Explicit solutions of multiple state optimal design problems

Krešimir Burazin

J. J. STROSSMAYER UNIVERSITY OF OSIJEK
DEPARTMENT OF MATHEMATICS
Trg Ljudevita Gaja 6
31000 Osijek, Hrvatska
http://www.mathos.unios.hr

kburazin@mathos.hr

Joint work with Marko Vrdoljak

[INT. WORKSHOP ON PDES: ANALYSIS AND MODELLING]

Outline

- 1 Energy minimization and relaxation Posing the problem Relaxation
- 2 Convex minimization problem Simpler problem Spherically symmetric case
- 3 Examples
 One state
 Multiple states

 $\Omega\subseteq\mathbf{R}^d$ open and bounded, $f_1,\ldots,f_m\in\mathrm{L}^2(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$\begin{cases} -\operatorname{div}(\mathbf{A}\nabla u_i) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{cases}, \quad i = 1, \dots, m$$
 (1)

where ${\bf A}$ is a mixture of two isotropic materials with conductivities $0<\alpha<\beta$: ${\bf A}=\chi\alpha{\bf I}+(1-\chi)\beta{\bf I}$, where $\chi\in {\rm L}^\infty(\Omega;\{0,1\})$, $\int_\Omega\chi\,d{\bf x}=q_\alpha$, for given $0< q_\alpha<|\Omega|$.

$$I(\chi) := \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \to \min \,\,, \quad \chi \in L^{\infty}(\Omega; \{0, 1\})$$

 $\Omega\subseteq\mathbf{R}^d$ open and bounded, $f_1,\ldots,f_m\in\mathrm{L}^2(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$\begin{cases} -\operatorname{div}(\mathbf{A}\nabla u_i) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{cases}, \quad i = 1, \dots, m$$
 (1)

where ${f A}$ is a mixture of two isotropic materials with conductivities

$$\mathbf{0} < \alpha < \beta$$
: $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi)\beta \mathbf{I}$, where $\chi \in L^{\infty}(\Omega; \{0, 1\})$, $\int_{\Omega} \chi \, d\mathbf{x} = q_{\alpha}$, for given $0 < q_{\alpha} < |\Omega|$.

$$I(\chi) := \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \to \min \,\,, \quad \chi \in L^{\infty}(\Omega; \{0, 1\})$$

 $\Omega\subseteq\mathbf{R}^d$ open and bounded, $f_1,\ldots,f_m\in\mathrm{L}^2(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$\begin{cases} -\operatorname{div}(\mathbf{A}\nabla u_i) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{cases}, \quad i = 1, \dots, m$$
 (1)

where ${\bf A}$ is a mixture of two isotropic materials with conductivities $0<\alpha<\beta$: ${\bf A}=\chi\alpha{\bf I}+(1-\chi)\beta{\bf I}$, where $\chi\in {\rm L}^\infty(\Omega;\{0,1\})$, $\int_\Omega\chi\,d{\bf x}=q_\alpha$, for given $0< q_\alpha<|\Omega|$.

$$I(\chi) := \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \to \min \,\,, \quad \chi \in L^{\infty}(\Omega; \{0, 1\})$$

 $\Omega\subseteq\mathbf{R}^d$ open and bounded, $f_1,\ldots,f_m\in\mathrm{L}^2(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$\begin{cases} -\operatorname{div}(\mathbf{A}\nabla u_i) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{cases}, \quad i = 1, \dots, m$$
 (1)

where \mathbf{A} is a mixture of two isotropic materials with conductivities $0 < \alpha < \beta$: $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi)\beta \mathbf{I}$, where $\chi \in L^{\infty}(\Omega; \{0, 1\})$, $\int_{\Omega} \chi d\mathbf{x} = q_{\alpha}$, for given $0 < q_{\alpha} < |\Omega|$.

$$I(\chi) := \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \to \min \,\,, \quad \chi \in \mathcal{L}^{\infty}(\Omega; \{0, 1\})$$

 $\Omega\subseteq\mathbf{R}^d$ open and bounded, $f_1,\ldots,f_m\in\mathrm{L}^2(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$\begin{cases} -\operatorname{div}(\mathbf{A}\nabla u_i) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{cases}, \quad i = 1, \dots, m$$
 (1)

where ${\bf A}$ is a mixture of two isotropic materials with conductivities $0 < \alpha < \beta$: ${\bf A} = \chi \alpha {\bf I} + (1 - \chi) \beta {\bf I}$, where $\chi \in L^{\infty}(\Omega; \{0, 1\})$, $\int_{\Omega} \chi \, d{\bf x} = q_{\alpha}$, for given $0 < q_{\alpha} < |\Omega|$.

$$I(\chi) := \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \to \min \,\,, \quad \chi \in \mathcal{L}^{\infty}(\Omega; \{0, 1\})$$

single state, $f \equiv 1$, Ω circle / square

Murat & Tartar

theta 0.75 0.5 0.25

Lurie & Cherkaev

$$\chi \in \mathrm{L}^{\infty}(\Omega; \{0, 1\}) \quad \cdots \quad \theta \in \mathrm{L}^{\infty}(\Omega; [0, 1])$$

$$\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi) \beta \mathbf{I} \qquad \qquad \mathbf{A} \in \mathcal{K}(\theta) \quad \text{a.e. on } \Omega$$
classical material composite mateiral - relationships of the composite material - relationships of the composite

$$\theta \in \mathrm{L}^\infty(\Omega;[0,1])$$
 $\mathbf{A} \in \mathcal{K}(\theta)$ a.e. on Ω composite mateiral - relaxation

single state, $f \equiv 1$, Ω circle / square

Murat & Tartar

theta 0.75 0.5 0.25

Lurie & Cherkaev

$$\chi \in \mathrm{L}^{\infty}(\Omega;\{0,1\})$$
 $\mathbf{A} = \chi \alpha \mathbf{I} + (1-\chi) \beta \mathbf{I}$ classical material

$$\begin{array}{ccc} \chi \in \mathrm{L}^{\infty}(\Omega;\{0,1\}) & \cdots & \theta \in \mathrm{L}^{\infty}(\Omega;[0,1]) \\ \mathbf{A} = \chi \alpha \mathbf{I} + (1-\chi)\beta \mathbf{I} & \qquad & \mathbf{A} \in \mathcal{K}(\theta) & \text{a.e. on } \Omega \\ & \text{classical material} & & \text{composite mateiral - relaxation} \end{array}$$

single state, $f \equiv 1$, Ω circle / square

Murat & Tartar

theta 0.75 0.5 0.25

Lurie & Cherkaev

$$\chi \in \mathrm{L}^{\infty}(\Omega; \{0,1\}) \qquad \qquad \theta \in \mathrm{L}^{\infty}(\Omega; [0,1])$$

$$\mathbf{A} = \chi \alpha \mathbf{I} + (1-\chi)\beta \mathbf{I} \qquad \qquad \mathbf{A} \in \mathcal{K}(\theta) \quad \text{a.e. on } \Omega$$
 composite mateiral - rel

$$\chi \in \mathrm{L}^{\infty}(\Omega;\{0,1\}) \quad \cdots \quad \theta \in \mathrm{L}^{\infty}(\Omega;[0,1])$$

$$= \chi \alpha \mathbf{I} + (1-\chi)\beta \mathbf{I} \qquad \qquad \mathbf{A} \in \mathcal{K}(\theta) \quad \text{a.e. on } \Omega$$
classical material composite material - relaxation

Composite material

Definition

If a sequence of characteristic functions $\chi_{\varepsilon} \in L^{\infty}(\Omega; \{0,1\})$ and conductivities $\mathbf{A}^{\varepsilon}(x) = \chi_{\varepsilon}(x)\alpha\mathbf{I} + (1-\chi_{\varepsilon}(x))\beta\mathbf{I}$ satisfy $\chi_{\varepsilon} \rightharpoonup \theta$ weakly * and \mathbf{A}^{ε} H-converges to \mathbf{A}^{*} , then it is said that \mathbf{A}^{*} is homogenised tensor of two-phase composite material with proportions θ of first material and microstructure defined by the sequence (χ_{ε}) .

Example – simple laminates: if χ_{ε} depend only on x_1 , then

$$\mathbf{A}^* = \operatorname{diag}(\lambda_{\theta}^-, \lambda_{\theta}^+, \lambda_{\theta}^+, \dots, \lambda_{\theta}^+),$$

where

$$\lambda_{\theta}^{+} = \theta \alpha + (1 - \theta) \beta$$
, $\frac{1}{\lambda_{\theta}^{-}} = \frac{\theta}{\alpha} + \frac{1 - \theta}{\beta}$.

Set of all composites

$$\mathcal{A}:=\{(\theta,\mathbf{A})\in \mathrm{L}^{\infty}(\Omega;[0,1]\times \mathrm{M}_{d}(\mathbf{R})): \int_{\Omega}\theta\,d\mathbf{x}=q_{\alpha}\,,\;\mathbf{A}\in\mathcal{K}(\theta)\;\mathrm{a.e.}\,\}$$

Composite material

Definition

If a sequence of characteristic functions $\chi_{\varepsilon} \in L^{\infty}(\Omega; \{0,1\})$ and conductivities $\mathbf{A}^{\varepsilon}(x) = \chi_{\varepsilon}(x)\alpha\mathbf{I} + (1-\chi_{\varepsilon}(x))\beta\mathbf{I}$ satisfy $\chi_{\varepsilon} \rightharpoonup \theta$ weakly * and \mathbf{A}^{ε} H-converges to \mathbf{A}^{*} , then it is said that \mathbf{A}^{*} is homogenised tensor of two-phase composite material with proportions θ of first material and microstructure defined by the sequence (χ_{ε}) .

Example – simple laminates: if χ_{ε} depend only on x_1 , then

$$\mathbf{A}^* = \operatorname{diag}(\lambda_{\theta}^-, \lambda_{\theta}^+, \lambda_{\theta}^+, \dots, \lambda_{\theta}^+),$$

where

$$\lambda_{\theta}^{+} = \theta \alpha + (1 - \theta) \beta, \qquad \frac{1}{\lambda_{\theta}^{-}} = \frac{\theta}{\alpha} + \frac{1 - \theta}{\beta}.$$

Set of all composites

$$\mathcal{A}:=\{(\theta,\mathbf{A})\in\mathrm{L}^{\infty}(\Omega;[0,1]\times\mathrm{M}_{d}(\mathbf{R})):\int_{\Omega}\theta\,d\mathbf{x}=q_{\alpha}\,,\;\mathbf{A}\in\mathcal{K}(\theta)\;\mathrm{a.e.}\,\}$$

Composite material

Definition

If a sequence of characteristic functions $\chi_{\varepsilon} \in L^{\infty}(\Omega;\{0,1\})$ and conductivities $\mathbf{A}^{\varepsilon}(x) = \chi_{\varepsilon}(x)\alpha\mathbf{I} + (1-\chi_{\varepsilon}(x))\beta\mathbf{I}$ satisfy $\chi_{\varepsilon} \rightharpoonup \theta$ weakly * and \mathbf{A}^{ε} H-converges to \mathbf{A}^{*} , then it is said that \mathbf{A}^{*} is homogenised tensor of two-phase composite material with proportions θ of first material and microstructure defined by the sequence (χ_{ε}) .

Example – simple laminates: if χ_{ε} depend only on x_1 , then

$$\mathbf{A}^* = \operatorname{diag}(\lambda_{\theta}^-, \lambda_{\theta}^+, \lambda_{\theta}^+, \dots, \lambda_{\theta}^+),$$

where

$$\lambda_{\theta}^{+} = \theta \alpha + (1 - \theta) \beta$$
, $\frac{1}{\lambda_{\theta}^{-}} = \frac{\theta}{\alpha} + \frac{1 - \theta}{\beta}$.

Set of all composites:

$$\mathcal{A}:=\{(heta,\mathbf{A})\in\mathrm{L}^\infty(\Omega;[0,1] imes\mathrm{M}_d(\mathbf{R})):\int_\Omega heta\,d\mathbf{x}=q_lpha\,,\,\,\mathbf{A}\in\mathcal{K}(heta) ext{ a.e.}\,\}$$

Effective conductivities – set $\mathcal{K}(\theta)$

G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^*

2D:

 $\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat & Tartar; Lurie & Cherkaev):

$$\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j = 1, \dots, d$$

$$\sum_{j=1}^{d} \frac{1}{\lambda_{j} - \alpha} \leq \frac{1}{\lambda_{\theta}^{-} - \alpha} + \frac{d-1}{\lambda_{\theta}^{+} - \alpha}$$

$$\sum_{j=1}^{d} \frac{1}{\beta - \lambda_{j}} \leq \frac{1}{\beta - \lambda_{\theta}^{-}} + \frac{d-1}{\beta - \lambda_{\theta}^{+}},$$

 $\min_{\mathcal{A}} J$ is a proper relaxation of $\min_{\Gamma \infty (O(I_{0,1}))} I$

Effective conductivities – set $\mathcal{K}(\theta)$

G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^*

 $\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat & Tartar; Lurie & Cherkaev):

$$\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j = 1, \dots, d$$

$$\sum_{j=1}^{d} \frac{1}{\lambda_{j} - \alpha} \leq \frac{1}{\lambda_{\theta}^{-} - \alpha} + \frac{d-1}{\lambda_{\theta}^{+} - \alpha}$$

$$\beta = \frac{1}{\lambda_{\theta}^{-} - \alpha} + \frac{1}{\lambda_{\theta}^{+} - \alpha}$$

 $\sum_{i=1}^{u} \frac{1}{\beta - \lambda_{i}} \leq \frac{1}{\beta - \lambda_{\theta}^{-}} + \frac{d-1}{\beta - \lambda_{\theta}^{+}},$

Effective conductivities – set $\mathcal{K}(\theta)$

G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^*

 $\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat & Tartar; Lurie & Cherkaev):

$$\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j = 1, \dots, d$$

$$\sum_{j=1}^{d} \frac{1}{\lambda_{j} - \alpha} \leq \frac{1}{\lambda_{\theta}^{-} - \alpha} + \frac{d-1}{\lambda_{\theta}^{+} - \alpha} \stackrel{\text{3D:}}{\sum_{j=1}^{d} \frac{1}{\beta - \lambda_{j}}} \leq \frac{1}{\beta - \lambda_{\theta}^{-}} + \frac{d-1}{\beta - \lambda_{\theta}^{+}},$$

 $\min_{\mathcal{A}} J$ is a proper relaxation of $\min_{\mathbf{X} \in \Omega \cap \{0,1\} \setminus I} I$

Effective conductivities – set $\mathcal{K}(\theta)$

G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^*

 $\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat & Tartar; Lurie & Cherkaev):

$$\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j = 1, \dots, d$$

$$\sum_{j=1}^{d} \frac{1}{\lambda_j - \alpha} \leq \frac{1}{\lambda_{\theta}^- - \alpha} + \frac{d-1}{\lambda_{\theta}^+ - \alpha} \stackrel{\mathsf{3D}:}{}$$

$$\sum_{i=1}^{d} \frac{1}{\beta - \lambda_j} \leq \frac{1}{\beta - \lambda_{\theta}^-} + \frac{d-1}{\beta - \lambda_{\theta}^+},$$

 $\min_{\mathcal{A}} J$ is a proper relaxation o $\min_{\mathrm{L}^\infty(\Omega;\{0,1\})} I$

Effective conductivities – set $\mathcal{K}(\theta)$

G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^*

 $\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat & Tartar; Lurie & Cherkaev):

$$\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j = 1, \dots, d$$

$$\sum_{j=1}^{d} \frac{1}{\lambda_{j} - \alpha} \leq \frac{1}{\lambda_{\theta}^{-} - \alpha} + \frac{d-1}{\lambda_{\theta}^{+} - \alpha} \stackrel{\text{3D:}}{\longrightarrow}$$

$$\sum_{j=1}^{d} \frac{1}{\beta - \lambda_j} \leq \frac{1}{\beta - \lambda_{\theta}^-} + \frac{d-1}{\beta - \lambda_{\theta}^+},$$

 $\min_{\mathcal{A}} J$ is a proper relaxation of $\min_{\mathrm{L}^{\infty}(\Omega;\{0,1\})} I$

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tarta This problem can be rewritten as a simpler convex minimization problem.

$$\begin{split} I(\theta) &= \int_{\Omega} f u \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \text{ , and } u \text{ determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div} \left(\lambda_{\theta}^{+} \nabla u \right) = f \\ u \in \mathrm{H}^{1}_{0}(\Omega) \end{array} \right. \end{split}$$

 $\min_{\mathcal{A}} J \qquad \Longleftrightarrow \qquad \min_{\mathcal{T}} I$

B. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when m < d, it can be done!

$$\begin{split} I(\theta) &= \sum_{i=1}^m \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \text{ , and } u_i \text{ determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div} \left(\lambda_{\theta}^+ \nabla u_i \right) = f_i \\ u_i &\in \mathrm{H}^1_0(\Omega) \end{array} \right. \end{aligned} \quad i = 1, \ldots, m \end{split}$$

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tarta This problem can be rewritten as a simpler convex minimization problem.

$$\begin{split} I(\theta) &= \int_{\Omega} f u \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \text{ , and } u \text{ determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div} \left(\lambda_{\theta}^{+} \nabla u \right) = f \\ u \in \mathrm{H}_{0}^{1}(\Omega) \end{array} \right. \end{split}$$

 $\min_{\boldsymbol{\tau}} I$

3. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when m < d, it can be done!

$$I(\theta) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \min$$

$$\mathcal{T} = \left\{ \theta \in \mathcal{L}^{\infty}(\Omega; [0, 1]) : \int_{\Omega} \theta = q_{\alpha} \right\}$$

$$\theta \in \mathcal{T} \text{, and } u_i \text{ determined uniquely by}$$

$$\left\{ \begin{array}{l} -\text{div}\left(\lambda_{\theta}^+ \nabla u_i\right) = f_i \\ u_i \in \mathcal{H}_0^1(\Omega) \end{array} \right. \quad i = 1, \dots, m$$

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$\begin{split} I(\theta) &= \int_{\Omega} f u \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \,\,, \text{ and } u \text{ determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div}\, (\lambda_{\theta}^{+} \nabla u) = f \\ u &\in \mathrm{H}^{1}_{0}(\Omega) \end{array} \right. \end{split}$$

 $\operatorname{i}_{\mathcal{A}} J \quad \iff \quad \min_{\mathcal{T}} I$

3. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when m < d, it can be done!

$$I(\theta) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \min$$

$$\mathcal{T} = \left\{ \theta \in L^{\infty}(\Omega; [0, 1]) : \int_{\Omega} \theta = q_{\alpha} \right\}$$

$$\theta \in \mathcal{T} \text{, and } u_i \text{ determined uniquely by}$$

$$\left\{ \begin{array}{l} -\text{div} \left(\lambda_{\theta}^+ \nabla u_i \right) = f_i \\ u_i \in H_0^1(\Omega) \end{array} \right. \quad i = 1, \dots, m$$

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$\begin{split} I(\theta) &= \int_{\Omega} f u \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \text{ , and } u \text{ determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div} \left(\lambda_{\theta}^{+} \nabla u \right) = f \\ u \in \mathrm{H}_{0}^{1}(\Omega) \end{array} \right. \end{split}$$

3. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when m < d, it can be done!

$$I(\theta) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \min$$

$$\mathcal{T} = \left\{ \theta \in \mathcal{L}^{\infty}(\Omega; [0, 1]) : \int_{\Omega} \theta = q_{\alpha} \right\}$$

$$\theta \in \mathcal{T} \text{, and } u_i \text{ determined uniquely by}$$

$$\left\{ \begin{array}{l} -\text{div}\left(\lambda_{\theta}^+ \nabla u_i\right) = f_i \\ u_i \in \mathcal{H}_0^1(\Omega) \end{array} \right. \quad i = 1, \dots, m$$

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms

 $\min_{\mathcal{T}} I$

A. Single state equation: [Murat & Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$\begin{split} I(\theta) &= \int_{\Omega} f u \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \text{ , and } u \text{ determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div} \, (\lambda_{\theta}^{+} \nabla u) = f \\ u \in \mathrm{H}^{1}_{0}(\Omega) \end{array} \right. \end{split}$$

3. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when m < d, it can be done!

$$\begin{split} I(\theta) &= \sum_{i=1}^m \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \text{ , and } u_i \text{ determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div} \left(\lambda_{\theta}^+ \nabla u_i \right) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{array} \right. \quad i = 1, \ldots, m \end{split}$$

 $\min_{\mathcal{A}} J$

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms

 $\min_{\mathcal{T}} I$

A. Single state equation: [Murat & Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$\begin{split} I(\theta) &= \int_{\Omega} f u \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \text{ , and } u \text{ determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div} \left(\lambda_{\theta}^{+} \nabla u \right) = f \\ u \in \mathrm{H}_{0}^{1}(\Omega) \end{array} \right. \end{split}$$

B. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when m < d, it can be done!

$$I(\theta) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \min$$

$$\mathcal{T} = \left\{ \theta \in L^{\infty}(\Omega; [0, 1]) : \int_{\Omega} \theta = q_{\alpha} \right\}$$

$$\theta \in \mathcal{T} \text{, and } u_i \text{ determined uniquely by}$$

$$\left\{ \begin{array}{l} -\text{div} \left(\lambda_{\theta}^+ \nabla u_i \right) = f_i \\ u_i \in H_0^1(\Omega) \end{array} \right. \quad i = 1, \dots, m$$

 $\min_{\mathcal{A}} J$

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$\begin{split} I(\theta) &= \int_{\Omega} f u \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \;, \; \text{and} \; u \; \text{determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div} \, (\lambda_{\theta}^{+} \nabla u) = f \\ u &\in \mathrm{H}^{1}_{0}(\Omega) \end{array} \right. \end{split}$$

 $\iff \min_{\mathcal{T}} I$

B. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when m < d, it can be done!

$$\begin{split} I(\theta) &= \sum_{i=1}^m \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \text{ , and } u_i \text{ determined uniquely by} \\ \left\{ \begin{array}{ll} -\mathrm{div} \left(\lambda_{\theta}^+ \nabla u_i \right) = f_i \\ u_i &\in \mathrm{H}_0^1(\Omega) \end{array} \right. \quad i = 1, \dots, m \end{split}$$

 $\min_{\mathcal{A}} J$

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar] This problem can be rewritten as a simpler convex minimization problem.

B. Multiple state equations: Simpler relaxation fails; in spherically symmetric case or when m < d, it can be done!

$$\begin{split} I(\theta) &= \sum_{i=1}^m \mu_i \int_{\Omega} f_i u_i \, d\mathbf{x} \longrightarrow \min \\ \mathcal{T} &= \left\{ \theta \in \mathrm{L}^{\infty}(\Omega; [0,1]) : \int_{\Omega} \theta = q_{\alpha} \right\} \\ \theta &\in \mathcal{T} \text{ , and } u_i \text{ determined uniquely by} \\ \left\{ \begin{array}{l} -\mathrm{div} \left(\lambda_{\theta}^+ \nabla u_i \right) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{array} \right. \quad i = 1, \dots, m \end{split}$$

 $\min_{\mathcal{A}} J$

 $\min_{\mathcal{T}} I$

$\min_{\mathcal{T}} I \Longleftrightarrow \min_{\mathcal{A}} J \text{ if } m < d$

Theorem

If m < d then $\min_{\mathcal{A}} J = \min_{\mathcal{T}} I$ and:

- There is unique $\mathbf{u}^* \in \mathrm{H}^1_0(\Omega; \mathbf{R}^m)$ which is the state for every solution of $\min_{\mathcal{A}} J$ and $\min_{\mathcal{T}} I$.
- If (θ^*, \mathbf{A}^*) is an optimal design for the problem $\min_{\mathcal{A}} J$, then θ^* is optimal design for $\min_{\mathcal{T}} I$.
- Conversely, if θ^* is a solution of optimal design problem $\min_{\mathcal{T}} I$, then any $(\theta^*, \mathbf{A}^*) \in \mathcal{A}$ satisfying $\mathbf{A}^* \nabla u_i^* = \lambda_{\theta^*}^+ \nabla u_i^*$, $i = 1, \ldots, m$ almost everywhere on Ω (e.g. simple laminates) is an optimal design for the problem $\min_{\mathcal{A}} J$.

$\min_{\mathcal{T}} I \Longleftrightarrow \min_{\mathcal{A}} J \text{ if } m < d$

Theorem

If m < d then $\min_{\mathcal{A}} J = \min_{\mathcal{T}} I$ and:

- There is unique $\mathbf{u}^* \in \mathrm{H}^1_0(\Omega; \mathbf{R}^m)$ which is the state for every solution of $\min_{\mathcal{A}} J$ and $\min_{\mathcal{T}} I$.
- If (θ^*, \mathbf{A}^*) is an optimal design for the problem $\min_{\mathcal{A}} J$, then θ^* is optimal design for $\min_{\mathcal{T}} I$.
- Conversely, if θ^* is a solution of optimal design problem $\min_{\mathcal{T}} I$, then any $(\theta^*, \mathbf{A}^*) \in \mathcal{A}$ satisfying $\mathbf{A}^* \nabla u_i^* = \lambda_{\theta^*}^+ \nabla u_i^*$, $i = 1, \ldots, m$ almost everywhere on Ω (e.g. simple laminates) is an optimal design for the problem $\min_{\mathcal{A}} J$.

$\min_{\mathcal{T}} I \Longleftrightarrow \min_{\mathcal{A}} J \text{ if } m < d$

Theorem

If m < d then $\min_{\mathcal{A}} J = \min_{\mathcal{T}} I$ and:

- There is unique $u^* \in H^1_0(\Omega; \mathbf{R}^m)$ which is the state for every solution of $\min_{\mathcal{A}} J$ and $\min_{\mathcal{T}} I$.
- If (θ^*, \mathbf{A}^*) is an optimal design for the problem $\min_{\mathcal{A}} J$, then θ^* is optimal design for $\min_{\mathcal{T}} I$.
- Conversely, if θ^* is a solution of optimal design problem $\min_{\mathcal{T}} I$, then any $(\theta^*, \mathbf{A}^*) \in \mathcal{A}$ satisfying $\mathbf{A}^* \nabla u_i^* = \lambda_{\theta^*}^+ \nabla u_i^*$, $i = 1, \ldots, m$ almost everywhere on Ω (e.g. simple laminates) is an optimal design for the problem $\min_{\mathcal{A}} J$.

Spherical symmetry: $\min_{\mathcal{A}} J \Longleftrightarrow \min_{\mathcal{T}} I$

Theorem

Let $\Omega\subseteq\mathbf{R}^d$ be spherically symmetric, and let the right-hand sides $f_i=f_i(r), r\in\omega, i=1,\ldots,m$ be radial functions. Then $\min_{\mathcal{A}}J=\min_{\mathcal{T}}I$ and there is unique (radial) \mathbf{u}^* which is the state for any solution of $\min_{\mathcal{A}}J$ and $\min_{\mathcal{T}}I$. Moreover,

a) For any minimizer θ of functional I over \mathcal{T} , let us define a radial function $\theta^*:\Omega\longrightarrow\mathbf{R}$ as the average value over spheres of θ : for $r\in\omega$ we take

$$\theta^*(r) := \int_{\partial B(\mathbf{0},r)} \theta \, dS \,,$$

where S denotes the surface measure on a sphere. Then θ^* is also minimizer for I over \mathcal{T} .

Spherical symmetry: $\min_{\mathcal{A}} J \Longleftrightarrow \min_{\mathcal{T}} I$

Theorem

Let $\Omega\subseteq\mathbf{R}^d$ be spherically symmetric, and let the right-hand sides $f_i=f_i(r), r\in\omega, i=1,\ldots,m$ be radial functions. Then $\min_{\mathcal{A}}J=\min_{\mathcal{T}}I$ and there is unique (radial) \mathbf{u}^* which is the state for any solution of $\min_{\mathcal{A}}J$ and $\min_{\mathcal{T}}I$. Moreover,

a) For any minimizer θ of functional I over \mathcal{T} , let us define a radial function $\theta^*:\Omega\longrightarrow\mathbf{R}$ as the average value over spheres of θ : for $r\in\omega$ we take

$$\theta^*(r) := \int_{\partial B(\mathbf{0},r)} \theta \, dS$$
,

where S denotes the surface measure on a sphere. Then θ^* is also minimizer for I over $\mathcal T$.

Spherical symmetry...cont.

Theorem

b) For any radial minimizer θ^* of I over \mathcal{T} , let us define $\mathbf{A}^* \in \mathcal{K}(\theta^*)$ as a simple laminate with the lamination direction orthogonal to the radial vector \mathbf{e}_r , almost everywhere on Ω . To be specific, we define

$$\mathbf{A}^*(\mathbf{x}) := diag\left(\lambda_{\theta^*}^+(|\mathbf{x}|), \lambda_{\theta^*}^-(|\mathbf{x}|), \lambda_{\theta^*}^+(|\mathbf{x}|), \dots, \lambda_{\theta^*}^+(|\mathbf{x}|)\right).$$

in spherical basis $(\mathbf{e}_r(\mathbf{x}), \mathbf{e}_{\phi_1}(\mathbf{x}), \mathbf{e}_{\phi_2}(\mathbf{x}), \dots, \mathbf{e}_{\phi_{d-1}}(\mathbf{x}))$. Then (θ^*, \mathbf{A}^*) is an optimal design for $\min_A J$.

c) If $(\theta^*, \mathbf{A}^*) \in \mathcal{A}$ is a solution of the relaxed problem $\min_{\mathcal{A}} J$ then θ^* is optimal for $\min_{\mathcal{T}} I$, and $\mathbf{A}^* \nabla u_i^* = \lambda_{\theta^*}^+ \nabla u_i^*$, almost everywhere, $i = 1, \ldots, m$.

Spherical symmetry...cont.

Theorem

b) For any radial minimizer θ^* of I over \mathcal{T} , let us define $\mathbf{A}^* \in \mathcal{K}(\theta^*)$ as a simple laminate with the lamination direction orthogonal to the radial vector \mathbf{e}_r , almost everywhere on Ω . To be specific, we define

$$\mathbf{A}^*(\mathbf{x}) := \operatorname{diag}\left(\lambda_{\theta^*}^+(|\mathbf{x}|), \lambda_{\theta^*}^-(|\mathbf{x}|), \lambda_{\theta^*}^+(|\mathbf{x}|), \dots, \lambda_{\theta^*}^+(|\mathbf{x}|)\right) \,.$$

in spherical basis $(\mathbf{e}_r(\mathbf{x}), \mathbf{e}_{\phi_1}(\mathbf{x}), \mathbf{e}_{\phi_2}(\mathbf{x}), \dots, \mathbf{e}_{\phi_{d-1}}(\mathbf{x}))$. Then (θ^*, \mathbf{A}^*) is an optimal design for $\min_A J$.

c) If $(\theta^*, \mathbf{A}^*) \in \mathcal{A}$ is a solution of the relaxed problem $\min_{\mathcal{A}} J$ then θ^* is optimal for $\min_{\mathcal{T}} I$, and $\mathbf{A}^* \nabla u_i^* = \lambda_{\theta^*}^+ \nabla u_i^*$, almost everywhere, $i = 1, \ldots, m$.

Spherical symmetry...cont.

Theorem

b) For any radial minimizer θ^* of I over \mathcal{T} , let us define $\mathbf{A}^* \in \mathcal{K}(\theta^*)$ as a simple laminate with the lamination direction orthogonal to the radial vector \mathbf{e}_r , almost everywhere on Ω . To be specific, we define

$$\mathbf{A}^*(\mathbf{x}) := \mathit{diag}\left(\lambda_{\theta^*}^+(|\mathbf{x}|), \lambda_{\theta^*}^-(|\mathbf{x}|), \lambda_{\theta^*}^+(|\mathbf{x}|), \dots, \lambda_{\theta^*}^+(|\mathbf{x}|)\right) \,.$$

in spherical basis $(\mathbf{e}_r(\mathbf{x}), \mathbf{e}_{\phi_1}(\mathbf{x}), \mathbf{e}_{\phi_2}(\mathbf{x}), \dots, \mathbf{e}_{\phi_{d-1}}(\mathbf{x}))$. Then (θ^*, \mathbf{A}^*) is an optimal design for $\min_A J$.

c) If $(\theta^*, \mathbf{A}^*) \in \mathcal{A}$ is a solution of the relaxed problem $\min_{\mathcal{A}} J$ then θ^* is optimal for $\min_{\mathcal{T}} I$, and $\mathbf{A}^* \nabla u_i^* = \lambda_{\theta^*}^+ \nabla u_i^*$, almost everywhere, $i = 1, \ldots, m$.

Uniqueness on a ball

Lemma

Let Ω be ball $B(\mathbf{0},R)$, and let the right-hand sides f_i be radial functions, such that mappings $r\mapsto r^{\frac{d-1}{2}}f_i(r)$ belong to $\mathrm{L}^2(\langle 0,R\rangle)$, $i=1,\ldots,m$. Then there are unique radial fluxes

$$\sigma_i^*(r) = -\frac{1}{r^{d-1}} \int_0^r \rho^{d-1} f_i(\rho) \, d\rho \, \mathbf{e}_r$$

corresponding to each minimizer of $\min_{\mathcal{T}} I$, and this minimizer is radial and unique on the set where at least one σ_i^* does not vanish. If the Lagrange multiplier c is positive, this holds true on the whole $B(\mathbf{0},R)$.

Optimality conditions for $\min_{\mathcal{T}} I$

Lemma

 $\theta^* \in \mathcal{T}$ is a solution $\min_{\mathcal{T}} I$ if and only if there exists a Lagrange multiplier $c \geq 0$ such that

$$\theta^* \in \langle 0, 1 \rangle \quad \Rightarrow \quad \sum_{i=1}^{m} \mu_i |\nabla u_i^*|^2 = c \,,$$

$$\theta^* = 0 \quad \Rightarrow \quad \sum_{i=1}^{m} \mu_i |\nabla u_i^*|^2 \ge c \,,$$

$$\theta^* = 1 \quad \Rightarrow \quad \sum_{i=1}^{m} \mu_i |\nabla u_i^*|^2 \le c \,,$$

or equivalently

$$\sum_{i=1}^{m} \mu_i |\nabla u_i^*|^2 > c \quad \Rightarrow \quad \theta^* = 0,$$

$$\sum_{i=1}^{m} \mu_i |\nabla u_i^*|^2 < c \quad \Rightarrow \quad \theta^* = 1.$$

Ball $\Omega = B(\mathbf{0},2) \subseteq \mathbf{R}^2$ with nonconstant right-hand side

In all examples $\alpha = 1$, $\beta = 2$, one state equation, f(r) = 1 - r

State equation in polar coordinates
$$-\frac{1}{r}\left(r\lambda_{\theta(r)}^+u'\right)'=1-r\ .$$
 Integration gives
$$|u'(r)|=\frac{\psi(r)}{\alpha\theta(r)+\beta(1-\theta(r))}\ ,\quad \text{where } \psi(r)=\frac{|2r^2-3r|}{6}\ .$$

Conditions of optimality: there exists a constant $\gamma:=\sqrt{c}>0$ such that for optimal θ^* we have:

$$|u'(r)| > \gamma \quad \Rightarrow \quad \theta^*(r) = 0$$

$$\Rightarrow \quad g_{\beta} := \frac{\psi}{\beta} > \gamma$$

$$|u'(r)| < \gamma \quad \Rightarrow \quad \theta^*(r) = 1$$

$$\Rightarrow \quad g_{\alpha} := \frac{\psi}{\alpha} < \gamma$$

$$\theta^* \in \langle 0, 1 \rangle \quad \Rightarrow \quad |u'(r)| = \gamma$$

$$\Rightarrow \quad \theta^*(r) = \frac{\beta\gamma - \psi(r)}{\gamma(\beta - \alpha)}$$

Ball $\Omega = B(\mathbf{0},2) \subseteq \mathbf{R}^2$ with nonconstant right-hand side

In all examples $\alpha = 1$, $\beta = 2$, one state equation, f(r) = 1 - r

State equation in polar coordinates

$$-\frac{1}{r}\left(r\lambda_{\theta(r)}^{+}u'\right)' = 1 - r.$$

Integration gives
$$|u'(r)|=rac{\psi(r)}{\alpha\theta(r)+\beta(1-\theta(r))}\,,$$
 where $\psi(r)=rac{|2r^2-3r|}{6}\,.$

Conditions of optimality: there exists a constant $\gamma:=\sqrt{c}>0$ such that for optimal θ^* we have:

$$|u'(r)| > \gamma \quad \Rightarrow \quad \theta^*(r) = 0$$

$$\Rightarrow \quad g_{\beta} := \frac{\psi}{\beta} > \gamma$$

$$|u'(r)| < \gamma \quad \Rightarrow \quad \theta^*(r) = 1$$

$$\Rightarrow \quad g_{\alpha} := \frac{\psi}{\alpha} < \gamma$$

$$\theta^* \in \langle 0, 1 \rangle \quad \Rightarrow \quad |u'(r)| = \gamma$$

$$\Rightarrow \quad \theta^*(r) = \frac{\beta\gamma - \psi(r)}{\gamma(\beta - \alpha)}$$

Ball $\Omega=B(\mathbf{0},2)\subseteq\mathbf{R}^2$ with nonconstant right-hand side

In all examples $\alpha=1,\,\beta=2,$ one state equation, f(r)=1-r

State equation in polar coordinates

$$-\frac{1}{r}\left(r\lambda_{\theta(r)}^{+}u'\right)' = 1 - r.$$

Integration gives
$$|u'(r)|=rac{\psi(r)}{lpha \theta(r)+eta(1-\theta(r))}\,,$$
 where $\psi(r)=rac{|2r^2-3r|}{6}\,.$

Conditions of optimality: there exists a constant $\gamma:=\sqrt{c}>0$ such that for optimal θ^* we have:

$$|u'(r)| > \gamma \quad \Rightarrow \quad \theta^*(r) = 0$$

$$\Rightarrow \quad g_{\beta} := \frac{\psi}{\beta} > \gamma$$

$$|u'(r)| < \gamma \quad \Rightarrow \quad \theta^*(r) = 1$$

$$\Rightarrow \quad g_{\alpha} := \frac{\psi}{\alpha} < \gamma$$

$$\theta^* \in \langle 0, 1 \rangle \quad \Rightarrow \quad |u'(r)| = \gamma$$

$$\Rightarrow \quad \theta^*(r) = \frac{\beta\gamma - \psi(r)}{\gamma(\beta - \alpha)}$$

Ball $\Omega = B(\mathbf{0}, 2) \subset \mathbf{R}^2$ with nonconstant right-hand side

In all examples $\alpha = 1$, $\beta = 2$, one state equation, f(r) = 1 - r

State equation in polar coordinates

$$-\frac{1}{r}\left(r\lambda_{\theta(r)}^{+}u'\right)' = 1 - r.$$

Integration gives
$$|u'(r)|=rac{\psi(r)}{lpha \theta(r)+eta(1-\theta(r))}\,,$$
 where $\psi(r)=rac{|2r^2-3r|}{6}\,.$

where
$$\psi(r)=rac{|2r^2-3r|}{6}$$

Conditions of optimality: there exists a constant $\gamma := \sqrt{c} > 0$ such that for optimal θ^* we have:

$$|u'(r)| > \gamma \quad \Rightarrow \quad \theta^*(r) = 0$$

$$\Rightarrow \quad g_{\beta} := \frac{\psi}{\beta} > \gamma$$

$$|u'(r)| < \gamma \quad \Rightarrow \quad \theta^*(r) = 1$$

$$\Rightarrow \quad g_{\alpha} := \frac{\psi}{\alpha} < \gamma$$

$$\theta^* \in \langle 0, 1 \rangle \quad \Rightarrow \quad |u'(r)| = \gamma$$

$$\Rightarrow \quad \theta^*(r) = \frac{\beta\gamma - \psi(r)}{\gamma(\beta - \alpha)}$$

Ball with nonconstant right-hand side

Lagrange multiplier γ is uniquely determined by the constraint $f_\Omega\,\theta^*\,d\mathbf{x}=\eta:=\frac{q_\alpha}{|\Omega|}\in[0,1]$, which is algebraic equation for $\gamma.$

Ball with nonconstant right-hand side

Lagrange multiplier γ is uniquely determined by the constraint $f_\Omega\,\theta^*\,d\mathbf{x}=\eta:=rac{q_\alpha}{|\Omega|}\in[0,1]$, which is algebraic equation for $\gamma.$

Ball with nonconstant right-hand side

Lagrange multiplier γ is uniquely determined by the constraint $f_\Omega\,\theta^*\,d\mathbf{x}=\eta:=\frac{q_\alpha}{|\Omega|}\in[0,1]$, which is algebraic equation for $\gamma.$

•
$$f_1 = \chi_{B(\mathbf{0},1)}, f_2 \equiv 1,$$

$$\begin{cases}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right) = f_{i} \\
u_{i} \in \operatorname{H}_{0}^{1}(\Omega)
\end{cases} \qquad i = 1, 2$$

•
$$\mu \int_{\Omega} f_1 u_1 d\mathbf{x} + \int_{\Omega} f_2 u_2 d\mathbf{x} \to \min$$

Solving state equation

$$u'_{i}(r) = \frac{\psi_{i}(r)}{\theta(r)\alpha + (1 - \theta(r))\beta}, i = 1, 2,$$

with

$$\psi_1(r) = \begin{cases} -\frac{r}{2} \,, & 0 \le r < 1 \,, \\ -\frac{1}{2r} \,, & 1 \le r \le 2 \,, \end{cases} \quad \text{and} \quad \psi_2(r) = -\frac{r}{2}$$

Similarly as in the first example: $\psi:=\mu\psi_1^2+\psi_2^2, g_\alpha:=\frac{\psi}{\alpha^2}, g_\beta:=\frac{\psi}{\beta^2}$

$$\begin{aligned} \bullet & f_1 = \chi_{B(\mathbf{0},1)} \,, \ f_2 \equiv 1 \,, \\ \bullet & \left\{ \begin{array}{l} -\mathsf{div} \left(\lambda_\theta^+ \nabla u_i \right) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{array} \right. \end{aligned} \qquad i = 1, 2$$

•
$$\mu \int_{\Omega} f_1 u_1 d\mathbf{x} + \int_{\Omega} f_2 u_2 d\mathbf{x} \to \min$$

Solving state equation

$$u'_{i}(r) = \frac{\psi_{i}(r)}{\theta(r)\alpha + (1 - \theta(r))\beta}, i = 1, 2,$$

with

$$\psi_1(r) = \begin{cases} -\frac{r}{2}\,, & 0 \le r < 1\,, \\ -\frac{1}{2r}\,, & 1 \le r \le 2\,, \end{cases} \quad \text{and} \quad \psi_2(r) = -\frac{r}{2}$$

Similarly as in the first example: $\psi:=\mu\psi_1^2+\psi_2^2, g_\alpha:=\frac{\psi}{\alpha^2}, g_\beta:=\frac{\psi}{\beta^2}$

$$\begin{aligned} \bullet & f_1 = \chi_{B(\mathbf{0},1)} \,, \ f_2 \equiv 1 \,, \\ \bullet & \left\{ \begin{array}{l} -\mathsf{div} \left(\lambda_\theta^+ \nabla u_i \right) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{array} \right. \end{aligned} \qquad i = 1, 2$$

•
$$\mu \int_{\Omega} f_1 u_1 d\mathbf{x} + \int_{\Omega} f_2 u_2 d\mathbf{x} \to \min$$

Solving state equation

$$u'_{i}(r) = \frac{\psi_{i}(r)}{\theta(r)\alpha + (1 - \theta(r))\beta}, i = 1, 2,$$

with

$$\psi_1(r) = \begin{cases} -\frac{r}{2}\,, & 0 \le r < 1\,, \\ -\frac{1}{2r}\,, & 1 \le r \le 2\,, \end{cases} \quad \text{and} \quad \psi_2(r) = -\frac{r}{2}$$

Similarly as in the first example: $\psi := \mu \psi_1^2 + \psi_2^2$, $g_\alpha := \frac{\psi}{\alpha^2}$, $g_\beta := \frac{\psi}{\beta^2}$

$$\begin{aligned} \bullet & f_1 = \chi_{B(\mathbf{0},1)} \,, \ f_2 \equiv 1 \,, \\ \bullet & \left\{ \begin{array}{l} -\mathsf{div} \left(\lambda_\theta^+ \nabla u_i \right) = f_i \\ u_i \in \mathrm{H}_0^1(\Omega) \end{array} \right. \end{aligned} \qquad i = 1, 2$$

•
$$\mu \int_{\Omega} f_1 u_1 d\mathbf{x} + \int_{\Omega} f_2 u_2 d\mathbf{x} \to \min$$

Solving state equation

$$u'_{i}(r) = \frac{\psi_{i}(r)}{\theta(r)\alpha + (1 - \theta(r))\beta}, i = 1, 2,$$

with

$$\psi_1(r) = \left\{ \begin{array}{ll} -\frac{r}{2}\,, & 0 \leq r < 1\,, \\ \\ -\frac{1}{2r}\,, & 1 \leq r \leq 2\,, \end{array} \right. \quad \text{and} \quad \psi_2(r) = -\frac{r}{2}\,.$$

Similarly as in the first example: $\psi:=\mu\psi_1^2+\psi_2^2$, $g_\alpha:=\frac{\psi}{\alpha^2}$, $g_\beta:=\frac{\psi}{\beta^2}$.

Geometric interpretation of optimality conditions

As before, Lagrange multiplier can be numerically calculated from corresponding algebraic equation $f_{\Omega} \theta^* d\mathbf{x} = \eta$.

Geometric interpretation of optimality conditions

As before, Lagrange multiplier can be numerically calculated from corresponding algebraic equation $\oint_{\Omega} \theta^* d\mathbf{x} = \eta$.

Optimal θ^* for case B

In orange region:

$$\theta^*(r) = \frac{1}{\beta - \alpha} \left(\beta - \sqrt{\frac{\psi(r)}{c}} \right)$$

Optimal θ^* for case B

In orange region:

$$\theta^*(r) = \frac{1}{\beta - \alpha} \left(\beta - \sqrt{\frac{\psi(r)}{c}} \right)$$

Optimal θ^* for case B

In orange region:

$$\theta^*(r) = \frac{1}{\beta - \alpha} \left(\beta - \sqrt{\frac{\psi(r)}{c}} \right)$$

