Friedrichs operators as dual pairs and contact interactions

Marko Erceg

Department of Mathematics, Faculty of Science, University of Zagreb

Mathematical Challenges in Quantum Mechanics Rome, 22th February 2018

Joint work with N. Antonić and A. Michelangeli

Assumptions:

 $d, r \in \mathbb{N}$, $\Omega \subseteq \mathbb{R}^d$ open and bounded with Lipschitz boundary; $\mathbf{A}_k \in \mathrm{W}^{1,\infty}(\Omega)^{r \times r}$, $k \in \{1, \ldots, d\}$, and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfying (a.e. on Ω):

$$\mathbf{(F1)} \qquad \qquad \mathbf{A}_k = \mathbf{A}_k^* \, ;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{C} + \mathbf{C}^* + \sum_{k=1}^{d} \partial_k \mathbf{A}_k \ge \mu_0 \mathbf{I}.$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^2(\Omega)^r \to \mathcal{D}'(\Omega)^r$ by

$$\mathcal{L} \mathsf{u} := \sum_{k=1}^{d} \partial_k (\mathbf{A}_k \mathsf{u}) + \mathbf{C} \mathsf{u} \ , \qquad \widetilde{\mathcal{L}} \mathsf{u} := -\sum_{k=1}^{d} \partial_k (\mathbf{A}_k \mathsf{u}) + \left(\mathbf{C}^* + \sum_{k=1}^{d} \partial_k \mathbf{A}_k \right) \mathsf{u} \ .$$

Assumptions:

 $d, r \in \mathbb{N}$, $\Omega \subseteq \mathbb{R}^d$ open and bounded with Lipschitz boundary; $\mathbf{A}_k \in \mathrm{W}^{1,\infty}(\Omega)^{r \times r}$, $k \in \{1, \ldots, d\}$, and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfying (a.e. on Ω):

$$(\mathsf{F1}) \qquad \qquad \mathbf{A}_k = \mathbf{A}_k^*\,;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{C} + \mathbf{C}^* + \sum_{k=1}^{a} \partial_k \mathbf{A}_k \ge \mu_0 \mathbf{I}.$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^2(\Omega)^r \to \mathcal{D}'(\Omega)^r$ by

$$\mathcal{L} \mathfrak{u} := \sum_{k=1}^d \partial_k (\mathbf{A}_k \mathfrak{u}) + \mathbf{C} \mathfrak{u} , \qquad \widetilde{\mathcal{L}} \mathfrak{u} := -\sum_{k=1}^d \partial_k (\mathbf{A}_k \mathfrak{u}) + \Big(\mathbf{C}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \Big) \mathfrak{u} .$$

Aim: impose boundary conditions such that for any $\mathsf{f}\in \mathrm{L}^2(\Omega)^r$ we have a unique solution of $\mathcal{L}\mathsf{u}=\mathsf{f}.$

Gain: many important (semi)linear equations of mathematical physics can be written in the form of classical Friedrichs operators.

K. O. Friedrichs: *Symmetric positive linear differential equations*, Commun. Pure Appl. Math. **11** (1958) 333–418.

Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...
- treating the equations of mixed type, such as the Tricomi equation:

$$y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0;$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.

K. O. Friedrichs: *Symmetric positive linear differential equations*, Commun. Pure Appl. Math. **11** (1958) 333–418.

Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...

- treating the equations of mixed type, such as the Tricomi equation:

$$y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0;$$

- unified treatment of equations and systems of different type;

- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,

- no intrinsic (unique) way to pose boundary conditions.

→ development of the abstract theory

 $(L, \langle \cdot | \cdot \rangle)$ complex Hilbert space $(L' \equiv L)$, $\| \cdot \| := \sqrt{\langle \cdot | \cdot \rangle}$ $\mathcal{D} \subseteq L$ dense subspace

Definition

Let $T, \tilde{T} : \mathcal{D} \to L$. The pair (T, \tilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

(T1) $(\forall \phi, \psi \in \mathcal{D}) \quad \langle T\phi | \psi \rangle = \langle \phi | \widetilde{T}\psi \rangle;$

(T2) $(\exists c > 0) (\forall \phi \in \mathcal{D}) \qquad ||(T + \widetilde{T})\phi|| \leq c ||\phi||;$

(T3) $(\exists \mu_0 > 0) (\forall \phi \in \mathcal{D}) \qquad \langle (T + \widetilde{T})\phi \mid \phi \rangle \ge \mu_0 \|\phi\|^2.$

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317–341.

N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690–1715. $\mathbf{A}_k \in \mathrm{W}^{1,\infty}(\Omega)^{r \times r}$ and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfy (F1)–(F2):

$$(\mathsf{F1}) \qquad \qquad \mathbf{A}_k = \mathbf{A}_k^* \, ;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{C} + \mathbf{C}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \ge \mu_0 \mathbf{I}.$$

 $\mathcal{D}:=\mathrm{C}^\infty_c(\Omega)^r$, $L:=\mathrm{L}^2(\Omega)^r$, and

$$T\mathsf{u} := \sum_{k=1}^d \partial_k(\mathbf{A}_k\mathsf{u}) + \mathbf{C}\mathsf{u} , \qquad \widetilde{T}\mathsf{u} := -\sum_{k=1}^d \partial_k(\mathbf{A}_k\mathsf{u}) + \left(\mathbf{C}^* + \sum_{k=1}^d \partial_k\mathbf{A}_k\right)\mathsf{u} .$$

 $\mathbf{A}_k \in \mathrm{W}^{1,\infty}(\Omega)^{r \times r}$ and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfy (F1)–(F2):

$$(\mathsf{F1}) \qquad \qquad \mathbf{A}_k = \mathbf{A}_k^* \, ;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{C} + \mathbf{C}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \ge \mu_0 \mathbf{I}.$$

$$\begin{split} \mathcal{D} &:= \mathbf{C}^{\infty}_{c}(\Omega)^{r}, \, L := \mathbf{L}^{2}(\Omega)^{r}, \, \text{and} \\ T \mathbf{u} &:= \sum_{k=1}^{d} \partial_{k}(\mathbf{A}_{k}\mathbf{u}) + \mathbf{C}\mathbf{u} \,, \qquad \widetilde{T}\mathbf{u} := -\sum_{k=1}^{d} \partial_{k}(\mathbf{A}_{k}\mathbf{u}) + \left(\mathbf{C}^{*} + \sum_{k=1}^{d} \partial_{k}\mathbf{A}_{k}\right)\mathbf{u} \,. \end{split}$$

(T1) $\langle T \mathbf{u} | \mathbf{v} \rangle_{\mathrm{L}^2} = \langle \mathbf{u} | -\sum_{k=1}^d \partial_k (\mathbf{A}_k^* \mathbf{v}) + (\mathbf{C}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k) \mathbf{v} \rangle_{\mathrm{L}^2} \stackrel{(\mathrm{F1})}{=} \langle \mathbf{u} | \widetilde{T} \mathbf{v} \rangle_{\mathrm{L}^2}.$

 $\mathbf{A}_k \in \mathrm{W}^{1,\infty}(\Omega)^{r \times r}$ and $\mathbf{C} \in \mathrm{L}^{\infty}(\Omega)^{r \times r}$ satisfy (F1)–(F2):

$$(\mathsf{F1}) \qquad \qquad \mathbf{A}_k = \mathbf{A}_k^* \, ;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{C} + \mathbf{C}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \ge \mu_0 \mathbf{I}.$$

$$\begin{split} \mathcal{D} &:= \mathbf{C}^{\infty}_{c}(\Omega)^{r}, \ L := \mathbf{L}^{2}(\Omega)^{r}, \text{ and} \\ T \mathbf{u} &:= \sum_{k=1}^{d} \partial_{k}(\mathbf{A}_{k}\mathbf{u}) + \mathbf{C}\mathbf{u} \ , \qquad \widetilde{T}\mathbf{u} := -\sum_{k=1}^{d} \partial_{k}(\mathbf{A}_{k}\mathbf{u}) + \left(\mathbf{C}^{*} + \sum_{k=1}^{d} \partial_{k}\mathbf{A}_{k}\right)\mathbf{u} \ . \end{split}$$

$$\begin{aligned} (\mathsf{T1}) \ \langle T\mathbf{u} \mid \mathbf{v} \rangle_{\mathrm{L}^{2}} &= \langle \mathbf{u} \mid -\sum_{k=1}^{d} \partial_{k} (\mathbf{A}_{k}^{*} \mathbf{v}) + \left(\mathbf{C}^{*} + \sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \right) \mathbf{v} \rangle_{\mathrm{L}^{2}} \stackrel{(\mathrm{F1})}{=} \langle \mathbf{u} \mid \widetilde{T} \mathbf{v} \rangle_{\mathrm{L}^{2}} \,. \\ &\text{Since} \ (T + \widetilde{T}) \mathbf{u} = \left(\mathbf{C} + \mathbf{C}^{*} + \sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \right) \mathbf{u}, \\ (\mathsf{T2}) \ \| (T + \widetilde{T}) \mathbf{u} \|_{\mathrm{L}^{2}} &\leq \left(2 \| \mathbf{C} \|_{\mathrm{L}^{\infty}} + \sum_{k=1}^{d} \| \mathbf{A}_{k} \|_{\mathrm{W}^{1,\infty}} \right) \| \mathbf{u} \|_{\mathrm{L}^{2}} \,. \end{aligned}$$

$$\begin{aligned} (\mathsf{T3}) \ \langle (T + \widetilde{T}) \mathbf{u} \mid \mathbf{u} \rangle_{\mathrm{L}^{2}} \stackrel{(\mathrm{F2})}{\geq} \mu_{0} \| \mathbf{u} \|_{\mathrm{L}^{2}}^{2} \,. \end{aligned}$$

Goal: For (T, \tilde{T}) satisfying (T1)–(T3) find $V \supseteq \mathcal{D}$ ($\tilde{V} \supseteq \mathcal{D}$) such that T (\tilde{T}) extended to V (\tilde{V}) is a linear bijection.

Well-posedness result

Goal: For (T, \tilde{T}) satisfying (T1)–(T3) find $V \supseteq \mathcal{D}$ ($\tilde{V} \supseteq \mathcal{D}$) such that T (\tilde{T}) extended to V (\tilde{V}) is a linear bijection.

 $\exists \text{ maximal operators}: \quad T_1: W \subseteq L \to L , \quad T \subseteq T_1 , \\ T_1: W \subseteq L \to L , \quad T \subseteq T_1 .$ $(\operatorname{dom} T_1 = \operatorname{dom} \widetilde{T}_1 =: W)$

Well-posedness result

Goal: For (T, \tilde{T}) satisfying (T1)–(T3) find $V \supseteq \mathcal{D}$ ($\tilde{V} \supseteq \mathcal{D}$) such that T (\tilde{T}) extended to V (\tilde{V}) is a linear bijection.

 $\exists \text{ maximal operators}: \quad T_1: W \subseteq L \to L \ , \quad T \subseteq T_1 \ , \\ T_1: W \subseteq L \to L \ , \quad T \subseteq T_1 \ . \end{cases} \quad (\operatorname{dom} T_1 = \operatorname{dom} \widetilde{T}_1 =: W)$

Boundary map (form): $D: W \times W \to \mathbb{C}$, $D[u, v] := \langle T_1 u \mid v \rangle - \langle u \mid \widetilde{T}_1 v \rangle$. $(D[u, v] = \overline{D[v, u]})$

For $V, \widetilde{V} \subseteq W$ we introduce two conditions:

$$\begin{array}{ccc} (\forall u \in V) & D[u, u] \geqslant 0 \\ & (\forall v \in \widetilde{V}) & D[v, v] \leqslant 0 \end{array} \\ \\ (\mathsf{V2}) & & V = \{u \in W : (\forall v \in \widetilde{V}) & D[v, u] = 0\} \\ & & \widetilde{V} = \{v \in W : (\forall u \in V) & D[u, v] = 0\} \end{array} (\implies \mathcal{D} \subseteq V \cap \widetilde{V}) \end{array}$$

Well-posedness result

Goal: For (T, \tilde{T}) satisfying (T1)–(T3) find $V \supseteq \mathcal{D}$ ($\tilde{V} \supseteq \mathcal{D}$) such that T (\tilde{T}) extended to V (\tilde{V}) is a linear bijection.

 $\exists \text{ maximal operators}: \quad T_1: W \subseteq L \to L \ , \quad T \subseteq T_1 \ , \\ T_1: W \subseteq L \to L \ , \quad T \subseteq T_1 \ . \end{cases} \quad (\operatorname{dom} T_1 = \operatorname{dom} \widetilde{T}_1 =: W)$

Boundary map (form): $D: W \times W \to \mathbb{C}$, $D[u, v] := \langle T_1 u \mid v \rangle - \langle u \mid \widetilde{T}_1 v \rangle$. $(D[u, v] = \overline{D[v, u]})$

For $V, \widetilde{V} \subseteq W$ we introduce two conditions:

$$\begin{array}{ccc} (\forall u \in V) & D[u, u] \ge 0 \\ & (\forall v \in \widetilde{V}) & D[v, v] \le 0 \end{array} \\ \\ (\mathsf{V2}) & & V = \{u \in W : (\forall v \in \widetilde{V}) & D[v, u] = 0\} \\ & & \widetilde{V} = \{v \in W : (\forall u \in V) & D[u, v] = 0\} \end{array} (\implies \mathcal{D} \subseteq V \cap \widetilde{V}) \end{array}$$

Theorem (Ern, Guermond, Caplain, 2007)

(T1)–(T3) + (V1)–(V2) $\implies T_1|_V, \widetilde{T}_1|_{\widetilde{V}}$ bijective realisations

M. Erceg (UNIZG)

Hilbert space framework

Theorem

$$(T1) - (T3) \iff \begin{cases} T \subseteq \widetilde{T}^* & \& \quad \widetilde{T} \subseteq T^*; \\ \overline{T + \widetilde{T}} \text{ bounded self-adjoint in } L \text{ with strictly positive bottom}; \\ \operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} & \& \quad \operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^*. \end{cases}$$

Theorem

$$T_1 = \widetilde{T}^*$$
 and $\widetilde{T}_1 = T^*$.

Hilbert space framework

Theorem

$$(T1) - (T3) \iff \begin{cases} T \subseteq \widetilde{T}^* & \& \quad \widetilde{T} \subseteq T^*; \\ \overline{T + \widetilde{T}} \text{ bounded self-adjoint in } L \text{ with strictly positive bottom}; \\ \operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} & \& \quad \operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^*. \end{cases}$$

Theorem

 $T_1 = \widetilde{T}^*$ and $\widetilde{T}_1 = T^*$.

$$T \subseteq \widetilde{T}^*|_V \subseteq \widetilde{T}^*$$
 & $\widetilde{T} \subseteq T^*|_{\widetilde{V}} \subseteq T^*$.

Hilbert space framework

Theorem

$$(T1) - (T3) \iff \begin{cases} T \subseteq \widetilde{T}^* & \& \quad \widetilde{T} \subseteq T^*; \\ \overline{T + \widetilde{T}} \text{ bounded self-adjoint in } L \text{ with strictly positive bottom}; \\ \operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} & \& \quad \operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^*. \end{cases}$$

Theorem

 $T_1 = \widetilde{T}^*$ and $\widetilde{T}_1 = T^*$.

$$T \subseteq \widetilde{T}^*|_V \subseteq \widetilde{T}^*$$
 & $\widetilde{T} \subseteq T^*|_{\widetilde{V}} \subseteq T^*$.

Theorem

If (T,\widetilde{T}) satisfies (T1)–(T2), then

$$(V2) \iff \begin{cases} \mathcal{D} \subseteq V, \widetilde{V} \subseteq W\\ (\widetilde{T}^*|_V)^* = T^*|_{\widetilde{V}}\\ (T^*|_{\widetilde{V}})^* = \widetilde{T}^*|_V \end{cases}$$

M. Erceg (UNIZG)

Bijective realisations with signed boundary map

We are seeking for bijective closed operators $S \equiv \widetilde{T}^*|_V$ such that

$$\overline{T}\subseteq S\subseteq \widetilde{T}^*\,,$$

and thus also S^* is bijective and $\overline{\widetilde{T}} \subseteq S^* \subseteq T^*$. If $(\operatorname{dom} S, \operatorname{dom} S^*)$ satisfies (V1) we call (S, S^*) an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}) .

Bijective realisations with signed boundary map

We are seeking for bijective closed operators $S \equiv \widetilde{T}^*|_V$ such that

$$\overline{T} \subseteq S \subseteq \widetilde{T}^* \,,$$

and thus also S^* is bijective and $\overline{\widetilde{T}} \subseteq S^* \subseteq T^*$. If $(\operatorname{dom} S, \operatorname{dom} S^*)$ satisfies (V1) we call (S, S^*) an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}) .

Theorem

Let (T, \tilde{T}) satisfies (T1)–(T3).

 (i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, T).

(ii)

$$\ker \widetilde{T}^* \neq \{0\} \And \ker T^* \neq \{0\} \implies$$

$$\ker \widetilde{T}^* = \{0\} \text{ or } \ker T^* = \{0\} \Longrightarrow$$

uncountably many adjoint pairs of bijective realisations with signed boundary map only one adjoint pair of bijective realisations with signed boundary map

Classification

For (T,\widetilde{T}) satisfying (T1)–(T3) we have

 $\overline{T} \subseteq \widetilde{T}^*$ and $\overline{\widetilde{T}} \subseteq T^*$,

while by the previous theorem there exists closed $T_{
m r}$ such that

•
$$\overline{T} \subseteq T_{\mathrm{r}} \subseteq \widetilde{T}^*$$
 ($\iff \overline{\widetilde{T}} \subseteq T_{\mathrm{r}}^* \subseteq T^*$),

- $T_{\rm r}: \operatorname{dom} T_{\rm r} \to L$ bijection,
- $(T_r)^{-1}: L \to \operatorname{dom} T_r$ bounded.

Thus, we can apply a universal classification (classification of dual (adjoint) pairs).

We used Grubb's universal classification

G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa **22** (1968) 425–513.

Result: complete classification of all adjoint pairs of bijective realisations with signed boundary map.

To do: apply this result to general classical Friedrichs operators form the beginning (*nice class of non-self-adjoint differential operators of interest*)

On $\mathrm{L}^2(\mathbb{R})$ we consider

$$\mathring{H} := -rac{\mathrm{d}^2}{\mathrm{d}x^2} \,, \qquad \mathrm{dom}\,\mathring{H} := \,\mathrm{C}^\infty_c(\mathbb{R}ackslash\{0\}) \,.$$

 \mathring{H} symmetric, but not bounded, so cannot satisfy (T2).

On $\mathrm{L}^2(\mathbb{R})$ we consider

$$\mathring{H} := -\frac{\mathrm{d}^2}{\mathrm{d}x^2} , \qquad \mathrm{dom}\,\mathring{H} := \mathrm{C}^\infty_c(\mathbb{R}\backslash\{0\}) .$$

 \check{H} symmetric, but not bounded, so cannot satisfy (T2).

Order reduction

$$f = \mathring{H}u \iff \begin{pmatrix} \dot{u} \\ f \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & \frac{\mathrm{d}}{\mathrm{d}x} \\ \frac{\mathrm{d}}{\mathrm{d}x} & 0 \end{pmatrix}}_{=:S} \begin{pmatrix} -\dot{u} \\ u \end{pmatrix}$$

(S,-S) satisfies (T1) and (T2), but not coercivity condition (T3). Thus, on $L := L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$ we define

$$\begin{array}{ll} T &:= S + \mathbbm{1} \\ \widetilde{T} &:= -S + \mathbbm{1} \end{array}, \qquad \mathrm{dom}\, T \,:= \, \mathrm{dom}\, \widetilde{T} \,:= \, \mathrm{C}^{\infty}_{c}(\mathbb{R} \setminus \{0\}) \oplus \mathrm{C}^{\infty}_{c}(\mathbb{R} \setminus \{0\}) \,. \end{array}$$

On $\mathrm{L}^2(\mathbb{R})$ we consider

$$\mathring{H} := -\frac{\mathrm{d}^2}{\mathrm{d}x^2} , \qquad \mathrm{dom}\,\mathring{H} := \mathrm{C}^\infty_c(\mathbb{R}\backslash\{0\}) .$$

H symmetric, but not bounded, so cannot satisfy (T2).

Order reduction

$$f = \mathring{H}u \iff \begin{pmatrix} \dot{u} \\ f \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & \frac{\mathrm{d}}{\mathrm{d}x} \\ \frac{\mathrm{d}}{\mathrm{d}x} & 0 \end{pmatrix}}_{=:S} \begin{pmatrix} -\dot{u} \\ u \end{pmatrix}$$

(S, -S) satisfies (T1) and (T2), but not coercivity condition (T3). Thus, on $L := L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$ we define

 $\begin{array}{ll} T &:= S + \mathbbm{1} \\ \widetilde{T} &:= -S + \mathbbm{1} \end{array}, \qquad \mathrm{dom}\, T \,:= \, \mathrm{dom}\, \widetilde{T} \,:= \, \mathrm{C}^\infty_c(\mathbb{R} \backslash \{0\}) \oplus \mathrm{C}^\infty_c(\mathbb{R} \backslash \{0\}) \,. \end{array}$

How to return to the second order differential operator?

Definition

$$\Phi : \mathfrak{L}(\mathrm{L}^{2}(\mathbb{R}) \oplus \mathrm{L}^{2}(\mathbb{R})) \longrightarrow \mathfrak{L}(\mathrm{L}^{2}(\mathbb{R})),$$

$$\operatorname{dom} \Phi(A) := \left\{ u \in \mathrm{L}^{2}(\mathbb{R}) : (\exists ! v_{u} \in \mathrm{L}^{2}(\mathbb{R})) \quad \begin{pmatrix} v_{u} \\ u \end{pmatrix} \in \operatorname{dom} A \cap \ker P_{1}A \right\},$$

$$\Phi(A) u := P_{2}A \begin{pmatrix} v_{u} \\ u \end{pmatrix},$$

where $\mathfrak{L}(X)$ is the space of *linear* (not necessarily bounded) maps on the vector space X and $P_j : L^2(\mathbb{R}) \oplus L^2(\mathbb{R}) \to L^2(\mathbb{R})$, $j \in \{1, 2\}$, is the orthogonal projection onto the *j*-th component of L.

$$\begin{pmatrix} v \\ u \end{pmatrix} \in \ker P_1 T \iff \dot{u} + v = 0 \iff -\dot{u} = v =: v_u$$
$$\implies \Phi(T)u = \dot{v_u} + u = -\ddot{u} + u$$

Lemma

$$\begin{array}{ll} T^* := -S + \mathbb{1} \\ \widetilde{T}^* := S + \mathbb{1} \end{array}, \qquad \mathrm{dom}\, T^* := \mathrm{dom}\, \widetilde{T}^* := \mathrm{H}^1(\mathbb{R} \setminus \{0\}) \oplus \mathrm{H}^1(\mathbb{R} \setminus \{0\}) \,. \end{array}$$

 $\dim T^* = \dim \widetilde{T}^* = 2 \implies 4$ parameter family of extensions We focus on a specific one-parameter subfamily of extensions $(z \in \mathbb{C})$:

$$\begin{split} T_z &:= \widetilde{T}^*|_{\operatorname{dom} T_z} \text{, where} \\ &\operatorname{dom} T_z \;=\; \left\{ \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in H^1(\mathbb{R} \setminus \{0\}) \oplus H^1(\mathbb{R}) \,:\, u_1(0^+) - u_1(0^-) = \frac{2}{z+1} u_2(0) \right\} \text{.} \\ T_z^* &= T^*|_{\operatorname{dom} T_z^*} \text{, where} \\ &\operatorname{dom} T_z^* \;=\; \left\{ \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in H^1(\mathbb{R} \setminus \{0\}) \oplus H^1(\mathbb{R}) \,:\, u_1(0^+) - u_1(0^-) = \frac{-2}{z+1} u_2(0) \right\} \text{.} \end{split}$$

dom
$$T_z = \left\{ \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in H^1(\mathbb{R} \setminus \{0\}) \oplus H^1(\mathbb{R}) : u_1(0^+) - u_1(0^-) = \frac{2}{z+1}u_2(0) \right\}$$

dom $T_z^* = \left\{ \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in H^1(\mathbb{R} \setminus \{0\}) \oplus H^1(\mathbb{R}) : u_1(0^+) - u_1(0^-) = \frac{-2}{\overline{z+1}}u_2(0) \right\}$

Applying Φ we get $(u_2
ightarrow u, \, u_1
ightarrow -\dot{u})$

dom
$$\Phi(T_z) = \left\{ u \in H^2(\mathbb{R} \setminus \{0\}) \cap H^1(\mathbb{R}) : \dot{u}(0^+) - \dot{u}(0^-) = \frac{-2}{z+1}u(0) \right\}$$

 $\Phi(T_z) u = -\ddot{u} + u,$

and analogously for T_z^* ($u_2
ightarrow u$, $u_1
ightarrow \dot{u}$)

dom
$$\Phi(T_z^*) = \left\{ u \in H^2(\mathbb{R} \setminus \{0\}) \cap H^1(\mathbb{R}) : \dot{u}(0^+) - \dot{u}(0^-) = \frac{-2}{\overline{z}+1}u(0) \right\}$$

 $\Phi(T_z^*) u = -\ddot{u} + u;$

It can be shown that in our case Φ preserves self-adjointness, i.e.

$$\Phi(T_z)^* = \Phi(T_z^*) \implies \left(\Phi(T_z) = \Phi(T_z)^* \iff z \in \mathbb{R}\right)$$

M. Erceg (UNIZG)

...thank you for your attention :)

N. Antonić, M.E., A. Michelangeli: *Friedrichs systems in a Hilbert space framework: solvability and multiplicity*, J. Differential Equations 263 (2017) 8264-8294.

M.E., A. Michelangeli: On contact interactions realised as Friedrichs systems, SISSA;48/2017/MATE