Explicit solutions of multiple state optimal design problems

Krešimir Burazin

J. J. Strossmayer University of Osijek Department of Mathematics
Trg Ljudevita Gaja 6
31000 Osijek, Hrvatska
http://www.mathos.unios.hr
kburazin@mathos.hr

Joint work with Marko Vrdoljak

Outline

(1) Energy minimization and relaxation

Posing the problem
Relaxation
(2) Convex minimization problem

Simpler problem
Spherically symmetric case
(3) Examples

One state
Multiple states

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}, \quad i=1, \ldots, m\right.
$$

where \mathbf{A} is a mixture of two isotropic materials with conductivities $0<\alpha<\beta: \mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}$, where $\chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$, For given $\Omega, \alpha, \beta, q_{\alpha}, f_{i}$, and some given weights $\mu_{i}>0$, we want to find such material \mathbf{A} which minimizes the weighted sum of energies (total amounts of heat/electrical energy dissipated in Ω):

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}, \quad i=1, \ldots, m\right.
$$

where \mathbf{A} is a mixture of two isotropic materials with conductivities $0<\alpha<\beta$:

For given $\Omega, \alpha, \beta, q_{\alpha}, f_{i}$, and some given weights $\mu_{i}>0$, we want to find
such material \mathbf{A} which minimizes the weighted sum of energies (total amounts of heat/electrical energy dissipated in Ω):

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}, \quad i=1, \ldots, m\right.
$$

where \mathbf{A} is a mixture of two isotropic materials with conductivities
$0<\alpha<\beta$: $\mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}$, where $\chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$,
$\int_{\Omega} \chi d \mathbf{x}=q_{\alpha}$, for given $0<q_{\alpha}<|\Omega|$.
For given $\Omega, \alpha, \beta, q_{\alpha}, f_{i}$, and some given weights $\mu_{i}>0$, we want to find
such material \mathbf{A} which minimizes the weighted sum of energies (total
amounts of heat/electrical energy dissipated in Ω):

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}, \quad i=1, \ldots, m\right.
$$

where \mathbf{A} is a mixture of two isotropic materials with conductivities
$0<\alpha<\beta$: $\mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}$, where $\chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$,
$\int_{\Omega} \chi d \mathbf{x}=q_{\alpha}$, for given $0<q_{\alpha}<|\Omega|$.
For given $\Omega, \alpha, \beta, q_{\alpha}, f_{i}$, and some given weights $\mu_{i}>0$, we want to find such material \mathbf{A} which minimizes the weighted sum of energies (total amounts of heat/electrical energy dissipated in Ω):

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}, \quad i=1, \ldots, m\right.
$$

where \mathbf{A} is a mixture of two isotropic materials with conductivities $0<\alpha<\beta$: $\mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}$, where $\chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$, $\int_{\Omega} \chi d \mathbf{x}=q_{\alpha}$, for given $0<q_{\alpha}<|\Omega|$.
For given $\Omega, \alpha, \beta, q_{\alpha}, f_{i}$, and some given weights $\mu_{i}>0$, we want to find such material \mathbf{A} which minimizes the weighted sum of energies (total amounts of heat/electrical energy dissipated in Ω):

$$
I(\chi):=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} d \mathbf{x} \rightarrow \min , \quad \chi \in \mathrm{~L}^{\infty}(\Omega ;\{0,1\})
$$

Murat \& Tartar

Lurie \& Cherkaev

Murat \& Tartar

Lurie \& Cherkaev

$$
\begin{array}{r}
\chi \in \mathbf{L}^{\infty}(\Omega ;\{0,1\}) \\
\mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I} \\
\text { classical material }
\end{array}
$$

Murat \& Tartar

Lurie \& Cherkaev

$$
\begin{array}{rll}
\chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\}) & \cdots & \theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]) \\
\mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I} & & \mathbf{A} \in \mathcal{K}(\theta) \text { a.e. on } \Omega \\
\text { classical material } & & \text { composite mateiral - relaxation }
\end{array}
$$

Composite material

Definition

If a sequence of characteristic functions $\chi_{\varepsilon} \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$ and conductivities $\mathbf{A}^{\varepsilon}(x)=\chi_{\varepsilon}(x) \alpha \mathbf{I}+\left(1-\chi_{\varepsilon}(x)\right) \beta \mathbf{I}$ satisfy $\chi_{\varepsilon} \rightharpoonup \theta$ weakly * and $\mathbf{A}^{\varepsilon} H$-converges to \mathbf{A}^{*}, then it is said that \mathbf{A}^{*} is homogenised tensor of two-phase composite material with proportions θ of first material and microstructure defined by the sequence $\left(\chi_{\varepsilon}\right)$.

Example - simple laminates: if χ_{ε} depend only on x_{1}, then
where

Set of all composites:

Composite material

Definition

If a sequence of characteristic functions $\chi_{\varepsilon} \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$ and conductivities $\mathbf{A}^{\varepsilon}(x)=\chi_{\varepsilon}(x) \alpha \mathbf{I}+\left(1-\chi_{\varepsilon}(x)\right) \beta \mathbf{I}$ satisfy $\chi_{\varepsilon} \rightharpoonup \theta$ weakly * and $\mathbf{A}^{\varepsilon} H$-converges to \mathbf{A}^{*}, then it is said that \mathbf{A}^{*} is homogenised tensor of two-phase composite material with proportions θ of first material and microstructure defined by the sequence $\left(\chi_{\varepsilon}\right)$.

Example - simple laminates: if χ_{ε} depend only on x_{1}, then

$$
\mathbf{A}^{*}=\operatorname{diag}\left(\lambda_{\theta}^{-}, \lambda_{\theta}^{+}, \lambda_{\theta}^{+}, \ldots, \lambda_{\theta}^{+}\right),
$$

where

$$
\lambda_{\theta}^{+}=\theta \alpha+(1-\theta) \beta, \quad \frac{1}{\lambda_{\theta}^{-}}=\frac{\theta}{\alpha}+\frac{1-\theta}{\beta}
$$

Set of all composites:

Composite material

Definition

If a sequence of characteristic functions $\chi_{\varepsilon} \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$ and conductivities $\mathbf{A}^{\varepsilon}(x)=\chi_{\varepsilon}(x) \alpha \mathbf{I}+\left(1-\chi_{\varepsilon}(x)\right) \beta \mathbf{I}$ satisfy $\chi_{\varepsilon} \rightharpoonup \theta$ weakly * and $\mathbf{A}^{\varepsilon} H$-converges to \mathbf{A}^{*}, then it is said that \mathbf{A}^{*} is homogenised tensor of two-phase composite material with proportions θ of first material and microstructure defined by the sequence $\left(\chi_{\varepsilon}\right)$.

Example - simple laminates: if χ_{ε} depend only on x_{1}, then

$$
\mathbf{A}^{*}=\operatorname{diag}\left(\lambda_{\theta}^{-}, \lambda_{\theta}^{+}, \lambda_{\theta}^{+}, \ldots, \lambda_{\theta}^{+}\right),
$$

where

$$
\lambda_{\theta}^{+}=\theta \alpha+(1-\theta) \beta, \quad \frac{1}{\lambda_{\theta}^{-}}=\frac{\theta}{\alpha}+\frac{1-\theta}{\beta}
$$

Set of all composites:

$$
\mathcal{A}:=\left\{(\theta, \mathbf{A}) \in \mathrm{L}^{\infty}\left(\Omega ;[0,1] \times \mathrm{M}_{d}(\mathbf{R})\right): \int_{\Omega} \theta d \mathbf{x}=q_{\alpha}, \mathbf{A} \in \mathcal{K}(\theta) \text { a.e. }\right\}
$$

Effective conductivities - set $\mathcal{K}(\theta)$
G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^{*}
$\mathcal{K}(\theta)$ is given in terms of eigenvalues
(Murat \& Tartar; Lurie \& Cherkaev):

Effective conductivities - set $\mathcal{K}(\theta)$
G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^{*}
$\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat \& Tartar; Lurie \& Cherkaev):

2D:

$$
\begin{aligned}
& \sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha} \\
& \sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}}
\end{aligned}
$$

$\min _{\mathcal{A}} J$ is a proper relaxation of

Effective conductivities - set $\mathcal{K}(\theta)$
G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^{*}
$\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat \& Tartar; Lurie \& Cherkaev):

$$
\lambda_{\theta}^{-} \leq \quad \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d
$$

2D:

$$
\begin{aligned}
& \sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha} \\
& \sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}}
\end{aligned}
$$

$\min _{\mathcal{A}} J$ is a proper relaxation of
$\min _{\mathrm{L} \infty}(\Omega ;\{0,1\}) I$

Effective conductivities - set $\mathcal{K}(\theta)$
G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^{*}
$\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat \& Tartar; Lurie \& Cherkaev):

$$
\lambda_{\theta}^{-} \leq \quad \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d
$$

$$
\sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha}
$$

$$
\sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}}
$$

2D:

Effective conductivities - set $\mathcal{K}(\theta)$
G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^{*}
$\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat \& Tartar; Lurie \& Cherkaev):

$$
\lambda_{\theta}^{-} \leq \quad \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d
$$

$$
\sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha}
$$

$$
\sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}}
$$

$\min _{\mathcal{A}} J$ is a proper relaxation of

$$
\min _{L^{\infty}(\Omega ;\{0,1\})} I
$$

2D:

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.

$\mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\}$
$\theta \in \mathcal{T}$. and u determined uniquely by

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f \\
u \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}\right.
$$

B. Multiple state equations: Simpler
relaxation fails; in spherically symmetric
case or when $m<d$, it can be done!

$$
I(\theta)=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} d x \rightarrow \min
$$

$$
\mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\}
$$

$\theta \in \mathcal{T}$, and u_{i} determined uniquely by

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right)=f_{i} \\
u_{i} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.

B. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when $m<d$, it can be done!
 $\theta \in \mathcal{T}$, and u_{i} determined uniquely by

$\min \mathcal{T} I$

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.
B. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when $m<d$, it can be done!

$\min \mathcal{T} I$

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.
B. Multiple state equations: Simpler
relaxation fails; in spherically symmetric case or when $m<d$, it can be done!

$$
\left.\begin{array}{l}
I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow \min \\
\mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\}
\end{array}\right] \begin{aligned}
& \theta \in \mathcal{T}, \text { and } u \text { determined uniquely by } \\
& \left\{\begin{array}{l}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f \\
u \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}\right.
\end{aligned}
$$

\square

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.
B. Multiple state equations: Simpler
relaxation fails; in spherically symmetric case or when $m<d$, it can be done!

$$
\begin{aligned}
& I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow \min \\
& \mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\} \\
& \theta \in \mathcal{T}, \text { and } u \text { determined uniquely by } \\
& \left\{\begin{array}{l}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f \\
u \in \mathrm{H}_{0}^{1}(\Omega) \\
\min _{\mathcal{A}} J \quad \Longleftrightarrow \quad \min \mathcal{T} I
\end{array}\right.
\end{aligned}
$$

\square

$\min _{\mathcal{T}} I$

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$
I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow \min
$$

$$
\mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\}
$$

$\theta \in \mathcal{T}$, and u determined uniquely by

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f \\
u \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}\right.
$$

$$
\min _{\mathcal{A}} J
$$

$$
\Longleftrightarrow \quad \min _{\mathcal{T}} I
$$

B. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when $m<d$, it can be done!

\square

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$
\min _{\mathcal{A}} J
$$

$$
\Longleftrightarrow \quad \min _{\mathcal{T}} I
$$

$$
\begin{aligned}
& I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow \min \\
& \mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\} \quad \mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\} \\
& \theta \in \mathcal{T} \text {, and } u \text { determined uniquely by } \\
& \left\{\begin{array}{l}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f \\
u \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}\right. \\
& \left\{\begin{array}{l}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f \\
u \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}\right. \\
& \theta \in \mathcal{T} \text {, and } u_{i} \text { determined uniquely by } \\
& \left\{\begin{array}{l}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right)=f_{i} \\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array} \quad i=1, \ldots, m\right. \\
& I(\theta)=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} d \mathbf{x} \longrightarrow \min \\
& \theta \in \mathcal{T} \text {, and } u_{i} \text { determined uniquely by }
\end{aligned}
$$

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$
\left.\begin{array}{ll}
I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow \min & I(\theta)=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} d \mathbf{x} \longrightarrow \min \\
\mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\} & \mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\}
\end{array}\right\} \begin{array}{ll}
\theta \in \mathcal{T}, \text { and } u \text { determined uniquely by } & \theta \in \mathcal{T}, \text { and } u_{i} \text { determined uniquely by } \\
u \in \mathrm{H}_{0}^{1}(\Omega) & \begin{cases}-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right)=f_{i} & i=1, \ldots, m \\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)\end{cases} \\
\left\{\begin{array}{ll}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f \\
\min _{\mathcal{A}} J & \min _{\mathcal{A}} J
\end{array} \Longleftrightarrow \min _{\mathcal{T}} I\right. & \min _{\mathcal{T}} I
\end{array}
$$

Theorem

If $m<d$ then $\min _{\mathcal{A}} J=\min _{\mathcal{T}} I$ and:

- There is unique $\mathrm{u}^{*} \in \mathrm{H}_{0}^{1}\left(\Omega ; \mathbf{R}^{m}\right)$ which is the state for every solution of $\min _{\mathcal{A}} J$ and $\min _{\mathcal{T}} I$.
- If $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is an optimal design for the problem $\min _{\mathcal{A}} J$, then θ^{*} is optimal design for $\min _{\mathcal{T}} I$.
- Conversely, if θ^{*} is a solution of optimal design problem min \mathcal{T} I, then any $\left(\theta^{*}, \mathbf{A}^{*}\right) \in \mathcal{A}$ satisfying $\mathbf{A}^{*} \nabla u_{i}^{*}=\lambda_{\theta^{*}}^{+} \nabla u_{i}^{*}$, $i=1, \ldots, m$ almost everywhere on Ω (e.g. simple laminates) is an optimal design for the problem $\min _{\mathcal{A}} J$.

Theorem

If $m<d$ then $\min _{\mathcal{A}} J=\min _{\mathcal{T}} I$ and:

- There is unique $\mathrm{u}^{*} \in \mathrm{H}_{0}^{1}\left(\Omega ; \mathbf{R}^{m}\right)$ which is the state for every solution of $\min _{\mathcal{A}} J$ and $\min _{\mathcal{T}} I$.
- If $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is an optimal design for the problem $\min _{\mathcal{A}} J$, then θ^{*} is optimal design for $\min \mathcal{T} I$.
- Conversely, if θ^{*} is a solution of optimal design problem min $\boldsymbol{T} I$, then any $\left(\theta^{*}, \mathbf{A}^{*}\right) \in \mathcal{A}$ satisfying $\mathbf{A}^{*} \nabla u_{i}^{*}=\lambda_{\theta^{*}}^{+} \nabla u_{i}^{*}$, $i=1, \ldots, m$ almost everywhere on Ω (e.g. simple laminates) is an optimal design for the problem $\min _{\mathcal{A}} J$.

Theorem

If $m<d$ then $\min _{\mathcal{A}} J=\min _{\mathcal{T}} I$ and:

- There is unique $\mathrm{u}^{*} \in \mathrm{H}_{0}^{1}\left(\Omega ; \mathbf{R}^{m}\right)$ which is the state for every solution of $\min _{\mathcal{A}} J$ and $\min _{\mathcal{T}} I$.
- If $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is an optimal design for the problem $\min _{\mathcal{A}} J$, then θ^{*} is optimal design for $\min \mathcal{T} I$.
- Conversely, if θ^{*} is a solution of optimal design problem $\min _{\mathcal{T}} I$, then any $\left(\theta^{*}, \mathbf{A}^{*}\right) \in \mathcal{A}$ satisfying $\mathbf{A}^{*} \nabla u_{i}^{*}=\lambda_{\theta^{*}}^{+} \nabla u_{i}^{*}$,
$i=1, \ldots, m$ almost everywhere on Ω (e.g. simple laminates) is an optimal design for the problem $\min _{\mathcal{A}} J$.

Spherical symmetry: $\min _{\mathcal{A}} J \Longleftrightarrow \min _{\mathcal{T}} I$

Theorem

Let $\Omega \subseteq \mathbf{R}^{d}$ be spherically symmetric, and let the right-hand sides $f_{i}=f_{i}(r), r \in \omega, i=1, \ldots, m$ be radial functions. Then $\min _{\mathcal{A}} J=\min _{\mathcal{T}} I$ and there is unique (radial) u^{*} which is the state for any solution of $\min _{\mathcal{A}} J$ and $\min _{\mathcal{T}} I$. Moreover,

where S denotes the surface measure on a sphere. Then θ^{*} is also minimizer for I over \mathcal{T}.

Spherical symmetry: $\min _{\mathcal{A}} J \Longleftrightarrow \min _{\mathcal{T}} I$

Theorem

Let $\Omega \subseteq \mathbf{R}^{d}$ be spherically symmetric, and let the right-hand sides $f_{i}=f_{i}(r), r \in \omega, i=1, \ldots, m$ be radial functions. Then $\min _{\mathcal{A}} J=\min _{\mathcal{T}} I$ and there is unique (radial) u^{*} which is the state for any solution of $\min _{\mathcal{A}} J$ and $\min _{\mathcal{T}} I$. Moreover,
a) For any minimizer θ of functional I over \mathcal{T}, let us define a radial function $\theta^{*}: \Omega \longrightarrow \mathbf{R}$ as the average value over spheres of θ : for $r \in \omega$ we take

$$
\theta^{*}(r):=f_{\partial B(\mathbf{0}, r)} \theta d S
$$

where S denotes the surface measure on a sphere. Then θ^{*} is also minimizer for I over \mathcal{T}.

Spherical symmetry...cont.

Theorem

b) For any radial minimizer θ^{*} of I over \mathcal{T}, let us define $\mathbf{A}^{*} \in \mathcal{K}\left(\theta^{*}\right)$ as a simple laminate with the lamination direction orthogonal to the radial vector \mathbf{e}_{r}, almost everywhere on Ω. To be specific, we define

Spherical symmetry... cont.

Theorem

b) For any radial minimizer θ^{*} of I over \mathcal{T}, let us define $\mathbf{A}^{*} \in \mathcal{K}\left(\theta^{*}\right)$ as a simple laminate with the lamination direction orthogonal to the radial vector \mathbf{e}_{r}, almost everywhere on Ω. To be specific, we define

$$
\mathbf{A}^{*}(\mathbf{x}):=\operatorname{diag}\left(\lambda_{\theta^{*}}^{+}(|\mathbf{x}|), \lambda_{\theta^{*}}^{-}(|\mathbf{x}|), \lambda_{\theta^{*}}^{+}(|\mathbf{x}|), \ldots, \lambda_{\theta^{*}}^{+}(|\mathbf{x}|)\right)
$$

in spherical basis $\left(\mathbf{e}_{r}(\mathbf{x}), \mathbf{e}_{\phi_{1}}(\mathbf{x}), \mathbf{e}_{\phi_{2}}(\mathbf{x}), \ldots, \mathbf{e}_{\phi_{d-1}}(\mathbf{x})\right)$. Then $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is an optimal design for $\min _{\mathcal{A}} J$.
 $i=1$

Spherical symmetry... cont.

Theorem

b) For any radial minimizer θ^{*} of I over \mathcal{T}, let us define $\mathbf{A}^{*} \in \mathcal{K}\left(\theta^{*}\right)$ as a simple laminate with the lamination direction orthogonal to the radial vector \mathbf{e}_{r}, almost everywhere on Ω. To be specific, we define

$$
\mathbf{A}^{*}(\mathbf{x}):=\operatorname{diag}\left(\lambda_{\theta^{*}}^{+}(|\mathbf{x}|), \lambda_{\theta^{*}}^{-}(|\mathbf{x}|), \lambda_{\theta^{*}}^{+}(|\mathbf{x}|), \ldots, \lambda_{\theta^{*}}^{+}(|\mathbf{x}|)\right)
$$

in spherical basis $\left(\mathbf{e}_{r}(\mathbf{x}), \mathbf{e}_{\phi_{1}}(\mathbf{x}), \mathbf{e}_{\phi_{2}}(\mathbf{x}), \ldots, \mathbf{e}_{\phi_{d-1}}(\mathbf{x})\right)$. Then $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is an optimal design for $\min _{\mathcal{A}} J$.
c) If $\left(\theta^{*}, \mathbf{A}^{*}\right) \in \mathcal{A}$ is a solution of the relaxed problem $\min _{\mathcal{A}} J$ then θ^{*} is optimal for $\min _{\mathcal{T}} I$, and $\mathbf{A}^{*} \nabla u_{i}^{*}=\lambda_{\theta^{*}}^{+} \nabla u_{i}^{*}$, almost everywhere, $i=1, \ldots, m$.

Uniqueness on a ball

Lemma

Let Ω be ball $B(\mathbf{0}, R)$, and let the right-hand sides f_{i} be radial functions, such that mappings $r \mapsto r^{\frac{d-1}{2}} f_{i}(r)$ belong to $\mathrm{L}^{2}(\langle 0, R\rangle), i=1, \ldots, m$. Then there are unique radial fluxes

$$
\sigma_{i}^{*}(r)=-\frac{1}{r^{d-1}} \int_{0}^{r} \rho^{d-1} f_{i}(\rho) d \rho \mathbf{e}_{r}
$$

corresponding to each minimizer of $\min _{\mathcal{T}} I$, and this minimizer is radial and unique on the set where at least one σ_{i}^{*} does not vanish. If the Lagrange multiplier c is positive, this holds true on the whole $B(\mathbf{0}, R)$.

Optimality conditions for $\min _{\mathcal{T}} I$

Lemma

$\theta^{*} \in \mathcal{T}$ is a solution $\min \mathcal{T} I$ if and only if there exists a Lagrange multiplier $c \geq 0$ such that
or equivalently

$$
\begin{aligned}
\theta^{*} \in\langle 0,1\rangle & \Rightarrow \sum_{i=1}^{m} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2}=c, \\
\theta^{*}=0 & \Rightarrow \sum_{i=1}^{m} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2} \geq c, \\
\theta^{*}=1 & \Rightarrow \sum_{i=1}^{m} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2} \leq c,
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=1}^{m} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2}>c \Rightarrow \theta^{*}=0, \\
& \sum_{i=1}^{m} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2}<c \Rightarrow \theta^{*}=1 .
\end{aligned}
$$

Ball $\Omega=B(\mathbf{0}, 2) \subseteq \mathbf{R}^{2}$ with nonconstant right-hand side

In all examples $\alpha=1, \beta=2$, one state equation, $f(r)=1-r$

State equation in polar coordinates

Conditions of optimality: there exists a constant $\gamma:=\sqrt{c}>0$ such that for optimal θ^{*} we have:

Ball $\Omega=B(\mathbf{0}, 2) \subseteq \mathbf{R}^{2}$ with nonconstant right-hand side
In all examples $\alpha=1, \beta=2$, one state equation, $f(r)=1-r$

State equation in polar coordinates

$$
-\frac{1}{r}\left(r \lambda_{\theta(r)}^{+} u^{\prime}\right)^{\prime}=1-r .
$$ Integration gives $\quad\left|u^{\prime}(r)\right|=\frac{\psi(r)}{\alpha \theta(r)+\beta(1-\theta(r))}, \quad$ where $\psi(r)=\frac{\left|2 r^{2}-3 r\right|}{6}$.

Conditions of optimality: there exists a constant $\gamma:=\sqrt{c}>0$ such that for optimal θ^{*} we have:

Ball $\Omega=B(\mathbf{0}, 2) \subseteq \mathbf{R}^{2}$ with nonconstant right-hand side

In all examples $\alpha=1, \beta=2$, one state equation, $f(r)=1-r$

State equation in polar coordinates

$$
-\frac{1}{r}\left(r \lambda_{\theta(r)}^{+} u^{\prime}\right)^{\prime}=1-r .
$$

Integration gives $\quad\left|u^{\prime}(r)\right|=\frac{\psi(r)}{\alpha \theta(r)+\beta(1-\theta(r))}, \quad$ where $\psi(r)=\frac{\left|2 r^{2}-3 r\right|}{6}$.
Conditions of optimality: there exists a constant $\gamma:=\sqrt{c}>0$ such that for optimal θ^{*} we have:

$$
\begin{aligned}
\left|u^{\prime}(r)\right|>\gamma & \Rightarrow \theta^{*}(r)=0 \\
& \Rightarrow g_{\beta}:=\frac{\psi}{\beta}>\gamma \\
\left|u^{\prime}(r)\right|<\gamma & \Rightarrow \theta^{*}(r)=1 \\
& \Rightarrow g_{\alpha}:=\frac{\psi}{\alpha}<\gamma \\
\theta^{*} \in\langle 0,1\rangle & \Rightarrow\left|u^{\prime}(r)\right|=\gamma \\
& \Rightarrow \theta^{*}(r)=\frac{\beta \gamma-\psi(r)}{\gamma(\beta-\alpha)}
\end{aligned}
$$

Ball $\Omega=B(\mathbf{0}, 2) \subseteq \mathbf{R}^{2}$ with nonconstant right-hand side

In all examples $\alpha=1, \beta=2$, one state equation, $f(r)=1-r$

State equation in polar coordinates

$$
-\frac{1}{r}\left(r \lambda_{\theta(r)}^{+} u^{\prime}\right)^{\prime}=1-r .
$$

Integration gives $\quad\left|u^{\prime}(r)\right|=\frac{\psi(r)}{\alpha \theta(r)+\beta(1-\theta(r))}, \quad$ where $\psi(r)=\frac{\left|2 r^{2}-3 r\right|}{6}$.
Conditions of optimality: there exists a constant $\gamma:=\sqrt{c}>0$ such that for optimal θ^{*} we have:

$$
\begin{aligned}
\left|u^{\prime}(r)\right|>\gamma & \Rightarrow \theta^{*}(r)=0 \\
& \Rightarrow g_{\beta}:=\frac{\psi}{\beta}>\gamma \\
\left|u^{\prime}(r)\right|<\gamma & \Rightarrow \theta^{*}(r)=1 \\
& \Rightarrow g_{\alpha}:=\frac{\psi}{\alpha}<\gamma \\
\theta^{*} \in\langle 0,1\rangle & \Rightarrow\left|u^{\prime}(r)\right|=\gamma \\
& \Rightarrow \theta^{*}(r)=\frac{\beta \gamma-\psi(r)}{\gamma(\beta-\alpha)}
\end{aligned}
$$

Ball with nonconstant right-hand side

Lagrange multiplier γ is uniquely determined by the constraint $f_{\Omega} \theta^{*} d \mathbf{x}=\eta:=\frac{q_{\alpha}}{|\Omega|} \in[0,1]$, which is algebraic equation for γ.

Ball with nonconstant right-hand side

Lagrange multiplier γ is uniquely determined by the constraint $f_{\Omega} \theta^{*} d \mathbf{x}=\eta:=\frac{q_{\alpha}}{|\Omega|} \in[0,1]$, which is algebraic equation for γ.

Ball with nonconstant right-hand side

Lagrange multiplier γ is uniquely determined by the constraint $f_{\Omega} \theta^{*} d \mathbf{x}=\eta:=\frac{q_{\alpha}}{|\Omega|} \in[0,1]$, which is algebraic equation for γ.

Two state equations on a ball $\Omega=B(0,2)$

- $f_{1}=\chi_{B(\mathbf{0}, 1)}, f_{2} \equiv 1$,
- $\left\{-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right)=f_{i}\right.$ $i=1,2$
- $\mu \int_{\Omega} f_{1} u_{1} d \mathbf{x}+\int_{\Omega} f_{2} u_{2} d \mathbf{x} \rightarrow \min$

Solving state equation

with

Similarly as in the first example: $\psi:=\mu \psi_{1}^{2}+\psi_{2}^{2}, g_{\alpha}:=\frac{\psi}{\alpha^{2}}, g_{\beta}:=\frac{\psi}{\beta^{2}}$.

Two state equations on a ball $\Omega=B(0,2)$

- $f_{1}=\chi_{B(\mathbf{0}, 1)}, f_{2} \equiv 1$,
- $\left\{\begin{array}{l}-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right)=f_{i} \\ u_{i} \in \mathrm{H}_{0}^{1}(\Omega)\end{array} \quad i=1,2\right.$
- $\mu \int_{\Omega} f_{1} u_{1} d \mathbf{x}+\int_{\Omega} f_{2} u_{2} d \mathbf{x} \rightarrow$ min

Solving state equation

with

Similarly as in the first example: $\psi:=\mu \psi_{1}^{2}+\psi_{2}^{2}, g_{\alpha}:=\frac{\psi}{\alpha^{2}}, g_{\beta}:=\frac{\psi}{\beta^{2}}$.

Two state equations on a ball $\Omega=B(\mathbf{0}, 2)$

- $f_{1}=\chi_{B(\mathbf{0}, 1)}, f_{2} \equiv 1$,
- $\left\{\begin{array}{l}-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right)=f_{i} \\ u_{i} \in \mathrm{H}_{0}^{1}(\Omega)\end{array} \quad i=1,2\right.$
- $\mu \int_{\Omega} f_{1} u_{1} d \mathbf{x}+\int_{\Omega} f_{2} u_{2} d \mathbf{x} \rightarrow \min$

Solving state equation

with

Similarly as in the first example: $\psi:=\mu \psi_{1}^{2}+\psi_{2}^{2}, g_{\alpha}:=\frac{\psi}{\alpha^{2}}, g_{\beta}:=\frac{\psi}{\beta^{2}}$.

Two state equations on a ball $\Omega=B(\mathbf{0}, 2)$

- $f_{1}=\chi_{B(\mathbf{0}, 1)}, f_{2} \equiv 1$,
- $\left\{\begin{array}{l}-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right)=f_{i} \\ u_{i} \in \mathrm{H}_{0}^{1}(\Omega)\end{array}\right.$

$$
i=1,2
$$

- $\mu \int_{\Omega} f_{1} u_{1} d \mathbf{x}+\int_{\Omega} f_{2} u_{2} d \mathbf{x} \rightarrow \min$

Solving state equation

$$
u_{i}^{\prime}(r)=\frac{\psi_{i}(r)}{\theta(r) \alpha+(1-\theta(r)) \beta}, i=1,2,
$$

with

$$
\psi_{1}(r)=\left\{\begin{aligned}
-\frac{r}{2}, & 0 \leq r<1, \\
-\frac{1}{2 r}, & 1 \leq r \leq 2
\end{aligned} \quad \text { and } \psi_{2}(r)=-\frac{r}{2}\right.
$$

Similarly as in the first example: $\psi:=\mu \psi_{1}^{2}+\psi_{2}^{2}, g_{\alpha}:=\frac{\psi}{\alpha^{2}}, g_{\beta}:=\frac{\psi}{\beta^{2}}$.

Geometric interpretation of optimality conditions

As before, Lagrange multiplier can be numerically calculated from corresponding algebraic equation $f_{\Omega} \theta^{*} d \mathrm{x}=\eta$.

Geometric interpretation of optimality conditions

As before, Lagrange multiplier can be numerically calculated from corresponding algebraic equation $f_{\Omega} \theta^{*} d \mathbf{x}=\eta$.

Optimal θ^{*} for case B

In orange region:

Optimal θ^{*} for case B

In orange region:

$$
\theta^{*}(r)=\frac{1}{\beta-\alpha}\left(\beta-\sqrt{\frac{\psi(r)}{c}}\right)
$$

Optimal θ^{*} for case B

In orange region:

$$
\theta^{*}(r)=\frac{1}{\beta-\alpha}\left(\beta-\sqrt{\frac{\psi(r)}{c}}\right)
$$

