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Classical Friedrichs operators

Assumptions:
d, r ∈ N, Ω ⊆ Rd open and bounded with Lipschitz boundary;
Ak ∈W1,∞(Ω)r×r, k ∈ {1, . . . , d}, and C ∈ L∞(Ω)r×r satisfying (a.e. on Ω):

Ak = A∗k ;(F1)

(∃µ0 > 0) C + C∗ +

d∑
k=1

∂kAk > µ0I .(F2)

Define L, L̃ : L2(Ω)r → D′(Ω)r by

Lu :=
d∑
k=1

∂k(Aku) + Cu , L̃u := −
d∑
k=1

∂k(Aku) +
(
C∗ +

d∑
k=1

∂kAk

)
u .

Aim: impose boundary conditions such that for any f ∈ L2(Ω)r we have a unique
solution of Lu = f.
Gain: many important (semi)linear equations of mathematical physics can be written in
the form of classical Friedrichs operators.
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The classical theory in short

K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure
Appl. Math. 11 (1958) 333–418.

Unified treatment of linear hyperbolic systems like Maxwell’s, Dirac’s, or higher order
equations (e.g. the wave equation).

– Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, . . .
– treating the equations of mixed type, such as the Tricomi equation:

y
∂2u

∂x2
+
∂2u

∂y2
= 0 ;

– unified treatment of equations and systems of different type;
– more recently: better numerical properties.

Shortcommings:
– no satisfactory well-posedness result,
– no intrinsic (unique) way to pose boundary conditions.

 development of the abstract theory
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Abstract Friedrichs operators

(L, 〈 · | · 〉) complex Hilbert space (L′ ≡ L), ‖ · ‖ :=
√
〈 · | · 〉

D ⊆ L dense subspace

Definition

Let T, T̃ : D → L. The pair (T, T̃ ) is called a joint pair of abstract Friedrichs operators if
the following holds:

(∀φ, ψ ∈ D) 〈Tφ | ψ 〉 = 〈φ | T̃ψ 〉 ;(T1)

(∃ c > 0)(∀φ ∈ D) ‖(T + T̃ )φ‖ 6 c‖φ‖ ;(T2)

(∃µ0 > 0)(∀φ ∈ D) 〈 (T + T̃ )φ | φ 〉 > µ0‖φ‖2 .(T3)

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of
Hilbert operators related to Friedrichs’ systems, Comm. Partial Diff. Eq. 32 (2007)
317–341.

N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems,
Comm. Partial Diff. Eq. 35 (2010) 1690–1715.
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Classical is abstract

Ak ∈W1,∞(Ω)r×r and C ∈ L∞(Ω)r×r satisfy (F1)–(F2):

Ak = A∗k ;(F1)

(∃µ0 > 0) C + C∗ +
d∑
k=1

∂kAk > µ0I .(F2)

D := C∞c (Ω)r, L := L2(Ω)r, and

Tu :=

d∑
k=1

∂k(Aku) + Cu , T̃u := −
d∑
k=1

∂k(Aku) +
(
C∗ +

d∑
k=1

∂kAk

)
u .

(T1) 〈Tu | v 〉L2 = 〈 u | −
∑d
k=1 ∂k(A∗kv) +

(
C∗ +

∑d
k=1 ∂kAk

)
v 〉L2

(F1)
= 〈 u | T̃ v 〉L2 .

Since (T + T̃ )u =
(
C + C∗ +

∑d
k=1 ∂kAk

)
u,

(T2) ‖(T + T̃ )u‖L2 6
(

2‖C‖L∞ +
∑d
k=1 ‖Ak‖W1,∞

)
‖u‖L2 ,

(T3) 〈 (T + T̃ )u | u 〉L2

(F2)

> µ0‖u‖2L2 .
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Well-posedness result

Goal: For (T, T̃ ) satisfying (T1)–(T3) find V ⊇ D (Ṽ ⊇ D) such that T (T̃ ) extended to

V (Ṽ ) is a linear bijection.

∃ maximal operators : T1 : W ⊆ L→ L , T ⊆ T1 ,

T1 : W ⊆ L→ L , T ⊆ T1 .
(domT1 = dom T̃1 =: W )

Boundary map (form): D : W ×W → C ,

D[u, v] := 〈T1u | v 〉 − 〈u | T̃1v 〉 .
(D[u, v] = D[v, u])

For V, Ṽ ⊆W we introduce two conditions:

(V1)
(∀u ∈ V ) D[u, u] > 0

(∀ v ∈ Ṽ ) D[v, v] 6 0

(V2)
V = {u ∈W : (∀ v ∈ Ṽ ) D[v, u] = 0}

Ṽ = {v ∈W : (∀u ∈ V ) D[u, v] = 0}
( =⇒ D ⊆ V ∩ Ṽ )

Theorem (Ern, Guermond, Caplain, 2007)

(T1)–(T3) + (V1)–(V2) =⇒ T1|V , T̃1|Ṽ bijective realisations
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V (Ṽ ) is a linear bijection.

∃ maximal operators : T1 : W ⊆ L→ L , T ⊆ T1 ,

T1 : W ⊆ L→ L , T ⊆ T1 .
(domT1 = dom T̃1 =: W )

Boundary map (form): D : W ×W → C ,

D[u, v] := 〈T1u | v 〉 − 〈u | T̃1v 〉 .
(D[u, v] = D[v, u])
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V (Ṽ ) is a linear bijection.

∃ maximal operators : T1 : W ⊆ L→ L , T ⊆ T1 ,

T1 : W ⊆ L→ L , T ⊆ T1 .
(domT1 = dom T̃1 =: W )

Boundary map (form): D : W ×W → C ,

D[u, v] := 〈T1u | v 〉 − 〈u | T̃1v 〉 .
(D[u, v] = D[v, u])
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Hilbert space framework

Theorem

(T1)− (T3) ⇐⇒


T ⊆ T̃ ∗ & T̃ ⊆ T ∗;

T + T̃ bounded self-adjoint in L with strictly positive bottom;

domT = dom T̃ & domT ∗ = dom T̃ ∗ .

Theorem

T1 = T̃ ∗ and T̃1 = T ∗.

T ⊆ T̃ ∗|V ⊆ T̃ ∗ & T̃ ⊆ T ∗|Ṽ ⊆ T
∗ .

Theorem

If (T, T̃ ) satisfies (T1)–(T2), then

(V 2) ⇐⇒


D ⊆ V, Ṽ ⊆W
(T̃ ∗|V )∗ = T ∗|Ṽ
(T ∗|Ṽ )∗ = T̃ ∗|V .
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Bijective realisations with signed boundary map

We are seeking for bijective closed operators S ≡ T̃ ∗|V such that

T ⊆ S ⊆ T̃ ∗ ,

and thus also S∗ is bijective and T̃ ⊆ S∗ ⊆ T ∗. If (domS,domS∗) satisfies (V 1) we call
(S, S∗) an adjoint pair of bijective realisations with signed boundary map relative to

(T, T̃ ).

Theorem

Let (T, T̃ ) satisfies (T1)–(T3).

(i) There exists an adjoint pair of bijective realisations with signed boundary map

relative to (T, T̃ ).

(ii)

ker T̃ ∗ 6= {0} & kerT ∗ 6= {0} =⇒
uncountably many adjoint pairs of bijective

realisations with signed boundary map

ker T̃ ∗ = {0} or kerT ∗ = {0} =⇒
only one adjoint pair of bijective realisations

with signed boundary map
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Classification

For (T, T̃ ) satisfying (T1)–(T3) we have

T ⊆ T̃ ∗ and T̃ ⊆ T ∗ ,

while by the previous theorem there exists closed Tr such that

T ⊆ Tr ⊆ T̃ ∗ (⇐⇒ T̃ ⊆ T ∗r ⊆ T ∗),

Tr : domTr → L bijection,

(Tr)
−1 : L→ domTr bounded.

Thus, we can apply a universal classification (classification of dual (adjoint) pairs).

We used Grubb’s universal classification

G. Grubb: A characterization of the non-local boundary value problems associated
with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425–513.

Result: complete classification of all adjoint pairs of bijective realisations with signed
boundary map.
To do: apply this result to general classical Friedrichs operators form the beginning
(nice class of non-self-adjoint differential operators of interest)
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‘δ-extensions’ realised as Friedrichs systems 1/4

On L2(R) we consider

H̊ := − d2

dx2
, dom H̊ := C∞c (R\{0}) .

H̊ symmetric, but not bounded, so cannot satisfy (T2).

Order reduction

f = H̊u ⇐⇒
(
u̇
f

)
=

(
0 d

dx
d
dx

0

)
︸ ︷︷ ︸

=:S

(
−u̇
u

)

(S,−S) satisfies (T1) and (T2), but not coercivity condition (T3). Thus, on
L := L2(R)⊕ L2(R) we define

T := S + 1

T̃ := −S + 1

, domT := dom T̃ := C∞c (R\{0})⊕ C∞c (R\{0}) .

How to return to the second order differential operator?
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‘δ-extensions’ realised as Friedrichs systems 2/4

Definition

Φ : L(L2(R)⊕ L2(R)) −→ L(L2(R)) ,

dom Φ(A) :=
{
u ∈ L2(R) : (∃ ! vu ∈ L2(R))

(
vu
u

)
∈ domA ∩ kerP1A

}
,

Φ(A)u := P2A

(
vu
u

)
,

where L(X) is the space of linear (not necessarily bounded) maps on the vector space X
and Pj : L2(R)⊕ L2(R)→ L2(R), j ∈ {1, 2}, is the orthogonal projection onto the j-th
component of L.(
v
u

)
∈ kerP1T ⇐⇒ u̇+ v = 0 ⇐⇒ −u̇ = v =: vu

=⇒ Φ(T )u = v̇u + u = −ü+ u

Lemma

(i) (T, T̃ ) satisfies (T1)–(T3)

(ii) dom Φ(T ) = C∞c (R\{0}) and Φ(Tλ) = H̊ + 1.
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‘δ-extensions’ realised as Friedrichs systems 3/4

T ∗ := −S + 1

T̃ ∗ := S + 1

, domT ∗ := dom T̃ ∗ := H1(R\{0})⊕H1(R\{0}) .

dimT ∗ = dim T̃ ∗ = 2 =⇒ 4 parameter family of extensions
We focus on a specific one-parameter subfamily of extensions (z ∈ C):

Tz := T̃ ∗|domTz , where

domTz =

{(
u1

u2

)
∈ H1(R\{0})⊕H1(R) : u1(0+)− u1(0−) =

2

z + 1
u2(0)

}
.

T ∗z = T ∗|domT∗z , where

domT ∗z =

{(
u1

u2

)
∈ H1(R\{0})⊕H1(R) : u1(0+)− u1(0−) =

−2

z + 1
u2(0)

}
.
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u(0)

}
Φ(Tz)u = −ü+ u ,

and analogously for T ∗z (u2 → u, u1 → u̇)

dom Φ(T ∗z ) =
{
u ∈ H2(R\{0}) ∩H1(R) : u̇(0+)− u̇(0−) =

−2

z + 1
u(0)

}
Φ(T ∗z )u = −ü+ u ;

It can be shown that in our case Φ preserves self-adjointness, i.e.

Φ(Tz)
∗ = Φ(T ∗z ) =⇒

(
Φ(Tz) = Φ(Tz)

∗ ⇐⇒ z ∈ R
)
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And...

...thank you for your attention :)
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