} \Phi(T)=\mathrm{C}_{c}^{\infty}(\mathbb{R} \backslash\{0\})$ and $\Phi\left(T_{\lambda}\right)=\stackrel{\circ}{H}+\mathbb{1}$.

$$
\begin{aligned}
& T^{*}:=-S+\mathbb{1} \\
& \widetilde{T}^{*}:=S+\mathbb{1}
\end{aligned}, \quad \operatorname{dom} T^{*}:=\operatorname{dom} \widetilde{T}^{*}:=\mathrm{H}^{1}(\mathbb{R} \backslash\{0\}) \oplus \mathrm{H}^{1}(\mathbb{R} \backslash\{0\}) .
$$

$\operatorname{dim} T^{*}=\operatorname{dim} \widetilde{T}^{*}=2 \Longrightarrow 4$ parameter family of extensions
We focus on a specific one-parameter subfamily of extensions ($z \in \mathbb{C}$):
$T_{z}:=\left.\widetilde{T}^{*}\right|_{\operatorname{dom} T_{z}}$, where

$$
\operatorname{dom} T_{z}=\left\{\binom{u_{1}}{u_{2}} \in H^{1}(\mathbb{R} \backslash\{0\}) \oplus H^{1}(\mathbb{R}): u_{1}\left(0^{+}\right)-u_{1}\left(0^{-}\right)=\frac{2}{z+1} u_{2}(0)\right\}
$$

$T_{z}^{*}=\left.T^{*}\right|_{\operatorname{dom} T_{z}^{*}}$, where

$$
\operatorname{dom} T_{z}^{*}=\left\{\binom{u_{1}}{u_{2}} \in H^{1}(\mathbb{R} \backslash\{0\}) \oplus H^{1}(\mathbb{R}): u_{1}\left(0^{+}\right)-u_{1}\left(0^{-}\right)=\frac{-2}{\bar{z}+1} u_{2}(0)\right\}
$$

$$
\begin{aligned}
& \operatorname{dom} T_{z}=\left\{\binom{u_{1}}{u_{2}} \in H^{1}(\mathbb{R} \backslash\{0\}) \oplus H^{1}(\mathbb{R}): u_{1}\left(0^{+}\right)-u_{1}\left(0^{-}\right)=\frac{2}{z+1} u_{2}(0)\right\} \\
& \operatorname{dom} T_{z}^{*}=\left\{\binom{u_{1}}{u_{2}} \in H^{1}(\mathbb{R} \backslash\{0\}) \oplus H^{1}(\mathbb{R}): u_{1}\left(0^{+}\right)-u_{1}\left(0^{-}\right)=\frac{-2}{\bar{z}+1} u_{2}(0)\right\}
\end{aligned}
$$

Applying Φ we get $\left(u_{2} \rightarrow u, u_{1} \rightarrow-\dot{u}\right)$

$$
\begin{aligned}
\operatorname{dom} \Phi\left(T_{z}\right) & =\left\{u \in H^{2}(\mathbb{R} \backslash\{0\}) \cap H^{1}(\mathbb{R}): \dot{u}\left(0^{+}\right)-\dot{u}\left(0^{-}\right)=\frac{-2}{z+1} u(0)\right\} \\
\Phi\left(T_{z}\right) u & =-\ddot{u}+u
\end{aligned}
$$

and analogously for $T_{z}^{*}\left(u_{2} \rightarrow u, u_{1} \rightarrow \dot{u}\right)$

$$
\begin{aligned}
\operatorname{dom} \Phi\left(T_{z}^{*}\right) & =\left\{u \in H^{2}(\mathbb{R} \backslash\{0\}) \cap H^{1}(\mathbb{R}): \dot{u}\left(0^{+}\right)-\dot{u}\left(0^{-}\right)=\frac{-2}{\bar{z}+1} u(0)\right\} \\
\Phi\left(T_{z}^{*}\right) u & =-\ddot{u}+u
\end{aligned}
$$

It can be shown that in our case Φ preserves self-adjointness, i.e.

$$
\Phi\left(T_{z}\right)^{*}=\Phi\left(T_{z}^{*}\right) \Longrightarrow\left(\Phi\left(T_{z}\right)=\Phi\left(T_{z}\right)^{*} \Longleftrightarrow z \in \mathbb{R}\right)
$$

And...

...thank you for your attention :)

N. Antonić, M.E., A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differential Equations 263 (2017) 8264-8294.
M.E., A. Michelangeli: On contact interactions realised as Friedrichs systems, SISSA;48/2017/MATE

