Hilbert space approach to PDEs of Friedrichs type

Marko Erceg

Scuola Internazionale Superiore di Studi Avanzati (SISSA)
and
Department of Mathematics, Faculty of Science, University of Zagreb

Junior Trieste Quantum Days
Trieste, $19^{\text {th }}$ May, 2017

Joint work with N. Antonić, K. Burazin, I. Crnjac and A. Michelangeli

Abstract Friedrichs operators
Definition
Classical Friedrichs operators Well-posedness

Non-stationary Friedrichs operators

Hilbert space framework
Equivalent definition
Bijective realisations with signed boundary map

Abstract Friedrichs operators

$\left(L,\langle\cdot \mid \cdot\rangle_{L}\right)$ complex Hilbert space $\left(L^{\prime} \equiv L\right),\|\cdot\|_{L}:=\sqrt{\langle\cdot \mid \cdot\rangle_{L}}$
$\mathcal{D} \subseteq L$ dense subspace

Definition

Let $T, \widetilde{T}: \mathcal{D} \rightarrow L$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
(\forall \phi, \psi \in \mathcal{D}) \quad\langle T \phi \mid \psi\rangle_{L}=\langle\phi \mid \widetilde{T} \psi\rangle_{L}
$$

$$
(\exists c>0)(\forall \phi \in \mathcal{D}) \quad\|(T+\widetilde{T}) \phi\|_{L} \leqslant c\|\phi\|_{L}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right)(\forall \phi \in \mathcal{D}) \quad\langle(T+\widetilde{T}) \phi \mid \phi\rangle_{L} \geqslant \mu_{0}\|\phi\|_{L}^{2} . \tag{T3}
\end{equation*}
$$

Example 1 (Classical Friedrichs operators)

$\Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary
$L:=\mathrm{L}^{2}(\Omega)^{r}, \mathcal{D}:=\mathrm{C}_{c}^{\infty}(\Omega)^{r}$
Let $\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r \times r}\right), k \in\{1, \ldots, d\}$, and $\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r \times r}\right)$ satisfy (a.e. on Ω):
(F1)

$$
\mathbf{A}_{k}=\mathbf{A}_{k}^{*} ;
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

Define $T, \widetilde{T}: \mathcal{D} \rightarrow L$ by

$$
\begin{aligned}
T \mathbf{u} & :=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u} \\
\widetilde{T} \mathbf{u} & :=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u}
\end{aligned}
$$

(T, \widetilde{T}) is a joint pair of abstract Friedrichs operators.

Motivation

Goal: To find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\widetilde{V})$ is a linear bijection.

Motivation

Goal: To find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\widetilde{V})$ is a linear bijection.

It is more convenient to first extend T and \widetilde{T} and then seek for suitable restrictions. In [Ern at al., 2007] a construction of $\left(T_{1}, \widetilde{T}_{1}\right)$ such that

$$
T \subseteq T_{1}, \quad \widetilde{T} \subseteq \widetilde{T}_{1}, \quad \operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: W
$$

and $\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right)$ is a Hilbert space.
New goal: To find $V, \widetilde{V} \subseteq W$ such that $W_{0} \subseteq V, \widetilde{V}$ and restrictions $\left.T_{1}\right|_{V}: V \rightarrow L,\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are bijections (here $\left.W_{0}:=\overline{\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T_{1}}\right)}\right)$.

Motivation

Goal: To find $V \supseteq \mathcal{D}(\widetilde{V} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $V(\widetilde{V})$ is a linear bijection.

It is more convenient to first extend T and \widetilde{T} and then seek for suitable restrictions. In [Ern at al., 2007] a construction of $\left(T_{1}, \widetilde{T}_{1}\right)$ such that

$$
T \subseteq T_{1}, \quad \widetilde{T} \subseteq \widetilde{T}_{1}, \quad \operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: W
$$

and $\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right)$ is a Hilbert space.
New goal: To find $V, \widetilde{V} \subseteq W$ such that $W_{0} \subseteq V, \widetilde{V}$ and restrictions $\left.T_{1}\right|_{V}: V \rightarrow L,\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are bijections (here $\left.W_{0}:=\overline{\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T_{1}}\right)}\right)$.

Questions:

1) Sufficient conditions on V
2) Existence of such V
3) Infinity of such V
4) Classification of such V

Well-posedness result

Boundary operator: $D:\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right) \rightarrow\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right)^{\prime}$,

$$
{ }_{W^{\prime}}\langle D u, v\rangle_{W}:=\left\langle T_{1} u \mid v\right\rangle_{L}-\left\langle u \mid \widetilde{T}_{1} v\right\rangle_{L}, \quad u, v \in W
$$

Properties: ker $D=W_{0}$ and D symmetric, i.e.

$$
(\forall u, v \in W) \quad W^{\prime}\langle D u, v\rangle_{W}=W_{W^{\prime}}\langle D v, u\rangle_{W}
$$

Well-posedness result

Boundary operator: $D:\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right) \rightarrow\left(W,\langle\cdot \mid \cdot\rangle_{T_{1}}\right)^{\prime}$,

$$
{ }_{W^{\prime}}\langle D u, v\rangle_{W}:=\left\langle T_{1} u \mid v\right\rangle_{L}-\left\langle u \mid \widetilde{T}_{1} v\right\rangle_{L}, \quad u, v \in W
$$

Properties: ker $D=W_{0}$ and D symmetric, i.e.

$$
(\forall u, v \in W) \quad W^{\prime}\langle D u, v\rangle_{W}=W_{W^{\prime}}\langle D v, u\rangle_{W}
$$

$$
\begin{array}{lc}
(\forall u \in V) & W^{\prime}\langle D u, u\rangle_{W} \geqslant 0 \\
(\forall v \in \widetilde{V}) & { }_{W^{\prime}}\langle D v, v\rangle_{W} \leqslant 0 \\
V=D(\widetilde{V})^{0}, & \widetilde{V}=D(V)^{0} . \tag{V2}
\end{array}
$$

Theorem (Ern, Guermond, Caplain, 2007)

Let (T, \widetilde{T}) be a joint pair of Friedrichs systems and let (V, \widetilde{V}) satisfies (V1)-(V2). Then $\left.T_{1}\right|_{V}: V \rightarrow L$ and $\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are closed bijective realisations of T and \widetilde{T}, respectively.

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary $\Gamma, \mu \in \mathrm{L}^{\infty}(\Omega)$ such that $\mu(x) \geqslant \mu_{0}>0$ (a.e. $x \in \Omega$).
For $f \in \mathrm{~L}^{2}(\Omega)$ we consider
$-\triangle u+\mu u=f$

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary $\Gamma, \mu \in \mathrm{L}^{\infty}(\Omega)$ such that $\mu(x) \geqslant \mu_{0}>0$ (a.e. $x \in \Omega$).
For $f \in \mathrm{~L}^{2}(\Omega)$ we consider
$-\triangle u+\mu u=f \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f$

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary $\Gamma, \mu \in \mathrm{L}^{\infty}(\Omega)$ such that $\mu(x) \geqslant \mu_{0}>0$ (a.e. $x \in \Omega$).
For $f \in \mathrm{~L}^{2}(\Omega)$ we consider
$-\Delta u+\mu u=f \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f \Longleftrightarrow\left\{\begin{array}{r}\nabla u+\mathrm{p}=0 \\ \operatorname{div} \mathrm{p}+\mu u=f\end{array}\right.$

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary $\Gamma, \mu \in \mathrm{L}^{\infty}(\Omega)$ such that $\mu(x) \geqslant \mu_{0}>0$ (a.e. $x \in \Omega$).
For $f \in \mathrm{~L}^{2}(\Omega)$ we consider

$$
\begin{aligned}
-\triangle u+\mu u=f \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f & \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T \mathrm{v}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathrm{v}\right)+\mathbf{C} v=\mathrm{g}
\end{aligned}
$$

where $\mathrm{v}:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 \mathrm{f}]^{\top},\left(\mathbf{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}$, $\mathbf{C}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$.
Assumtions (F1) and (F2) are satisfied.

Example 2 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary $\Gamma, \mu \in \mathrm{L}^{\infty}(\Omega)$ such that $\mu(x) \geqslant \mu_{0}>0$ (a.e. $x \in \Omega$).
For $f \in \mathrm{~L}^{2}(\Omega)$ we consider

$$
\begin{aligned}
-\triangle u+\mu u=f \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f & \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T \mathrm{v}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathrm{v}\right)+\mathbf{C} \mathrm{v}=\mathrm{g}
\end{aligned}
$$

where $\mathrm{v}:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 \mathrm{f}]^{\top},\left(\mathbf{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}$,
$\mathbf{C}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$.
Assumtions (F1) and (F2) are satisfied.
$L=\mathrm{L}^{2}(\Omega)^{d+1}, W=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$

- $V=\mathrm{L}_{\mathrm{div}}^{2}(\Omega) \times \mathrm{H}_{0}^{1}(\Omega) \ldots$ Dirichelt boundary condition $(u=0$ on $\Gamma)$
- $V=\mathrm{L}_{\mathrm{div}, 0}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega) \ldots$ Neumann boundary condition (p $\cdot \nu=\nabla u \cdot \nu=0$ on Γ)

Non-stationary Friedrichs systems

(P)

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T_{1} \mathbf{u}(t) & =\mathrm{f} \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

where $\mathrm{u}:[0, \tau] \rightarrow L$, for $\tau>0$, is the unknown function, while the right-hand side $\mathrm{f}:\langle 0, \tau\rangle \rightarrow L$ (or $\mathrm{f}:\langle 0, \tau\rangle \times L \rightarrow L$ in the semi-linear case), the initial data $\mathrm{u}_{0} \in L$ and the abstract Friedrichs operator T_{1} (an extension of T as before), not depending on the time variable t, are given.

Theorem

Let (T, \widetilde{T}) be a joint pair of Friedrichs operators, and (V, \widetilde{V}) a pair of subspaces satisfying (V) conditions. Then $-\left.T_{1}\right|_{V}$ is an infinitesimal generator of a contraction C_{0}-semigroup on L.

Non-stationary Friedrichs systems - well-posedness

Theorem

Let (T, \widetilde{T}) be a joint pair of Friedrichs operators, and (V, \widetilde{V}) a pair of subspaces satisfying (V) conditions.
a) If $\mathrm{f} \in \mathrm{L}^{1}(\langle 0, \tau\rangle ; L)$, then for every $\mathrm{u}_{0} \in L$ the problem (P) has the unique mild solution $\mathrm{u} \in \mathrm{C}([0, \tau] ; L)$ given by

$$
\mathrm{u}(t)=S(t) \mathbf{u}_{0}+\int_{0}^{t} S(t-s) \mathbf{f}(s) d s, \quad t \in[0, \tau]
$$

where $(S(t))_{t \geqslant 0}$ is a contraction C_{0}-semigroup generated by $-\left.T_{1}\right|_{V}$.
b) If additionally $\mathrm{u}_{0} \in V$ and
$\mathrm{f} \in \mathrm{W}^{1,1}(\langle 0, \tau\rangle ; L) \cup(\mathrm{C}([0, \tau] ; L) \cap \mathrm{L}(\langle 0, \tau\rangle ; V))$, with V equipped by
the graph norm, then the above weak solution is the classical solution of (P) on $[0, \tau]$.
c) If $\mathrm{f}:[0, \tau] \times L \rightarrow L$ is continuous and locally Lipschitz in the last variable, with Lipschitz constant not depending on the first variable, then for every $\mathrm{u}_{0} \in L$ there exists $\tau_{\text {max }}$, such that the semi-linear problem (P) has unique mild solution $\mathrm{u} \in \mathrm{C}\left(\left[0, \tau_{\max }\right] ; L\right)$.

Example 3 (Dirac system)

$$
a \gamma^{0} \partial_{t} \psi+\gamma^{1} \partial_{1} \psi+\gamma^{2} \partial_{2} \psi+\gamma^{3} \partial_{3} \psi+B \psi=f
$$

where $\psi:[0, \tau] \times \mathbb{R}^{3} \rightarrow \mathbb{C}^{4}$ is the unknown function, while $f:\langle 0, \tau\rangle \rightarrow \mathbb{C}^{4}$ (or $f:\langle 0, \tau\rangle \times \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ in the semi-linear case), $a>0$ and $B=\left[\begin{array}{cc}b_{1} I & 0 \\ 0 & b_{2} I\end{array}\right]$, with $b_{1}, b_{2}: \mathbb{R}^{3} \rightarrow \mathbb{C}$ and I denotes 2×2 unit matrix, are given, and

$$
\gamma^{0}=\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right], \quad \gamma^{k}=\left[\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right]
$$

where σ^{k} are Pauli matrices.

Example 3 (Dirac system)

$$
a \gamma^{0} \partial_{t} \psi+\gamma^{1} \partial_{1} \psi+\gamma^{2} \partial_{2} \psi+\gamma^{3} \partial_{3} \psi+B \psi=f
$$

where $\psi:[0, \tau] \times \mathbb{R}^{3} \rightarrow \mathbb{C}^{4}$ is the unknown function, while $f:\langle 0, \tau\rangle \rightarrow \mathbb{C}^{4}$ (or $f:\langle 0, \tau\rangle \times \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ in the semi-linear case), $a>0$ and $B=\left[\begin{array}{cc}b_{1} I & 0 \\ 0 & b_{2} I\end{array}\right]$, with $b_{1}, b_{2}: \mathbb{R}^{3} \rightarrow \mathbb{C}$ and I denotes 2×2 unit matrix, are given, and

$$
\gamma^{0}=\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right], \quad \gamma^{k}=\left[\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right]
$$

where σ^{k} are Pauli matrices.

$$
\partial_{t} \psi+T \psi=F
$$

where $F=\frac{1}{a} \gamma^{0} f$, while $T \psi=\sum_{k=1}^{3} A_{k} \partial_{k} \psi+C \psi$ with

$$
A_{k}:=\frac{1}{a}\left[\begin{array}{cc}
0 & \sigma^{k} \\
\sigma^{k} & 0
\end{array}\right] \quad \text { and } \quad C=\frac{1}{a} \gamma^{0} B
$$

Example 3 (Dirac system)

$$
a \gamma^{0} \partial_{t} \psi+\gamma^{1} \partial_{1} \psi+\gamma^{2} \partial_{2} \psi+\gamma^{3} \partial_{3} \psi+B \psi=f
$$

where $\psi:[0, \tau] \times \mathbb{R}^{3} \rightarrow \mathbb{C}^{4}$ is the unknown function, while $f:\langle 0, \tau\rangle \rightarrow \mathbb{C}^{4}$ (or $f:\langle 0, \tau\rangle \times \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ in the semi-linear case), $a>0$ and $B=\left[\begin{array}{cc}b_{1} I & 0 \\ 0 & b_{2} I\end{array}\right]$, with $b_{1}, b_{2}: \mathbb{R}^{3} \rightarrow \mathbb{C}$ and I denotes 2×2 unit matrix, are given, and

$$
\gamma^{0}=\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right], \quad \gamma^{k}=\left[\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right]
$$

where σ^{k} are Pauli matrices.

$$
\partial_{t} \psi+T \psi=F
$$

where $F=\frac{1}{a} \gamma^{0} f$, while $T \psi=\sum_{k=1}^{3} A_{k} \partial_{k} \psi+C \psi$ with

$$
A_{k}:=\frac{1}{a}\left[\begin{array}{cc}
0 & \sigma^{k} \\
\sigma^{k} & 0
\end{array}\right] \quad \text { and } \quad C=\frac{1}{a} \gamma^{0} B
$$

T fits in Example 1, i.e. it is a Friedrichs operator.

Hilbert space framework

Hilbert space framework

Theorem (Ern, Guermond, Caplain, 2007)

Let (T, \widetilde{T}) be a joint pair of Friedrichs systems and let (V, \widetilde{V}) satisfies (V1)-(V2). Then $\left.T_{1}\right|_{V}: V \rightarrow L$ and $\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are closed bijective realisations of T and \widetilde{T}, respectively.

Can we say something more about extensions T_{1}, \widetilde{T}_{1}, and (V1)-(V2) conditions?

Hilbert space framework

Theorem (Ern, Guermond, Caplain, 2007)

Let (T, \widetilde{T}) be a joint pair of Friedrichs systems and let (V, \widetilde{V}) satisfies (V1)-(V2). Then $\left.T_{1}\right|_{V}: V \rightarrow L$ and $\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are closed bijective realisations of T and \widetilde{T}, respectively.

Can we say something more about extensions T_{1}, \widetilde{T}_{1}, and (V1)-(V2) conditions?

Theorem

Let $T, \widetilde{T}: \mathcal{D} \rightarrow L$. The pair (T, \widetilde{T}) is a joint pair of abstract Friedrichs operators iff
(i) $T \subseteq \widetilde{T}^{*}$ and $\widetilde{T} \subseteq T^{*}$;
(ii) $\overline{T+\widetilde{T}}$ is a bounded self-adjoint operator in L with strictly positive bottom;
(iii) $\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}}=W_{0}$ and $\operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}=W$.

Hilbert space framework

Theorem (Ern, Guermond, Caplain, 2007)

Let (T, \widetilde{T}) be a joint pair of Friedrichs systems and let (V, \widetilde{V}) satisfies (V1)-(V2). Then $\left.T_{1}\right|_{V}: V \rightarrow L$ and $\left.\widetilde{T}_{1}\right|_{\tilde{V}}: \widetilde{V} \rightarrow L$ are closed bijective realisations of T and \widetilde{T}, respectively.

Can we say something more about extensions T_{1}, \widetilde{T}_{1}, and (V1)-(V2) conditions?

Theorem

Let $T, \widetilde{T}: \mathcal{D} \rightarrow L$. The pair (T, \widetilde{T}) is a joint pair of abstract Friedrichs operators iff
(i) $T \subseteq \widetilde{T}^{*}$ and $\widetilde{T} \subseteq T^{*}$;
(ii) $\overline{T+\widetilde{T}}$ is a bounded self-adjoint operator in L with strictly positive bottom;
(iii) $\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}}=W_{0}$ and $\operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}=W$.

Theorem

(i) $\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}}=W_{0}$ and $\operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}=W$;
(ii) $T_{1}=\widetilde{T}^{*}$ and $\widetilde{T}_{1}=T^{*}$.

Theorem

Let (T, \widetilde{T}) be a pair of operators on the Hilbert space L satisfying conditions (T1)-(T2), and let (V, \widetilde{V}) be a pair of subspaces of L. Then

$$
\text { condition }(\mathrm{V} 2) \Leftrightarrow\left\{\begin{array}{l}
W_{0} \subseteq V \subseteq W, W_{0} \subseteq \widetilde{V} \subseteq W \\
V \text { and } \widetilde{V} \text { closed in } W \\
\left(\left.\widetilde{T}^{*}\right|_{V}\right)^{*}=\left.T^{*}\right|_{\tilde{V}} \\
\left(\left.T^{*}\right|_{\widetilde{V}}\right)^{*}=\left.\widetilde{T}^{*}\right|_{V}
\end{array}\right.
$$

Theorem

Let (T, \widetilde{T}) be a pair of operators on the Hilbert space L satisfying conditions (T1)-(T2), and let (V, \widetilde{V}) be a pair of subspaces of L. Then

$$
\text { condition (V2) } \Leftrightarrow\left\{\begin{array}{l}
W_{0} \subseteq V \subseteq W, W_{0} \subseteq \widetilde{V} \subseteq W \\
V \text { and } \widetilde{V} \text { closed in } W \\
\left(\left.\widetilde{T}^{*}\right|_{V}\right)^{*}=\left.T^{*}\right|_{\tilde{V}} \\
\left(\left.T^{*}\right|_{\widetilde{V}}\right)^{*}=\left.\widetilde{T}^{*}\right|_{V}
\end{array}\right.
$$

We are seeking for bijective closed operators $\left.S \equiv \widetilde{T}^{*}\right|_{V}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$.

Theorem

Let (T, \widetilde{T}) be a pair of operators on the Hilbert space L satisfying conditions (T1)-(T2), and let (V, \tilde{V}) be a pair of subspaces of L. Then

$$
\text { condition }(\mathrm{V} 2) \Leftrightarrow\left\{\begin{array}{l}
W_{0} \subseteq V \subseteq W, W_{0} \subseteq \tilde{V} \subseteq W \\
V \text { and } \widetilde{V} \text { closed in } W \\
\left(\left.\widetilde{T}^{*}\right|_{V}\right)^{*}=\left.T^{*}\right|_{\tilde{V}} \\
\left(\left.T^{*}\right|_{\tilde{V}}\right)^{*}=\left.\widetilde{T}^{*}\right|_{V}
\end{array}\right.
$$

We are seeking for bijective closed operators $\left.S \equiv \widetilde{T}^{*}\right|_{V}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$.
In the rest we work with closed T and \widetilde{T}.

Definition

Let (T, \widetilde{T}) be a joint pair of closed abstract Friedrichs operators on the Hilbert space L. For a closed $T \subseteq S \subseteq \widetilde{T}^{*}$ such that $\left(\operatorname{dom} S\right.$, $\left.\operatorname{dom} S^{*}\right)$ satisfies $(V 1)$ we call (S, S^{*}) an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).

Questions:

1) Sufficient conditions on V

Questions:

1) Sufficient conditions on $V \checkmark$
2) Existence of $V \subseteq W$ such that $\left(\left.\widetilde{T}^{*}\right|_{V},\left(\left.\widetilde{T}^{*}\right|_{V}\right)^{*}\right)$ is an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T})
3) Infinity of such V
4) Classification of such V

Existence and infinity of V 's

Theorem

Let (T, \widetilde{T}) be a joint pair of closed abstract Friedrichs operators on the Hilbert space L.
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}). Moreover, there is an adjoint pair $\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)$ of bijective realisations with signed boundary map relative to (T, \widetilde{T}) such that

$$
W_{0}+\operatorname{ker} T^{*} \subseteq \operatorname{dom} T_{\mathrm{r}} \quad \text { and } \quad W_{0}+\operatorname{ker} \widetilde{T}^{*} \subseteq \operatorname{dom} T_{\mathrm{r}}^{*}
$$

(ii) If both $\operatorname{ker} \widetilde{T}^{*} \neq\{0\}$ and $\operatorname{ker} T^{*} \neq\{0\}$, then the pair (T, \widetilde{T}) admits uncountably many adjoint pairs of bijective realisations with signed boundary map. On the other hand, if either $\operatorname{ker} \widetilde{T}^{*}=\{0\}$ or $\operatorname{ker} T^{*}=\{0\}$, then there is exactly one adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}). Such a pair is precisely $\left(\widetilde{T}^{*}, \widetilde{T}\right)$ when $\operatorname{ker} \widetilde{T}^{*}=\{0\}$, and $\left(T, T^{*}\right)$ when $\operatorname{ker} T^{*}=\{0\}$.

Grubb's universal classification 1/2

$$
A_{0} \subseteq\left(A_{0}^{\prime}\right)^{*}=: A_{1} \quad \text { and } \quad A_{0}^{\prime} \subseteq\left(A_{0}\right)^{*}=: A_{1}^{\prime}
$$

($A_{\mathrm{r}}, A_{\mathrm{r}}^{*}$) are closed, satisfy $A_{0} \subseteq A_{\mathrm{r}} \subseteq A_{1}$, equivalently $A_{0}^{\prime} \subseteq A_{\mathrm{r}}^{*} \subseteq A_{1}^{\prime}$, and are invertible with everywhere defined bounded inverses A_{r}^{-1} and $\left(A_{\mathrm{r}}^{*}\right)^{-1}$

$$
\left.\begin{array}{r}
\operatorname{dom} A_{1}=\operatorname{dom} A_{\mathrm{r}}+\operatorname{ker} A_{1} \quad \text { and } \quad \operatorname{dom} A_{1}^{\prime}=\operatorname{dom} A_{\mathrm{r}}^{*} \dot{+} \operatorname{ker} A_{1}^{\prime} \\
p_{\mathrm{r}}=A_{\mathrm{r}}^{-1} A_{1}, \quad p_{\mathrm{r}^{\prime}}=\left(A_{\mathrm{r}}^{*}\right)^{-1} A_{1}^{\prime} \\
p_{\mathrm{k}}=\mathbf{1}-p_{\mathrm{r}}, \quad p_{\mathrm{k}^{\prime}}=\mathbf{1}-p_{\mathrm{r}^{\prime}} \\
\left(A, A^{*}\right) \\
A_{0} \subseteq A \subseteq A_{1} \\
A_{0}^{\prime} \subseteq A^{*} \subseteq A_{1}^{\prime}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
\left(B, B^{*}\right) \\
\mathcal{V} \subseteq \operatorname{ker} A_{1} \text { closed } \\
\mathcal{W} \subseteq \text { ker } A_{1}^{\prime} \text { closed } \\
B: \mathcal{V} \rightarrow \mathcal{W} \text { densely defined }
\end{array}\right.
$$

$B \mapsto A_{B}: \quad \operatorname{dom} A_{B}=\left\{u \in \operatorname{dom} A_{1}: p_{\mathrm{k}} u \in \operatorname{dom} B, P_{\mathcal{W}}\left(A_{1} u\right)=B\left(p_{\mathrm{k}} u\right)\right\}$,
$A \mapsto B_{A}: \quad \operatorname{dom} B_{A}=p_{\mathrm{k}} \operatorname{dom} A, \quad \mathcal{V}=\overline{\operatorname{dom} B_{A}}, \quad B_{A}\left(p_{\mathrm{k}} u\right)=P_{\mathcal{W}}\left(A_{1} u\right)$,
where $P_{\mathcal{W}}$ is the orthogonal projections from L onto \mathcal{W}.
Important: A is injective, resp. surjective, resp. bijective, if and only if so is B.

Grubb's universal classification 2/2

When A_{B} corresponds to B as above, then

$$
\begin{gathered}
\operatorname{dom} A_{B}=\left\{\begin{array}{l|c}
w_{0}+\left(A_{\mathrm{r}}\right)^{-1}\left(B \nu+\nu^{\prime}\right)+\nu & \begin{array}{c}
w_{0} \in \operatorname{dom} A_{0} \\
\nu \in \operatorname{dom} B \\
\nu^{\prime} \in \operatorname{ker} A_{1}^{\prime} \ominus \mathcal{W}
\end{array}
\end{array}\right\}, \\
A_{B}\left(w_{0}+\left(A_{\mathrm{r}}\right)^{-1}\left(B \nu+\nu^{\prime}\right)+\nu\right)=A_{0} w_{0}+B \nu+\nu^{\prime}
\end{gathered}
$$

Grubb's universal classification 2/2

When A_{B} corresponds to B as above, then

$$
\begin{gathered}
\operatorname{dom} A_{B}=\left\{\begin{array}{l|l}
w_{0}+\left(A_{\mathrm{r}}\right)^{-1}\left(B \nu+\nu^{\prime}\right)+\nu & \begin{array}{c}
w_{0} \in \operatorname{dom} A_{0} \\
\nu \in \operatorname{dom} B \\
\nu^{\prime} \in \operatorname{ker} A_{1}^{\prime} \ominus \mathcal{W}
\end{array}
\end{array}\right\}, \\
A_{B}\left(w_{0}+\left(A_{\mathrm{r}}\right)^{-1}\left(B \nu+\nu^{\prime}\right)+\nu\right)=A_{0} w_{0}+B \nu+\nu^{\prime}
\end{gathered}
$$

We shall apply this theory on a joint pair of closed abstract Friedrichs systems.

Classification of bijective realisations with signed boundary map 1/2

For simplicity here we use the notation of Grubb's universal classification. $\left(A_{0}, A_{0}^{\prime}\right)$ a joint pair of closed abstract Friedrichs operators, $A_{1}:=\left(A_{0}^{\prime}\right)^{*}$, $A_{1}^{\prime}:=A_{0}^{*}$, and let $\left(A_{\mathrm{r}}, A_{\mathrm{r}}^{*}\right)$ be an adjoint pair of bijective realisations with signed boundary map relative to $\left(A_{0}, A_{0}^{\prime}\right)$.
$\left(A_{B}, A_{B}^{*}\right)$ a generic pair of closed extensions $A_{0} \subseteq A_{B} \subseteq A_{1}$.

Classification of bijective realisations with signed boundary map $2 / 2$

(1) $\begin{aligned} & (\forall \nu \in \operatorname{dom} B) \\ & \left(\forall \nu^{\prime} \in \operatorname{ker} A_{1}^{\prime} \ominus \mathcal{W}\right)\end{aligned} \quad\left\{\begin{array}{r}\left\langle\nu \mid A_{1}^{\prime} \nu\right\rangle_{L}-2 \mathfrak{R e}\left\langle p_{\mathrm{k}^{\prime}} \nu \mid B \nu\right\rangle_{L} \leqslant 0 \\ \left\langle p_{\mathrm{k}^{\prime}} \nu \mid \nu^{\prime}\right\rangle_{L}=0\end{array}\right.$
(2) $\begin{aligned} & \left(\forall \mu^{\prime} \in \operatorname{dom} B^{*}\right) \\ & \left(\forall \mu \in \operatorname{ker} A_{1} \ominus \mathcal{V}\right)\end{aligned} \quad\left\{\begin{array}{r}\left\langle A_{1} \mu^{\prime} \mid \mu^{\prime}\right\rangle_{L}-2 \mathfrak{R e}\left\langle B^{*} \mu^{\prime} \mid p_{\mathrm{k}} \mu^{\prime}\right\rangle_{L} \leqslant 0 \\ \left\langle\mu \mid p_{\mathrm{k}} \mu^{\prime}\right\rangle_{L}=0,\end{array}\right.$

Theorem

Any of the following three facts,
(a) conditions (1) and (2) hold true, or
(b) condition (1) holds true and $B: \operatorname{dom} B \rightarrow \mathcal{W}$ is a bijection, or
(c) condition (2) holds true and $B^{*}: \operatorname{dom} B^{*} \rightarrow \mathcal{V}$ is a bijection,
is sufficient for $\left(A_{B}, A_{B}^{*}\right)$ to be another adjoint pair of bijective realisations with signed boundary map relative to $\left(A_{0}, A_{0}^{\prime}\right)$.
Assume further that $\operatorname{dom} A_{\mathrm{r}}=\operatorname{dom} A_{\mathrm{r}}^{*}$. Then the following properties are equivalent:
(a) $\left(A_{B}, A_{B}^{*}\right)$ is another adjoint pair of bijective realisations with signed boundary map relative to $\left(A_{0}, A_{0}^{\prime}\right)$;
(b) the mirror conditions (1) and (2) are satisfied.

Example 4 (Equation on an interval) $1 / 2$

$L:=\mathrm{L}^{2}(0,1), \mathcal{D}:=\mathrm{C}_{c}^{\infty}(0,1)$
$T, \widetilde{T}: \mathcal{D} \rightarrow L$,

$$
T \phi:=\frac{\mathrm{d}}{\mathrm{~d} x} \phi+\phi \quad \text { and } \widetilde{T} \phi:=-\frac{\mathrm{d}}{\mathrm{~d} x} \phi+\phi
$$

We have

$$
\begin{aligned}
\operatorname{dom} \bar{T} & =\operatorname{dom} \overline{\widetilde{T}}=\mathrm{H}_{0}^{1}(0,1)=: W_{0} \\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=\mathrm{H}^{1}(0,1)=: W
\end{aligned}
$$

Define

$$
A_{0}:=\bar{T}, \quad, A_{0}^{\prime}:=\overline{\widetilde{T}}, \quad A_{1}:=\widetilde{T}^{*}, A_{1}^{\prime}:=T^{*}
$$

As ${ }_{W}\langle D u, v\rangle_{W}=u(1) \overline{v(1)}-u(0) \overline{v(0)}$, for

$$
V:=\tilde{V}:=\left\{u \in \mathrm{H}^{1}(0,1): u(0)=u(1)\right\}
$$

we have that $A_{\mathrm{r}}:=\left.A_{1}\right|_{V}, A_{\mathrm{r}}^{*}=\left.A_{1}^{\prime}\right|_{V}$ for an adjoint pair of bijective realisations with signed boundary map.
$\operatorname{ker} A_{1}=\operatorname{span}\left\{e^{-x}\right\}$ and $\operatorname{ker} A_{1}^{\prime}=\operatorname{span}\left\{e^{x}\right\}$, so

$$
p_{\mathrm{k}} u=-\frac{u(1)-u(0)}{1-e^{-1}} e^{-x}, \quad p_{\mathrm{k}^{\prime}} u=\frac{u(1)-u(0)}{e-1} e^{x}
$$

Example 4 (Equation on an interval) $2 / 2$

$$
\mathcal{V}=\operatorname{ker} A_{1}, \mathcal{W}=\operatorname{ker} A_{1}^{\prime}, B_{\alpha, \beta}: \mathcal{V} \rightarrow \mathcal{W}
$$

$$
B_{\alpha, \beta} e^{-x}=(\alpha+\mathrm{i} \beta) e^{x}
$$

where $(\alpha, \beta) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
(1) simplifies to check

$$
\begin{aligned}
&\left\langle e^{-x} \mid A_{1}^{\prime} e^{-x}\right\rangle_{L}-2 \Re\left\langle p_{\mathrm{k}^{\prime} e^{-x}} \mid B_{\alpha, \beta} e^{-x}\right\rangle_{L} \leqslant 0 \\
& \Longleftrightarrow \alpha \leqslant-e^{-1} \\
&\left\{\left(A_{\alpha, \beta}, A_{\alpha, \beta}^{*}\right): \alpha \leqslant-e^{-1}, \beta \in \mathbb{R}\right\} \cup\left\{\left(A_{\mathrm{r}}, A_{\mathrm{r}}^{*}\right)\right\}
\end{aligned}
$$

$$
\begin{array}{r}
\operatorname{dom} A_{\alpha, \beta}^{(*)}=\left\{u \in \mathrm{H}^{1}(0,1):\left(2 e^{-1}-(+) \alpha(1+e)-\mathrm{i} \beta(1+e)\right) u(1)\right. \\
=(2+\alpha(1+e)-(+) \mathrm{i} \beta(1+e)) u(0)\}
\end{array}
$$

