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Mean field dynamics, a typical example

n-body quantum Schrödinger equation: Ψ(x1, . . . , xn; t) ∈ L2(Rdn)

i∂tΨ =
n∑

i=1

−∆xi Ψ +
1

n

∑
1≤i<j≤n

V (xi − xj )Ψ ,

Bosons : Ψ(x1, ..., xn) = Ψ(xσ(1), ..., xσ(n)) for all permutation σ.

Bosonic mean-field 1-body dynamics: ϕ(x ; t) ∈ L2(Rd )

i∂tϕ = −∆ϕ+ (V ∗ |ϕ|2)ϕ
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Bosonic Fock space

Phase space: Z separable Hilbert space

Projection on Z⊗n:

Sn(ξ1 ⊗ ...⊗ ξn) =
1

n!

∑
σ∈Σn

ξσ(1) ⊗ ...⊗ ξσ(n).

∨n Z := Sn(Z⊗n)

Bosonic Fock space:
Γs(Z) =

⊕
n≥0

∨n Z
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Annihilation and creation operators

∀z ,Φ ∈ Z , ε > 0, we define the annihilation and creation operators:

a(z)Φ⊗n =
√
εn〈z , Φ〉Φ⊗n−1 ,

a∗(z)Φ⊗n =
√
ε(n + 1)Sn+1(z ⊗ Φ⊗n) .

Canonical commutation relations (CCR):

[a(z1), a∗(z2)] = ε〈z1, z2〉Id ,
[a(z1), a(z2)] = [a∗(z1), a∗(z2)] = 0 .
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Notations:

C→ Z
|z〉 :λ 7→ λz

linear map

Z → C
〈z | : z1 7→ 〈z , z1〉

The corresponding quantum Liouville equation for the state
%ε(t) = |ΨN (t)〉〈ΨN (t)| is

iε∂t%ε(t) = [Hε , %ε(t)]
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Field and Weyl operators, second quantization

∀f ∈ Z, field operator:

Φ(f ) =
1√
2

(a∗(f ) + a(f )) ess s.a. on Γfin(Z) =

alg⊕
n∈N

n∨
Z .

Weyl operator:
W (f ) = e iΦ(f ) .

Second quantization of A operator on Z:

dΓ(A)|∨n,alg D(A) = ε

n∑
i=1

Id⊗i−1 ⊗ A⊗ Id⊗n−i .

Number operator:

N|∨nZ := dΓ(Id) = εnId∨nZ .
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Normal states and Wigner measures

Definition

Let (%ε)ε∈E be a family of normal states on Γs(Z) with E ⊂ (0,+∞) ,
0 ∈ E .
µ is a Wigner measure for this family, µ ∈M(%ε, ε ∈ E) , if there exists
E ′ ⊂ E , 0 ∈ E ′ such that

∀f ∈ Z , lim
ε∈E′ ,ε→0

Tr
[
%εW (

√
2πf )

]
=

∫
Z

e2iπRe 〈f ,z〉 dµ(z)

Theorem a

aAmmari-Nier Ann. Henri-Poincaré 2008

If (%ε)ε∈E satisfies the uniform estimate Tr [%εNδ] ≤ Cδ < +∞ for some
δ > 0 fixed, M(%ε, ε ∈ E) is not empty and made of Borel probability
measures (Z separable) such that

∫
Z |z |

2δdµ(z) ≤ Cδ .
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Wick symbols and operators

Symbol class: Z 3 z 7→ b(z) = 〈z⊗q , b̃z⊗p〉

(b ∈ Pp,q)⇔
(

b̃ =
1

p!q!
∂q

z̄ ∂
p
z b(z) ∈ L(∨pZ,∨qZ)

)
Wick quantization

bWick
|∨nZ = 1[p,+∞)(n)

√
n!(n + q − p)!

(n − p)!
ε

p+q
2 Sn−p+q

(
b̃ ⊗ 1⊗(n−p)

)
.

Hε = dΓ(A) + QWick = hWick

with A self-adjoint and the symbol

h(z , z) = 〈z , Az〉+ Q(z , z̄)

Mean field equation

i∂tzt = ∂z̄ h(zt , z̄t) = Azt + ∂z̄ Q(zt , z̄t)
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Reduced density matrices

Reduced density matrix:

%
(p)
ε ∈ L1(

∨p Z) , p ∈ N,

unique non-negative trace class operator %
(p)
ε satisfying

Tr [%ε (A⊗ 1⊗(n−p))] = Tr [%(p)
ε A] ,

∀A ∈ L(
∨p Z).

For instance for Hermite states %ε = |φ⊗n〉〈φ⊗n|

Tr [%ε (A⊗ 1⊗(n−p))] = 〈φ⊗n ,Aφ⊗p ⊗ φ⊗n−p〉 = 〈φ⊗p ,Aφ⊗p〉
= Tr [|φ⊗p〉〈φ⊗p|A] .

So %
(p)
ε = |φ⊗p〉〈φ⊗p| .

Boris Pawilowski Bosonic mean field limit and discrete Schrödinger equation



General framework
Mean field limit with compact kernel interaction

Rate of convergence of the bosonic mean field limit
Numerical discrete model of the bosonic mean field

Convergence of reduced density matrices

Theorema

aAmmari-Nier JMPA 2011

If the family (%ε)ε∈E satisfies M(%ε, ε ∈ E) = {µ} with the
(PI )-condition:

∀p ∈ N , lim
ε∈E,ε→0

Tr [%εN
p] =

∫
Z
|z |2p dµ(z) ;

then Tr
[
%εb

Wick
]

converges to
∫
Z b(z) dµ(z) for all polynomial b(z)

and
lim

ε∈E ,ε→0
‖%(p)
ε − %

(p)
0 ‖L1 = 0

for all p ∈ N, %
(p)
0 :=

∫
Z
|z⊗p〉〈z⊗p|dµ(z)∫
Z
|z|2pdµ(z)

.
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Propagation of the Wigner measures

Theorema

aAmmari-Nier

Assume M(%ε, ε ∈ (0, ε̄)) = {µ0} and the (PI) condition.
Then M(e−i t

εHερεe
i t
εHε , ε ∈ (0, ε̄)) = {µt} .

The measure µt = Φ(t, 0)∗µ0 is the push-forward measure of the initial
measure µ0 where Φ(t, 0) is the hamiltonian flow associated with the
Hartree equation:{

i∂tϕt = −∆ϕt + (V ∗ |ϕt |2)ϕt ,
ϕt=0 = ϕ .

(1.1)
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Hamiltonian with compact kernel interaction

Hamiltonian:

Hε = dΓ(A) +
r∑
`=2

〈z⊗` , Q̃`z
⊗`〉Wick .

Q̃` compact bounded symmetric operators on
∨`Z , A self-adjoint.

Q(z) =
∑r
`=2〈z⊗` , Q̃`z

⊗`〉
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Propagation of the Wigner measure

Under these conditions, we get the following theorem:

Theorem

Let (%ε)ε∈(0,ε̄) be a family of trace class operators on Γs(Z) such that

∃δ > 0 ,∃Cδ > 0 ,∀ε ∈ (0, ε̄) , Tr [%εN
δ] ≤ Cδ <∞ , (2.1)

and which admits a unique Wigner measure µ0 . The family
(%ε(t) = e−i

t
εHε%εe

i t
εHε)ε∈(0,ε̄) admits for every t ∈ R a unique Wigner

measure µt , which is the push-forward Φ(t, 0)∗µ0 of the initial measure
µ0 by the flow associated with{

i∂tzt = Azt + ∂z̄ Q(zt),

zt=0 = z0.
(2.2)
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Rate of convergence

Theorem

Let (α(n))n∈N∗ be a sequence of positive numbers with limα(n) =∞,
α(n)

n ≤ C. %ε ∈ L1(
∨n Z) and %

(p)
0 ∈ L1(

∨p Z). If there exists
C0 > 0,and γ ≥ 1 such that for all n, p ∈ N∗ with n ≥ γp∥∥∥%(p)

ε − %(p)
0

∥∥∥
1
≤ C0

C p

α(n) .

Then for any T > 0 there exists CT > 0 such that for all t ∈ [−T ,T ]
and all n, p ∈ N∗ with n ≥ γp,∥∥∥%(p)

ε (t)− %(p)
0 (t)

∥∥∥
1
≤ CT

C p

α(n)
.
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C p

α(n)
.

Typical case: α(n) = n
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Rate of convergence
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Let (α(n))n∈N∗ be a sequence of positive numbers with limα(n) =∞,
α(n)

n ≤ C. %ε ∈ L1(
∨n Z) and %

(p)
0 ∈ L1(

∨p Z). If there exists
C0 > 0,and γ ≥ 1 such that for all n, p ∈ N∗ with n ≥ γp∥∥∥%(p)

ε − %(p)
0

∥∥∥
1
≤ C0

C p

α(n) .

Then for any T > 0 there exists CT > 0 such that for all t ∈ [−T ,T ]
and all n, p ∈ N∗ with n ≥ γp,∥∥∥%(p)

ε (t)− %(p)
0 (t)

∥∥∥
1
≤ CT

C p

α(n)
.

Typical case: α(n) = n...but e.g. α(n) = n1/2 can be done at t = 0
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Mean field expansion

Idea of the proof:

e i t
εHε DWick e−i t

εHε = D(t)Wick + R(ε),

with R(ε)→ 0 when ε→ 0 and D(t)Wick is an infinite sum of Wick
operators .
The strategy: an iterated integral formula the Dyson-Schwinger
expansion (elaborated in the works by Frölich,Graffi,Schwarz,Knowles and
Pizzo) is used with the Wick calculus to expand commutators of Wick
operators according to ε.
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Numerical discrete model of the bosonic mean field -
Framework

Z = CK . Discrete Laplacian operator: ∆K

∀z ∈ CK ∀i ∈ Z/KZ, (∆K z)i = zi+1 + zi−1 .

Hamiltonian: Hε = dΓ(−∆K ) + V .

ZK := Z/KZ

α := (α1, · · · , αK ) ∈ NK , |α| := α1 + · · ·+ αK , α! := α1! · · ·αK ! .
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Orthogonal basis of the N-fold sector

(e1, · · · , eK ): orthonormal basis of CK .

Orthonormal basis of
∨N Z labelled by the multi-indices α such that

|α| = N:

a∗(e)α√
ε|α|α!

|Ω〉 :=
1√
ε|α|α!

a∗(e1)α1 · · · a∗(eK )αK |Ω〉 ,

|Ω〉 = (1, 0, 0, 0, . . .): vacuum of the Fock space.

Then the dimension of
∨N Z is

]{α ∈ NK/|α| = N} = C K−1
N+K−1 ,
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Discrete Hartree equation

Hε = H(z , z̄)Wick

Energy of the Hamiltonian:

H(z , z̄) = 〈z ,−∆K z〉+
1

2

∑
i,j

Vij |zi |2|zj |2

Hartree equation ∀k ∈ ZK :

i∂tzk = ∂zk
H = −(∆K z)k +

∑
j

Vkj zk |zj |2

= −(∆K z)k + (V ∗ |z |2)k zk if Vij = V (i − j) .
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Wick operator finite dimensional

In finite dimensional framework

bWick = a∗(e)αa(e)β , b(z) = zαzβ , and b̃ =
∣∣ a∗(e)α√
ε|α|α!

Ω〉〈 a∗(e)β√
ε|β|β!

Ω
∣∣

Quantum reduced density matrices %
(p)
ε ∈ L1(

∨p Z) (trace class
operators) defined by
the linear form on L∞(

∨p Z) (compact operators)

b̃ 7→
Tr
[
%εb

Wick
]

Tr [%ε(|z |2p)Wick ]
=: Tr

[
%(p)
ε b̃

]
by using

(
L∞(

∨p Z))
′

= L1(
∨p Z)
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Propagation of Wigner measures

Wigner measure associated with a Hermite state a∗(z)N

√
εN N!
|Ω〉:

δS1

z = 1
2π

∫ 2π

0
δe iθz dθ .

Wigner measures of states %ε ∈ L1(
∨N Z)

gauge invariant probability measures µ = ”
∑m

k=1 tkδ
S1

zk
” ,

”
∑m

k=1 tk ” = 1 .
After mean field propagation

Tr(ρε(t)bWick ) −→ε−→0

∫
Z

b(z)dµt(z)

'
m∑

k=1

tk
1

2π

∫ 2π

0

b(e iθzk (t))dθ

zk (t): solution to the Hartree equation.
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Convergence of reduced density matrices

For any p ∈ N, the following quantity is numerically evaluated:∥∥∥%(p)
ε (t)−

∫
Z |z

⊗p〉〈z⊗p|dµt(z)∫
Z |z |2pdµ0(z)

∥∥∥
L1
,

the matrix element of

%(p)
ε (t)−

∫
Z |z

⊗p〉〈z⊗p|dµt(z)∫
Z |z |2pdµ0(z)

is

p!√
α!β!

( Tr (%ε(t)a∗(e)αa(e)β)

εpN(N − 1) . . . (N − p + 1)
−
∑m

k=1 tk z̄k (t)αzk (t)β∑m
k=1 tk |zk |2p

)
.
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Composition method

Numerical computation of e−i t
εHεΨ0 on

∨N Z for N ∈ N− {0}.
Computation of e−i t

εHεΨ0 by a composition method based on the Strang
splitting method:

e−i t
εHε = lim

p→∞

(
e−i t

2εpVe−i t
εp H0 e−i t

2εpV
)p

.

Order 4 composition method:

e−i t
εHε

= lim
p→∞

(
e−i

a3t
2εpVe−i

a3t
εp H0 e−i

a3t
2εpVe−i

a2t
2εpVe−i

a2t
εp H0 e−i

a2t
2εpV

e−i
a1t
2εpVe−i

a1t
εp H0 e−i

a1t
2εpV

)p
,
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Coefficients

The coefficients of the method are satisfying the both equations:

a1 + a2 + a3 = 1

a3
1 + a3

2 + a3
3 = 0

and are given by1:

a1 = a3 =
1

2− 21/3
, a2 = − 21/3

2− 21/3
.

1Hairer,E.,Lubich,C.,Wanner,G. Geometric numerical integration. Structure
preserving algorithms for ordinary differential equations, Springer-Verlag 2002
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Complexity

Dimension of
∨20Z when K = 10: 10015005 ' 107.

Sparse matrix of dΓ(−∆K ) on the basis of the bosons space containing
only 2KC K−2

N+K−2 elements.

A full matrix contains (C K−1
N+K−1)2 elements.

Computation of e−i ∆t
ε dΓ(−∆K ) at each time step by an order 4 Taylor

expansion.
This expansion is replaced in the composition method.
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Error estimate in the approximation of the composition
method

Proposition

Let A and B be two anti-adjoint matrices and J an integer such that
∆t
ε (|a1 − a2|‖A‖+ 3|a2|

2 ‖B‖) ≤ 5 and J ≥ t
5ε (|a1 − a2|‖A‖+ 3|a2|

2 ‖B‖) .
Then

‖e t
ε (A+B)u − (Ψ̃ ∆t

ε A,∆t
ε B )J u‖

≤

(
2(

e

5
)5

(
(a1 − a2)‖A‖ − 3a2

2
‖B‖

)5

+
3

4
‖A‖5

)
t

∆t4

ε5
‖u‖ ,

with

Ψ̃A,B = e
a1B

2 T̃ L(ea1A)e
a1B

2 e
a2B

2 T̃ L(ea2A)e
a2B

2 e
a1B

2 T̃ L(ea1A)e
a1B

2 .

Boris Pawilowski Bosonic mean field limit and discrete Schrödinger equation



General framework
Mean field limit with compact kernel interaction

Rate of convergence of the bosonic mean field limit
Numerical discrete model of the bosonic mean field

Constant independent on ε

T̃ L(eA)u =
‖u‖

‖TL(eA)u‖
TL(eA)u if ‖TL(eA)u‖ 6= 0

to preserve the norm.
TL(eA): order 4 Taylor expansion of eA.
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Constant independent on ε

T̃ L(eA)u =
‖u‖

‖TL(eA)u‖
TL(eA)u if ‖TL(eA)u‖ 6= 0

to preserve the norm.
TL(eA): order 4 Taylor expansion of eA.

Application: A = −idΓ(−∆K ) B = −iV with
‖dΓ(−∆K )‖+ ‖ − iV‖ ≤ C independent of ε = 1

N .
Constant in the error estimate independent of ε or N
→ Rule to adapt the time-step according to ε: ∆t = O(ε5/4)
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Examples of states

Twin states:
ΨN = a∗(ψ1)n1 a∗(ψ2)n2√

εn1+n2 n1!n2!
|Ω〉, n1 = n2 = N

2 .

Wq states:

ΨN = a∗(ψ1)n1 a∗(ψ2)n2√
εn1+n2 n1!n2!

|Ω〉, n1 = N − q and n2 = q fixed.

With ψ1 = 1√
2

(e1 + ie3) and ψ2 = e2.
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Order of convergence of reduced density matrices

Figure: Order of convergence of reduced density matrices for mixed states.
Numerical slope : −0, 9855. Log(maxt∈[0,1] ‖%(1)

ε (t)− %
(1)
0 (t)‖1)
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Time-evolved densities of particles

Figure: Time-evolved densities of particles for K = 10, p = 1,N = 20 and mean
field limit for mixed states. %

(1)
ε (k, k) , %

(1)
0 (k, k)
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Correlations for twin states

Figure: Correlations for K = 10, N = 20 and mean field limit for mixed states.
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Orders of convergence for Wq states

Figure: Orders for K = 4,6,7,10, N = 20, p = 1. Numerical slopes:
K = 10: −0.98431, K = 7: −0.98447, K = 6: −0.98442, K = 4: −0.98515
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Error estimate in trace norm I

Estimate the error trace norm at t = 0. We have:

ΨN =
a∗(ψ1)N−2a∗(ψ2)2√

εN (N − 2)!2!
Ω =

√
εN N!

2εN (N − 2)!
SN (ψ⊗N−2

1 ⊗ ψ⊗2
2 )

=

√
2

N(N − 1)

∑
i,j

ψ1 ⊗ . . .⊗ ψ2︸︷︷︸
i

⊗ . . .⊗ ψ2︸︷︷︸
j

⊗ψ1 . . . ψ1 .

Consider A ∈ L(Z) defined by Aψ1 = ψ1, Aψ2 = −ψ2 and
A{ψ1,ψ2}⊥ = 0, we have ‖A‖ = 1.

dΓ(A)ΨN = ε(1× (N − 2) + 2× (−1))ΨN = N−4
N ΨN .

Hence

Tr (γ(1)
ε A) =

Tr (%εdΓ(A))

Tr (%ε(|z |2)Wick )
=
〈ΨN , dΓ(A)ΨN〉

εN
=

N − 4

N
.
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Error estimate in trace norm II

Tr (γ
(1)
0 A) = Tr (A

∫
Z
|z〉〈z |dδS1

ψ1
) = Tr (A|ψ1〉〈ψ1|) = 〈ψ1 , Aψ1〉 = 1 .

Therefore

‖γ(1)
ε − γ

(1)
0 ‖1 ≥ |Tr ((γ(1)

ε − γ
(1)
0 )A)| = 1− N − 4

N
=

4

N
.

So at the initial time, for N = 20, the error is greater than 0.2.
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Correlations for Wq states

Figure: Mean field(white) and 20-body quantum(blue) correlations for Wq
states at t = 1
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