Distributions of anisotropic order and applications

Nenad Antonić

Department of Mathematics Faculty of Science University of Zagreb

International Workshop on PDEs: analysis and modelling Zagreb, 21^{st} June 2016 (Celebrating 80th anniversary of professor Nedžad Limić)

Joint work with Marko Erceg and Marin Mišur

H-distributions

H-measures Existence An example

Distributions of anisotropic order

Functions of anisotropic smoothness Definition and tensor products Conjectures Consequence for H-distributions

Existence of H-measures

Theorem. (u^n) a sequence in $L^2(\mathbf{R}^d; \mathbf{R}^r)$, $u^n \xrightarrow{L^2} 0$ (weakly), then there is a subsequence $(u^{n'})$ and μ on $\mathbf{R}^d \times S^{d-1}$ such that:

$$\begin{split} \lim_{n' \to \infty} \int_{\mathbf{R}^d} \mathcal{F}\Big(\varphi_1 \mathbf{u}^{n'}\Big) \otimes \mathcal{F}\Big(\varphi_2 \mathbf{u}^{n'}\Big) \psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \, d\boldsymbol{\xi} &= \langle \boldsymbol{\mu}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle \\ &= \int_{\mathbf{R}^d \times \mathrm{S}^{d-1}} \varphi_1(\mathbf{x}) \bar{\varphi}_2(\mathbf{x}) \psi(\boldsymbol{\xi}) \, d\bar{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) \; . \end{split}$$

Notation:

$$\mathbf{v} \cdot \mathbf{u} := \sum v_i ar{u}_i$$

 $(\mathbf{v} \otimes \mathbf{u}) \mathbf{a} := (\mathbf{a} \cdot \mathbf{u}) \mathbf{v}$

L^p case: the Hörmander-Mihlin theorem

 $\psi: \mathbf{R}^d \to \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^p(\mathbf{R}^d)$ if

$$\bar{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^p(\mathbf{R}^d) , \qquad \text{for } \theta \in \mathcal{S}(\mathbf{R}^d),$$

and

$$\mathcal{S}(\mathbf{R}^d) \ni \theta \mapsto \bar{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathbf{L}^p(\mathbf{R}^d)$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: L^p(\mathbf{R}^d) \to L^p(\mathbf{R}^d)$.

Theorem. [Hörmander-Mihlin] Let $\psi \in L^{\infty}(\mathbf{R}^d)$ have partial derivatives of order less than or equal to $\kappa = [\frac{d}{2}] + 1$. If for some k > 0

$$(\forall r > 0)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d) \qquad |\boldsymbol{\alpha}| \leqslant \kappa \implies \int_{\frac{r}{2} \leqslant |\boldsymbol{\xi}| \leqslant r} |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} \leqslant k^2 r^{d-2|\boldsymbol{\alpha}|} ,$$

then for any $p \in \langle 1, \infty \rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_d (depending only on the dimension d) such that

$$\|\mathcal{A}_{\psi}\|_{\mathbf{L}^{p}\to\mathbf{L}^{p}} \leqslant C_{d} \max\left\{p, \frac{1}{p-1}\right\} (k+\|\psi\|_{\infty}) .$$

For $\psi \in C^{\kappa}(S^{d-1})$, extended by homogeneity to \mathbf{R}^{d}_{*} , we can take $k = \|\psi\|_{C^{\kappa}}$.

Existence of H-distributions

Theorem. [N.A. & D. Mitrović (2011)] If $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$ and $v_n \stackrel{*}{\longrightarrow} v$ in $L^q(\mathbf{R}^d)$ for some $q \ge \max\{p', 2\}$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times \mathbf{S}^{d-1})$, such that for every $\varphi_1, \varphi_2 \in \mathbf{C}^{\infty}_c(\mathbf{R}^d)$ and $\psi \in \mathbf{C}^{\kappa}(\mathbf{S}^{d-1})$ we have:

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} &= \lim_{n'} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} \\ &= \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle \;. \end{split}$$

 $\begin{array}{l} \mu \text{ is the } \textit{H-distribution} \text{ corresponding to (a subsequence of) } (u_n) \text{ and } (v_n). \\ \text{If } (u_n), (v_n) \text{ are defined on } \Omega \subseteq \mathbf{R}^d, \text{ extension by zero to } \mathbf{R}^d \text{ preserves the convergence, and we can apply the Theorem. } \mu \text{ is supported on } \operatorname{Cl} \Omega \times \mathrm{S}^{d-1}. \\ \text{We distinguish } u_n \in \mathrm{L}^p(\mathbf{R}^d) \text{ and } v_n \in \mathrm{L}^q(\mathbf{R}^d). \text{ For } p \geqslant 2, \ p' \leqslant 2 \text{ and we can take } q \geqslant 2; \text{ this covers the } \mathrm{L}^2 \text{ case (including } u_n = v_n). \\ \text{The assumptions imply } u_n, v_n \longrightarrow 0 \text{ in } \mathrm{L}^2_{\mathrm{loc}}(\mathbf{R}^d), \text{ resulting in a distribution } \mu \\ \text{of order zero (an unbounded Radon measure, not a general distribution).} \\ \text{The novelty in Theorem is for } p < 2. \end{array}$

For vector-valued $u_n \in L^p(\mathbf{R}^d; \mathbf{C}^k)$ and $v_n \in L^q(\mathbf{R}^d; \mathbf{C}^l)$, the result is a *matrix* valued distribution $\boldsymbol{\mu} = [\mu^{ij}], i \in 1..k$ and $j \in 1..l$.

The H-distribution would correspond to a non-diagonal block for an H-measure.

A particular Nemyckiĭ operator

Canonical choice of $L^{p'}$ sequence corresponding to an L^p , $p \in \langle 1, \infty \rangle$, sequence (u_n) is given by $v_n = \Phi_p(u_n)$, where Φ_p is an operator from $L^p(\mathbf{R}^d)$ to $L^{p'}(\mathbf{R}^d)$ defined by $\Phi_p(u) = |u|^{p-2}u$.

 Φ_p is a nonlinear Nemytskii operator, continuous from $L^p(\mathbf{R}^d)$ to $L^{p'}(\mathbf{R}^d)$ and additionally we have the following bound

$$\|\Phi_p(u)\|_{L^{p'}(\mathbf{R}^d)} \leq \|u\|_{L^p(\mathbf{R}^d)}^{p/p'}.$$

It maps bounded sets in $L^p_{loc}(\mathbf{R}^d)$ topology to bounded sets in $L^{p'}_{loc}(\mathbf{R}^d)$ topology. Hence for a bounded sequence (u_n) , we get that $(\Phi_p(u_n))$ is weakly precompact in $L^{p'}_{loc}(\mathbf{R}^d)$.

It is continuous from $L^p_{loc}(\mathbf{R}^d)$ to $L^{p'}_{loc}(\mathbf{R}^d)$.

Example: concentration

 $u \in L^p_c(\mathbf{R}^d)$, and define $u_n(\mathbf{x}) = n^{\frac{d}{p}} u(n(\mathbf{x} - \mathbf{z}))$ for some $\mathbf{z} \in \mathbf{R}^d$. Simple change of variables: $||u_n||_{L^p(\mathbf{R}^d)} = ||u||_{L^p(\mathbf{R}^d)}$ and $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$. Indeed, the sequence is bounded, while for $\varphi \in C_c(\mathbf{R}^d)$

$$\begin{split} \int_{\mathbf{R}^d} u_n(\mathbf{x})\varphi(\mathbf{x})d\mathbf{x} &= \int_{\mathbf{R}^d} n^{d/p} u(n(\mathbf{x}-\mathbf{z}))\varphi(\mathbf{x})d\mathbf{x} \\ &= \int_{\mathbf{R}^d} n^{d/p-d} u(\mathbf{y})\varphi(\mathbf{y}/n+\mathbf{z})d\mathbf{y} \\ &= \frac{1}{n^{d/p'}} \int_{\mathbf{R}^d} u(\mathbf{y})\chi_{\mathrm{supp}\,u}(\mathbf{y})\varphi(\mathbf{y}/n+\mathbf{z})d\mathbf{y} \\ &\leqslant \left(\frac{\mathsf{vol}(\mathrm{supp}\,u)}{n^d}\right)^{1/p'} \|u\|_{\mathbf{L}^p(\mathbf{R}^d)} \max_{\mathbf{R}^d} |\varphi|. \end{split}$$

Passing to the limit, we get our claim.

Actually, the H-distribution corresponding to sequences (u_n) and $(\Phi_p(u_n))$ is given by $\delta_z \boxtimes \nu$, where ν is a distribution on $C^{\kappa}(S^{d-1})$ defined for $\psi \in C^{\kappa}(S^{d-1})$ by

$$\langle \nu, \psi \rangle = \int_{\mathbf{R}^d} u(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(|u|^{p-2}u)(\mathbf{x})} d\mathbf{x}.$$

H-distributions

H-measures Existence An example

Distributions of anisotropic order

Functions of anisotropic smoothness Definition and tensor products Conjectures Consequence for H-distributions

Functions of anisotropic smoothness

Let X and Y be open sets in \mathbf{R}^d and \mathbf{R}^r (or \mathbf{C}^{∞} manifolds), $\Omega \subseteq X \times Y$. By $\mathbf{C}^{l,m}(\Omega)$ we denote the space of functions f on Ω , such that for any $\boldsymbol{\alpha} \in \mathbf{N}_0^d$ and $\boldsymbol{\beta} \in \mathbf{N}_0^r$, if $|\boldsymbol{\alpha}| \leq l$ and $|\boldsymbol{\beta}| \leq m$,

$$\partial^{\boldsymbol{\alpha},\boldsymbol{\beta}} f = \partial^{\boldsymbol{\alpha}}_{\mathbf{x}} \partial^{\boldsymbol{\beta}}_{\mathbf{y}} f \in \mathcal{C}(\Omega)$$

 $\mathrm{C}^{l,m}(\Omega)$ becomes a Fréchet space if we define a sequence of seminorms

$$p_{K_n}^{l,m}(f) := \max_{|\boldsymbol{\alpha}| \leq l, |\boldsymbol{\beta}| \leq m} \|\partial^{\boldsymbol{\alpha},\boldsymbol{\beta}} f\|_{\mathcal{L}^{\infty}(K_n)} ,$$

where $K_n \subseteq \Omega$ are compacts, such that $\Omega = \bigcup_{n \in \mathbb{N}} K_n$ and $K_n \subseteq \operatorname{Int} K_{n+1}$. For a compact set $K \subseteq \Omega$ we define a subspace of $C^{l,m}(\Omega)$

$$C_K^{l,m}(\Omega) := \left\{ f \in C^{l,m}(\Omega) : \text{ supp } f \subseteq K \right\}.$$

This subspace inherits the topology from $C^{l,m}(\Omega)$, which is, when considered only on the subspace, a norm topology determined by

$$||f||_{l,m,K} := p_K^{l,m}(f)$$

and $C_K^{l,m}(\Omega)$ is a Banach space (it can be identified with a proper subspace of $C^{l,m}(K)$). However, if $m = \infty$ (or $l = \infty$), then we shall not get a Banach space, but a Fréchet space. As in the isotropic case, an increasing sequence of seminorms that makes $C_{K_n}^{l,\infty}(\Omega)$ a Fréchet space is given by $(p_{K_n}^{l,k}), k \in \mathbf{N}_0$.

Functions of anisotropic smoothness (cont.)

We can also consider the space

$$\mathcal{C}^{l,m}_{c}(\Omega) := \bigcup_{n \in \mathbf{N}} \mathcal{C}^{l,m}_{K_n}(\Omega) ,$$

of all functions with compact support in $C^{l,m}(\Omega)$, and equip it by a stronger topology than the one induced from $C^{l,m}(\Omega)$: by the topology of *strict inductive limit*. More precisely, it can easily be checked that

$$\mathcal{C}^{l,m}_{K_n}(\Omega) \hookrightarrow \mathcal{C}^{l,m}_{K_{n+1}}(\Omega) ,$$

the inclusion being continuous. Also, the topology induced on $C_{K_n}^{l,m}(\Omega)$ by that of $C_{K_{n+1}}^{l,m}(\Omega)$ coincides with the original one, and $C_{K_n}^{l,m}(\Omega)$ (as a Banach space in that topology) is a closed subspace of $C_{K_{n+1}}^{l,m}(\Omega)$. Then we have that the inductive limit topology on $C_c^{l,m}(\Omega)$ induces on each $C_{K_n}^{l,m}(\Omega)$ the original topology, while a subset of $C_c^{l,m}(\Omega)$ is bounded if and only if it is contained in one $C_{K_n}^{l,m}(\Omega)$, and bounded there.

Of course, $\mathrm{C}^\infty_c(\Omega) \hookrightarrow \mathrm{C}^{l,m}_c(\Omega)$ is a continuous and dense imbedding.

Distributions of anisotropic order

Definition. A distribution of order l in \mathbf{x} and order m in \mathbf{y} is any linear functional on $C_c^{l,m}(\Omega)$, continuous in the strict inductive limit topology. We denote the space of such functionals by $\mathcal{D}'_{l,m}(\Omega)$.

Clearly, $C_c^{\infty}(\Omega) \hookrightarrow C_c^{l,m}(\Omega) \hookrightarrow \mathcal{D}'(\Omega)$, with continuous and dense imbeddings, thus $C_c^{l,m}(\Omega)$ is a normal space of distributions, hence its dual $\mathcal{D}'_{l,m}(\Omega)$ forms a subspace of $\mathcal{D}'(\Omega)$. If we equip it with a strong topology, it is even continuously imbedded in $\mathcal{D}'(\Omega)$.

In order to better understand the properties of elements of $\mathcal{D}'_{l,m}(\Omega)$, we shall relate them to tensor products.

The first step is to consider the algebraic tensor product $C_c^l(X) \boxtimes C_c^m(Y)$, the vector space of all (finite) linear combinations of functions of the form $(\phi \boxtimes \psi)(\mathbf{x}, \mathbf{y}) := \phi(\mathbf{x})\psi(\mathbf{y})$. This is a vector subspace of $C_c^{l,m}(X \times Y)$.

Tensor product of distributions

Theorem. Let X and Y be C^{∞} manifolds, $u \in \mathcal{D}'_{l}(X)$ and $v \in \mathcal{D}'_{m}(Y)$. Then $\left(\exists ! w \in \mathcal{D}'_{l,m}(X \times Y)\right) \left(\forall \varphi \in C^{l}_{c}(X)\right) \left(\forall \psi \in C^{m}_{c}(Y)\right) \quad \langle w, \varphi \boxtimes \psi \rangle = \langle u, \varphi \rangle \langle v, \psi \rangle.$

Furthermore, for any $\Phi \in C_c^{l,m}(X \times Y)$, function $V : \mathbf{x} \mapsto \langle v, \Phi(\mathbf{x}, \cdot) \rangle$ is in $C_c^l(X)$, while $U : \mathbf{y} \mapsto \langle u, \Phi(\cdot, \mathbf{y}) \rangle$ is in $C_c^m(Y)$, and we have that

$$\langle w, \Phi \rangle = \langle u, V \rangle = \langle v, U \rangle.$$

Lemma. If $u \in \mathcal{D}'_{l,m}(X \times Y)$ then, for any $\psi \in C^{l,m}(X \times Y)$, ψu is a well defined distribution of order at most (l, m).

Theorem. Let $u \in \mathcal{D}'_{l,m}(X \times Y)$ and take $F \subseteq X \times Y$ relatively compact set such that $\sup u \subseteq F$. Then there exists unique linear functional \tilde{u} on $\mathcal{Q} := \{\varphi \in C^{l,m}(X \times Y) : F \cap \sup \varphi \Subset X \times Y\}$ such that a) $(\forall \varphi \in C^{l,m}_c(X \times Y)) \quad \langle \tilde{u}, \varphi \rangle = \langle u, \varphi \rangle,$ b) $(\forall \varphi \in C^{l,m}(X \times Y)) \quad F \cap \operatorname{supp} \varphi = \emptyset \implies \langle \tilde{u}, \varphi \rangle = 0.$ The domain of \tilde{u} is largest for $F = \sup u$.

First conjecture

Let X, Y be C^{∞} manifolds and u a linear functional on $C_c^{l,m}(X \times Y)$. If $u \in \mathcal{D}'(X \times Y)$ and satisfies $(\forall K \in \mathcal{K}(X))(\forall L \in \mathcal{K}(Y)(\exists C > 0)(\forall \varphi \in C_K^{\infty}(X))(\forall \psi \in C_L^{\infty}(Y))$ $|\langle u, \varphi \boxtimes \psi \rangle| \leq Cp_K^l(\varphi)p_L^m(\psi),$

then u can be uniquely extended to $\mathcal{D}'_{l,m}(X \times Y)$.

It is not true!

We need a more complicated result.

We are aware of the abstract approach via nuclear spaces.

Second conjecture: the Schwartz kernel theorem

Theorem. Let X and Y be two differentiable manifolds. Then the following statements hold:

- a) Let $K \in \mathcal{D}'_{l,m}(X \times Y)$. Then for every $\varphi \in C^l_c(X)$ the linear form K_{φ} defined as $\psi \mapsto \langle K, \varphi \boxtimes \psi \rangle$ is a distribution of order not more than m on Y. Furthermore, the mapping $\varphi \mapsto K_{\varphi}$, taking $C^l_c(X)$ to $\mathcal{D}'_m(Y)$ is linear and continuous.
- b) Let $A : C_c^l(X) \to \mathcal{D}'_m(Y)$ be a continuous linear operator. Then there exists unique distribution $K \in \mathcal{D}'(X \times Y)$ such that for any $\varphi \in C_c^{\infty}(X)$ and $\psi \in C_c^{\infty}(Y)$

$$\langle K, \varphi_{\boxtimes}\psi \rangle = \langle K_{\varphi}, \psi \rangle = \langle A\varphi, \psi \rangle.$$

Furthermore, $K \in \mathcal{D}'_{l,d(m+2)}(X \times Y)$.

We are reasonably confident that it is true!

Consequence for H-distributions

By the previous theorem the H-distribution μ mentioned at the beginning belongs to the space $\mathcal{D}'_{0,d(\kappa+2)}(\mathbf{R}^d \times \mathbf{S}^{d-1})$, i.e. it is a distribution of order 0 in \mathbf{x} and of order not more than $d(\kappa+2)$ in $\boldsymbol{\xi}$.

Indeed, we already have $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$ and the following bound with $\varphi := \varphi_1 \overline{\varphi_2}$:

$$|\langle \mu, \varphi \boxtimes \psi \rangle| \leqslant C \|\psi\|_{\mathcal{C}^{\kappa}(\mathcal{S}^{d-1})} \|\varphi\|_{\mathcal{C}_{K_{l}}(\mathbf{R}^{d})},$$

where C does not depend on φ and ψ .

Now we just need to apply the Schwartz kernel theorem given above to conclude that μ is a continuous linear functional on $C_c^{0,d(\kappa+2)}(\mathbf{R}^d \times S^{d-1})$.

Thank you for your attention.