

Homogenization of Kirchhoff-Love plate equation and composite plates

Krešimir Burazin

J. J. STROSSMAYER UNIVERSITY OF OSIJEK DEPARTMENT OF MATHEMATICS Trg Ljudevita Gaja 6 31000 Osijek, Hrvatska http://www.mathos.unios.hr

kburazin@mathos.hr

Joint work with Jelena Jankov, Marko Vrdoljak

WeConMApp

[INTERNATIONAL WORKSHOP ON PDES:

ANALYSIS AND MODELLING, ZAGREB]

June, 2018

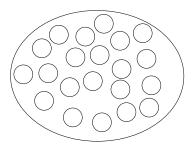
The physical idea of homogenization is to average a heterogeneous media in order to derive effective properties.

Sequence of similar problems

 $\begin{cases} A_n u_n = f & \text{in } \Omega \\ \text{initial/boundary condition.} \end{cases}$

Identify topologies (and limits) s.t. $u_n \rightarrow u, A_n u_n \rightarrow A u.$ Then the limit (effective) problem is

```
\begin{cases} Au = f & \text{in } \Omega\\ \text{initial/boundary condition} \\ \end{cases}
```



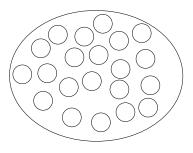
The physical idea of homogenization is to average a heterogeneous media in order to derive effective properties.

Sequence of similar problems

 $\begin{cases} A_n u_n = f & \text{in } \Omega \\ \text{initial/boundary condition.} \end{cases}$

Identify topologies (and limits) s.t. $u_n \rightarrow u, A_n u_n \rightarrow A u.$ Then the limit (effective) problem is

```
\begin{cases} Au = f & \text{in } \Omega \\ \text{initial/boundary condition} \dots \end{cases}
```



Kirchhoff-Love plate equation

Homogeneous Dirichlet boundary value problem:

$$\left\{ \begin{array}{ll} \operatorname{div}\operatorname{div}\left(\mathbf{M}\nabla\nabla u\right)=f \quad \mathrm{in} \quad \Omega\\ u\in H^2_0(\Omega). \end{array} \right.$$

- $\Omega \subseteq \mathbb{R}^d$ bounded domain ($d = 2 \dots$ plate)
- $f \in H^{-2}(\Omega)$ external load
- $u \in H^2_0(\Omega)$ vertical displacement of the plate
- $\mathbf{M} \in \mathfrak{M}_2(\alpha, \beta; \Omega) := \{ \mathbf{N} \in L^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym})) : (\forall \mathbf{S} \in \mathrm{Sym}) \, \mathbf{N}(\mathbf{x}) \mathbf{S} : \mathbf{S} \ge \alpha \mathbf{S} : \mathbf{S} \text{ and } \mathbf{N}^{-1}(\mathbf{x}) \mathbf{S} : \mathbf{S} \ge \frac{1}{\beta} \mathbf{S} : \mathbf{S} \text{ a.e. } \mathbf{x} \}$ describes properties of material of the given plate

Kirchhoff-Love plate equation

Homogeneous Dirichlet boundary value problem:

$$\begin{cases} \operatorname{div}\operatorname{div}\left(\mathbf{M}\nabla\nabla u\right)=f & \text{in } \Omega\\ u\in H^2_0(\Omega). \end{cases}$$

- $\Omega \subseteq \mathbb{R}^d$ bounded domain ($d = 2 \dots$ plate)
- $f \in H^{-2}(\Omega)$ external load

<

- $u \in H^2_0(\Omega)$ vertical displacement of the plate
- $\mathbf{M} \in \mathfrak{M}_2(\alpha, \beta; \Omega) := \{ \mathbf{N} \in L^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym})) : (\forall \mathbf{S} \in \mathrm{Sym}) \, \mathbf{N}(\mathbf{x}) \mathbf{S} : \mathbf{S} \ge \alpha \mathbf{S} : \mathbf{S} \text{ and } \mathbf{N}^{-1}(\mathbf{x}) \mathbf{S} : \mathbf{S} \ge \frac{1}{\beta} \mathbf{S} : \mathbf{S} \text{ a.e. } \mathbf{x} \}$ describes properties of material of the given plate

H-convergence

Definition

A sequence of tensor functions (\mathbf{M}^n) in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ H-converges to $\mathbf{M} \in \mathfrak{M}_2(\alpha',\beta';\Omega)$ if for any $f \in H^{-2}(\Omega)$ the sequence of solutions (u_n) of problems

$$\begin{cases} \operatorname{div}\operatorname{div}(\mathbf{M}^n\nabla\nabla u_n) = f \quad \text{in} \quad \Omega\\ u_n \in H_0^2(\Omega) \end{cases}$$

coverges weakly to a limit u in $H_0^2(\Omega)$, while the sequence $(\mathbf{M}^n \nabla \nabla u_n)$ converges to $\mathbf{M} \nabla \nabla u$ weakly in the space $L^2(\Omega; \operatorname{Sym})$.

Theorem (Compactness of H-topology)

Let (\mathbf{M}^n) be a sequence in $\mathfrak{M}_2(\alpha, \beta; \Omega)$. Then there is a subsequence (\mathbf{M}^{n_k}) and a tensor function $\mathbf{M} \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ such that (\mathbf{M}^{n_k}) *H*-converges to \mathbf{M} .

Krešimir Burazin

H-convergence

Definition

A sequence of tensor functions (\mathbf{M}^n) in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ H-converges to $\mathbf{M} \in \mathfrak{M}_2(\alpha',\beta';\Omega)$ if for any $f \in H^{-2}(\Omega)$ the sequence of solutions (u_n) of problems

$$\begin{cases} \operatorname{div}\operatorname{div}\left(\mathbf{M}^{n}\nabla\nabla u_{n}\right)=f \quad \text{in} \quad \Omega\\ u_{n}\in H_{0}^{2}(\Omega) \end{cases}$$

coverges weakly to a limit u in $H_0^2(\Omega)$, while the sequence $(\mathbf{M}^n \nabla \nabla u_n)$ converges to $\mathbf{M} \nabla \nabla u$ weakly in the space $L^2(\Omega; \operatorname{Sym})$.

Theorem (Compactness of H-topology)

Let (\mathbf{M}^n) be a sequence in $\mathfrak{M}_2(\alpha, \beta; \Omega)$. Then there is a subsequence (\mathbf{M}^{n_k}) and a tensor function $\mathbf{M} \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ such that (\mathbf{M}^{n_k}) H-converges to \mathbf{M} .

Krešimir Burazin

Compactness

Antonić, Balenović, 1999. Zikov, Kozlov, Oleinik, Ngoan, 1979.

Theorem (Compactness by compensation)

Let the following convergences be valid:

$$w^n \longrightarrow w^{\infty}$$
 in $\mathrm{H}^2_{\mathrm{loc}}(\Omega)$,
 $\mathbf{D}^n \longrightarrow \mathbf{D}^{\infty}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathrm{Sym})$,

with an additional assumption that the sequence (div div \mathbf{D}^n) is contained in a precompact (for the strong topology) set of the space $\mathrm{H}_{\mathrm{loc}}^{-2}(\Omega)$. Then we have

$$\nabla \nabla w^n : \mathbf{D}^n \underline{\quad *} \nabla \nabla w^\infty : \mathbf{D}^\infty$$

in the space of Radon measures.

Compactness

Antonić, Balenović, 1999. Zikov, Kozlov, Oleinik, Ngoan, 1979.

Theorem (Compactness by compensation)

Let the following convergences be valid:

$$w^n \longrightarrow w^{\infty}$$
 in $\mathrm{H}^2_{\mathrm{loc}}(\Omega)$,
 $\mathbf{D}^n \longrightarrow \mathbf{D}^{\infty}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathrm{Sym})$,

with an additional assumption that the sequence $(\operatorname{div} \operatorname{div} \mathbf{D}^n)$ is contained in a precompact (for the strong topology) set of the space $H^{-2}_{loc}(\Omega)$. Then we have

$$\nabla \nabla w^n : \mathbf{D}^n \underline{\quad * \quad} \nabla \nabla w^\infty : \mathbf{D}^\infty$$

in the space of Radon measures.

- Properties of the H-convergence: locality, irrelevance of boundary conditions, energy convergence, ordering property, metrizability
- Corrector results
- Small-amplitude homogenization, smooth dependence of H-limit on a parameter, H-limit of periodic sequence
- Composite plates: G-closure problem, density of periodic mixtures, laminated materials, Hashin-Shtrikman bounds

- Properties of the H-convergence: locality, irrelevance of boundary conditions, energy convergence, ordering property, metrizability
- Corrector results
- Small-amplitude homogenization, smooth dependence of H-limit on a parameter, H-limit of periodic sequence
- Composite plates: G-closure problem, density of periodic mixtures, laminated materials, Hashin-Shtrikman bounds

- Properties of the H-convergence: locality, irrelevance of boundary conditions, energy convergence, ordering property, metrizability
- Corrector results
- Small-amplitude homogenization, smooth dependence of H-limit on a parameter, H-limit of periodic sequence
- Composite plates: G-closure problem, density of periodic mixtures, laminated materials, Hashin-Shtrikman bounds

- Properties of the H-convergence: locality, irrelevance of boundary conditions, energy convergence, ordering property, metrizability
- Corrector results
- Small-amplitude homogenization, smooth dependence of H-limit on a parameter, H-limit of periodic sequence
- Composite plates: G-closure problem, density of periodic mixtures, laminated materials, Hashin-Shtrikman bounds

Locality and irrelevance of boundary conditions

Theorem (Locality of the H-convergence)

Let (\mathbf{M}^n) and (\mathbf{O}^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$, which H-converge to \mathbf{M} and \mathbf{O} , respectively. Let ω be an open subset compactly embedded in Ω . If $\mathbf{M}^n(\mathbf{x}) = \mathbf{O}^n(\mathbf{x})$ in ω , then $\mathbf{M}(\mathbf{x}) = \mathbf{O}(\mathbf{x})$ in ω .

Theorem (Irrelevance of boundary conditions)

Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to M. For any sequence (z_n) such that

$$\begin{aligned} z_n & \longrightarrow z & \text{in } \mathrm{H}^2_{\mathrm{loc}}(\Omega) \\ \operatorname{div} \operatorname{div} (\mathbf{M}^n \nabla \nabla z_n) &= f_n & \longrightarrow f & \text{in } \mathrm{H}^{-2}_{\mathrm{loc}}(\Omega), \end{aligned}$$

the weak convergence $\mathbb{M}^n \nabla \nabla z_n \rightarrow \mathbb{M} \nabla \nabla z$ in $L^2_{loc}(\Omega; \operatorname{Sym})$ holds.

Locality and irrelevance of boundary conditions

Theorem (Locality of the H-convergence)

Let (\mathbf{M}^n) and (\mathbf{O}^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$, which H-converge to \mathbf{M} and \mathbf{O} , respectively. Let ω be an open subset compactly embedded in Ω . If $\mathbf{M}^n(\mathbf{x}) = \mathbf{O}^n(\mathbf{x})$ in ω , then $\mathbf{M}(\mathbf{x}) = \mathbf{O}(\mathbf{x})$ in ω .

Theorem (Irrelevance of boundary conditions)

Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to **M**. For any sequence (z_n) such that

$$\begin{aligned} z_n &\longrightarrow z & \text{in } \mathrm{H}^2_{\mathrm{loc}}(\Omega) \\ \operatorname{div} \operatorname{div} (\mathbf{M}^n \nabla \nabla z_n) &= f_n &\longrightarrow f & \text{in } \mathrm{H}^{-2}_{\mathrm{loc}}(\Omega), \end{aligned}$$

the weak convergence $\mathbf{M}^n \nabla \nabla z_n \rightarrow \mathbf{M} \nabla \nabla z$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathrm{Sym})$ holds.

Energy convergence

Theorem (Energy convergence)

Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to **M**. For any $f \in H^{-2}(\Omega)$, the sequence (u_n) of solutions of

$$\begin{cases} \operatorname{div}\operatorname{div}\left(\mathbf{M}^{n}\nabla\nabla u_{n}\right)=f \quad \text{in} \quad \Omega\\ u_{n}\in H_{0}^{2}(\Omega) \,. \end{cases}$$

satisfies $\mathbf{M}^n \nabla \nabla u_n : \nabla \nabla u_n \rightharpoonup \mathbf{M} \nabla \nabla u : \nabla \nabla u$ weakly-* in the space of Radon measures and $\int \mathbf{M}^n \nabla \nabla u : \nabla \nabla u \, d\mathbf{x} \rightarrow \int \mathbf{M} \nabla \nabla u : \nabla \nabla u \, d\mathbf{x}$ where u is the

 $\int_{\Omega} \mathbf{M}^n \nabla \nabla u_n : \nabla \nabla u_n \, d\mathbf{x} \to \int_{\Omega} \mathbf{M} \nabla \nabla u : \nabla \nabla u \, d\mathbf{x}, \text{ where } u \text{ is the solution of the homogenized equation}$

$$\begin{cases} \operatorname{div} \operatorname{div} \left(\mathbf{M} \nabla \nabla u \right) = f & \text{in } \Omega \\ u \in H_0^2(\Omega) \,. \end{cases}$$

Ordering property

Theorem (Ordering property)

Let (\mathbf{M}^n) and (\mathbf{O}^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that H-converge to the homogenized tensors \mathbf{M} and \mathbf{O} , respectively. Assume that, for any n, $\mathbf{M}^n \boldsymbol{\xi} : \boldsymbol{\xi} < \mathbf{O}^n \boldsymbol{\xi} : \boldsymbol{\xi}, \quad \forall \boldsymbol{\xi} \in \operatorname{Sym}.$

Then the homogenized limits are also ordered:

 $\mathsf{M}\boldsymbol{\xi}:\boldsymbol{\xi}\leq \mathsf{O}\boldsymbol{\xi}:\boldsymbol{\xi},\quad\forall\boldsymbol{\xi}\in\mathrm{Sym}.$

Theorem

Let (\mathbb{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that either converges strongly to a limit tensor \mathbb{M} in $L^1(\Omega; \mathcal{L}(Sym, Sym))$, or converges to \mathbb{M} almost everywhere in Ω . Then, \mathbb{M}^n also H-converges to \mathbb{M} .

Ordering property

Theorem (Ordering property)

Let (\mathbf{M}^n) and (\mathbf{O}^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that H-converge to the homogenized tensors **M** and **O**, respectively. Assume that, for any n,

 $\mathsf{M}^n\boldsymbol{\xi}:\boldsymbol{\xi}\leq \mathsf{O}^n\boldsymbol{\xi}:\boldsymbol{\xi},\quad \forall \boldsymbol{\xi}\in \mathrm{Sym}.$

Then the homogenized limits are also ordered:

 $\mathsf{M}\boldsymbol{\xi}:\boldsymbol{\xi}\leq\mathsf{O}\boldsymbol{\xi}:\boldsymbol{\xi},\quad\forall\boldsymbol{\xi}\in\mathrm{Sym}.$

Theorem

Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that either converges strongly to a limit tensor \mathbf{M} in $L^1(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym}))$, or converges to \mathbf{M} almost everywhere in Ω . Then, \mathbf{M}^n also H-converges to \mathbf{M} .

Theorem (Metrizability of H-topology)

Let $F = \{f_n : n \in \mathbf{N}\}$ be a dense countable family in $H^{-2}(\Omega)$, **M** and **O** tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$, and (u_n) , (v_n) sequences of solutions to

$$\left\{ \begin{array}{l} \operatorname{div}\operatorname{div}\left(\mathbf{M}\nabla\nabla u_n\right) = f_n \\ u_n \in \mathrm{H}^2_0(\Omega) \end{array} \right.$$

and

$$\left\{ \begin{array}{l} \operatorname{div}\operatorname{div}\left(\mathbf{O}\nabla\nabla v_{n}\right)=f_{n}\\ v_{n}\in\mathrm{H}_{0}^{2}(\Omega) \end{array}\right. ,$$

respectively. Then,

$$d(\mathbf{M},\mathbf{O}) := \sum_{n=1}^{\infty} 2^{-n} \frac{\|u_n - v_n\|_{\mathrm{L}^2(\Omega)} + \|\mathbf{M}\nabla\nabla u_n - \mathbf{O}\nabla\nabla v_n\|_{H^{-1}(\Omega;\mathrm{Sym})}}{\|f_n\|_{H^{-2}(\Omega)}}$$

is a metric function on $\mathfrak{M}_2(\alpha,\beta;\Omega)$ and H-convergence is equivalent to the convergence with respect to d.

Krešimir Burazin

Definition of correctors

Definition

Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to a limit **M**. Let $(w_n^{ij})_{1\leq i,j\leq d}$ be a family of test functions satisfying

$$w_n^{ij} \rightarrow \frac{1}{2} x_i x_j$$
 in $\mathrm{H}^2(\Omega)$
 $\mathbf{M}^n \nabla \nabla w_n^{ij} \rightarrow \cdot$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathrm{Sym})$
div div $(\mathbf{M}^n \nabla \nabla w_n^{ij}) \rightarrow \cdot$ in $\mathrm{H}^{-2}_{\mathrm{loc}}(\Omega).$

The sequence of tensors \mathbf{W}^n defined with $\mathbf{W}^n_{ijkm} = [\nabla \nabla w_n^{km}]_{ij}$ is called a sequence of correctors.

Uniqueness of correctors

Theorem

Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to a tensor \mathbf{M} . A sequence of correctors (\mathbf{W}^n) is unique in the sense that, if there exist two sequences of correctors (\mathbf{W}^n) and $(\tilde{\mathbf{W}^n})$, their difference $(\mathbf{W}^n - \tilde{\mathbf{W}^n})$ converges strongly to zero in $L^2_{\mathrm{loc}}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym}))$.

Corrector result

Theorem

Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ which H-converges to **M**. For $f \in H^{-2}(\Omega)$, let (u_n) be the solution of

$$\begin{cases} \operatorname{div}\operatorname{div}\left(\mathbf{M}^{n}\nabla\nabla u_{n}\right)=f \quad \text{in} \quad \Omega\\ u_{n}\in H_{0}^{2}(\Omega), \end{cases}$$

and let u be the weak limit of (u_n) in $H_0^2(\Omega)$, i.e., the solution of the homogenized equation

$$\left\{ \begin{array}{ll} \operatorname{div}\operatorname{div}\left(\mathbf{M}\nabla\nabla u\right)=f & \operatorname{in} \ \Omega\\ u\in H^2_0(\Omega)\,. \end{array} \right.$$

Then, $r_n := \nabla \nabla u_n - \mathbf{W}^n \nabla \nabla u \to 0$ strongly in $L^1_{\text{loc}}(\Omega; Sym)$.

Small-amplitude homogenization

$$\mathbf{M}_p^n(\mathbf{x}) := \mathbf{A}_0 + p \mathbf{B}^n(\mathbf{x}), \, p \in \mathbf{R}$$

$$\mathbf{M}_p := \mathbf{A}_0 + p\mathbf{B}_0 + p^2\mathbf{C}_0 + o(p^2), \ p \in \mathbf{R}$$

If $p \mapsto \mathbf{M}_n^p$ is a C^k mapping (for any $n \in \mathbf{N}$) from some subset of \mathbf{R} to $L^{\infty}(\Omega; \mathcal{L}(\text{Sym}, \text{Sym}))$, what can we say about $p \mapsto \mathbf{M}_p$?

Small-amplitude homogenization

$$\mathbf{M}_p^n(\mathbf{x}) := \mathbf{A}_0 + p \mathbf{B}^n(\mathbf{x}), \, p \in \mathbf{R}$$

$$\mathbf{M}_p := \mathbf{A}_0 + p\mathbf{B}_0 + p^2\mathbf{C}_0 + o(p^2), \ p \in \mathbf{R}$$

If $p \mapsto \mathbf{M}_n^p$ is a C^k mapping (for any $n \in \mathbf{N}$) from some subset of \mathbf{R} to $L^{\infty}(\Omega; \mathcal{L}(\text{Sym}, \text{Sym}))$, what can we say about $p \mapsto \mathbf{M}_p$?

Small-amplitude homogenization

$$\mathbf{M}_p^n(\mathbf{x}) := \mathbf{A}_0 + p \mathbf{B}^n(\mathbf{x}), \, p \in \mathbf{R}$$

$$\mathbf{M}_p := \mathbf{A}_0 + p\mathbf{B}_0 + p^2\mathbf{C}_0 + o(p^2), \ p \in \mathbf{R}$$

If $p \mapsto \mathbf{M}_n^p$ is a C^k mapping (for any $n \in \mathbf{N}$) from some subset of \mathbf{R} to $L^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym}))$, what can we say about $p \mapsto \mathbf{M}_p$?

Smoothness with respect to a parameter

Theorem

Let $\mathbf{M}^n : \Omega \times P \to \mathcal{L}(\operatorname{Sym}, \operatorname{Sym})$ be a sequence of tensors, such that $\mathbf{M}^n(\cdot, p) \in \mathfrak{M}_2(\alpha, \beta; \Omega)$, for $p \in P$, where $P \subseteq \mathbf{R}$ is an open set. Assume that (for some $k \in \mathbf{N}_0$) a mapping $p \mapsto \mathbf{M}^n(\cdot, p)$ is of class C^k from P to $L^{\infty}(\Omega; \mathcal{L}(\operatorname{Sym}, \operatorname{Sym}))$, with derivatives (up to order k) being equicontinuous on every compact set $K \subseteq P$:

$$(\forall K \in \mathcal{K}(P)) \ (\forall \varepsilon > 0) (\exists \delta > 0) (\forall p, q \in K) (\forall n \in \mathbf{N}) (\forall i \le k) \\ |p - q| < \delta \Rightarrow \| (\mathbf{M}^n)^{(i)}(\cdot, p) - (\mathbf{M}^n)^{(i)}(\cdot, q) \|_{\mathcal{L}^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym}))} < \varepsilon.$$

Then there is a subsequence (\mathbf{M}^{n_k}) such that for every $p \in P$

$$\mathbf{M}^{n_k}(\cdot, p) \xrightarrow{H} \mathbf{M}(\cdot, p)$$
 in $\mathfrak{M}_2(\alpha, \beta; \Omega)$

and $p \mapsto \mathbf{M}(\cdot, p)$ is a C^k mapping from P to $L^{\infty}(\Omega; \mathcal{L}(Sym, Sym))$.

Periodic case

- $Y = [0,1]^d$, $\mathbf{M} \in L^{\infty}_{\#}(Y; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym})) \cap \mathfrak{M}_2(\alpha, \beta; Y)$
- $\mathbf{M}^n(\mathbf{x}):=\mathbf{M}(n\mathbf{x}), \mathbf{x}\in \Omega\subseteq \mathbf{R}^d$ (open and bounded)
- $H^2_{\#}(Y) := \{f \in H^2_{loc}(\mathbf{R}^d) \text{ such that } f \text{ is } Y periodic\}$ with the norm $\| \cdot \|_{H^2(Y)}$
- $H^2_{\#}(Y)/{f R}$ equipped with the norm $\| \nabla \nabla \cdot \|_{L^2(Y)}$
- $\mathbf{E}_{ij}, 1 \leq i,j \leq d$ are $M_{d \times d}$ matrices defined as

$$[\mathbf{E}_{ij}]_{kl} = \begin{cases} 1, & \text{if } i = j = k = l \\ \frac{1}{2}, & \text{if } i \neq j, (k,l) \in \{(i,j), (j,i)\} \\ 0, & \text{otherwise.} \end{cases}$$

H-limit of a periodic sequence

Theorem

Let (\mathbf{M}^n) be a sequence of tensors defined by $\mathbf{M}^n(\mathbf{x}) := \mathbf{M}(n\mathbf{x}), x \in \Omega$. Then (\mathbf{M}^n) H-converges to a constant tensor $\mathbf{M}^* \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ defined as

$$m_{klij}^* = \int_Y \mathbf{M}(\mathbf{x})(\mathbf{E}_{ij} + \nabla \nabla w_{ij}(\mathbf{x})) : (\mathbf{E}_{kl} + \nabla \nabla w_{kl}(\mathbf{x})) \, d\mathbf{x},$$

where $(w_{ij})_{1 \le i,j \le d}$ is the family of unique solutions in $H^2_{\#}(Y)/\mathbf{R}$ of boundary value problems

$$\begin{cases} \operatorname{div} \operatorname{div} \left(\mathbf{M}(\mathbf{x}) (\mathbf{E}_{ij} + \nabla \nabla w_{ij}(\mathbf{x})) \right) = 0 \text{ in } \mathbf{Y} \\ \mathbf{x} \to w_{ij}(\mathbf{x}) \quad \text{is } Y \text{-periodic.} \end{cases}$$

Small-amplitude assumptions

Theorem

Let $\mathbf{A}_0 \in \mathcal{L}(\operatorname{Sym}; \operatorname{Sym})$ be a constant coercive tensor, $P \subseteq \mathbf{R}$ an open set, $\mathbf{B}^n(\mathbf{x}) := \mathbf{B}(n\mathbf{x}), \mathbf{x} \in \Omega$, where $\Omega \subseteq \mathbf{R}^d$ is a bounded, open set, and \mathbf{B} is a Y-periodic, L^∞ tensor function, satisfying $\int_Y \mathbf{B}(\mathbf{x}) d\mathbf{x} = 0$. Then

$$\mathbf{M}_p^n(\mathbf{x}) := \mathbf{A}_0 + p \mathbf{B}^n(\mathbf{x}), \quad \mathbf{x} \in \Omega$$

H-converges (for any $p \in P$) to a tensor

$$\mathbf{M}_p := \mathbf{A}_0 + p \mathbf{B}_0 + p^2 \mathbf{C}_0 + o(p^2)$$

with coefficients $\mathbf{B}_0 = 0$ and

Small-amplitude limit

$$\begin{split} \mathbf{C}_{0}\mathbf{E}_{mn}:\mathbf{E}_{rs} &= (2\pi i)^{2}\sum_{\mathbf{k}\in J}a_{-\mathbf{k}}^{mn}\mathbf{B}_{\mathbf{k}}(\mathbf{k}\otimes\mathbf{k}):\mathbf{E}_{rs}+\\ &+ (2\pi i)^{4}\sum_{\mathbf{k}\in J}a_{\mathbf{k}}^{mn}a_{-\mathbf{k}}^{rs}\mathbf{A}_{0}(\mathbf{k}\otimes\mathbf{k}):\mathbf{k}\otimes\mathbf{k}+\\ &+ (2\pi i)^{2}\sum_{\mathbf{k}\in J}a_{-\mathbf{k}}^{rs}\mathbf{B}_{\mathbf{k}}\mathbf{E}_{mn}:\mathbf{k}\otimes\mathbf{k}\,. \end{split}$$

where $m,n,r,s\in\{1,2,\cdots,d\}, J:=\mathbf{Z}^d/\{0\},$ and

$$a_{\mathbf{k}}^{mn} = -\frac{\mathbf{B}_{\mathbf{k}} \mathbf{E}_{mn} \mathbf{k} \cdot \mathbf{k}}{(2\pi i)^2 \mathbf{A}_0(\mathbf{k} \otimes \mathbf{k}) : (\mathbf{k} \otimes \mathbf{k})}, \quad \mathbf{k} \in J, \quad m, n \in \{1, 2, \cdots, d\}$$

and $\mathbf{B}_{\mathbf{k}}, \mathbf{k} \in J$, are Fourier coefficients of function \mathbf{B} .

Two-phase composite

Let **A** and **B** be two constant tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$. We are interested in a material that is their mixture on a fine scale, i.e. in the H-limit of a sequence

$$\mathbf{M}^{n}(\mathbf{x}) = \chi_{n}(\mathbf{x})\mathbf{A} + (1 - \chi_{n}(\mathbf{x}))\mathbf{B}.$$

Here, every χ_n is a characteristic functions of a subset of Ω that is filled with ${\bf A}$ material.

Definition

If a sequence of characteristic functions $\chi_n \in L^{\infty}(\Omega; \{0, 1\})$ and above tensors \mathbb{M}^n satisfy $\chi_n \rightharpoonup \theta$ weakly * in $L^{\infty}(\Omega; [0, 1])$ and \mathbb{M}^n H-converges to \mathbb{M} , then it is said that \mathbb{M} is homogenised tensor of two-phase composite material with proportions θ of the first material and microstructure defined by the sequence (χ_n) .

Two-phase composite

Let **A** and **B** be two constant tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$. We are interested in a material that is their mixture on a fine scale, i.e. in the H-limit of a sequence

$$\mathbf{M}^{n}(\mathbf{x}) = \chi_{n}(\mathbf{x})\mathbf{A} + (1 - \chi_{n}(\mathbf{x}))\mathbf{B}.$$

Here, every χ_n is a characteristic functions of a subset of Ω that is filled with ${\bf A}$ material.

Definition

If a sequence of characteristic functions $\chi_n \in L^{\infty}(\Omega; \{0, 1\})$ and above tensors \mathbf{M}^n satisfy $\chi_n \rightharpoonup \theta$ weakly * in $L^{\infty}(\Omega; [0, 1])$ and \mathbf{M}^n H-converges to \mathbf{M} , then it is said that \mathbf{M} is homogenised tensor of two-phase composite material with proportions θ of the first material and microstructure defined by the sequence (χ_n) .

More general composites

Fill $\Omega \subseteq \mathbf{R}^d$ with m constant materials $\mathbf{M}_1, \mathbf{M}_2, \dots, \mathbf{M}_m \in \mathfrak{M}_2(\alpha, \beta; \Omega)$:

$$\mathbf{M}^{n}(\mathbf{x}) = \sum_{i=1}^{m} \chi_{i}^{n}(\mathbf{x}) R_{n}^{T}(\mathbf{x}) \mathbf{M}_{i} R_{n}(\mathbf{x}), \qquad (4.1)$$

where $R_n \in L^{\infty}(\Omega; SO(\mathbf{R}^d))$, $\boldsymbol{\chi}^n \in L^{\infty}(\Omega; T)$ is a sequence of characteristic functions and $T = \{\boldsymbol{\vartheta} \in \{0, 1\}^m : \sum_{i=1}^m \vartheta_i = 1\}$. If

$$\chi^n \xrightarrow{*} \theta$$
 in $L^{\infty}(\Omega, \mathbf{R}^m)$,
 $\mathbf{M}^n \xrightarrow{H} \mathbf{M}$ in $\mathfrak{M}_2(\alpha, \beta; \Omega)$

then we say that \mathbb{M} is a homogenized tensor of a m-phase composite... By \mathcal{G}_{θ} we denote all $\mathbb{M} \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ obtained in such way (for fixed $\theta \in L^{\infty}(\Omega; \overline{T})$)

More general composites

Fill $\Omega \subseteq \mathbf{R}^d$ with m constant materials $\mathbf{M}_1, \mathbf{M}_2, \dots, \mathbf{M}_m \in \mathfrak{M}_2(\alpha, \beta; \Omega)$:

$$\mathbf{M}^{n}(\mathbf{x}) = \sum_{i=1}^{m} \chi_{i}^{n}(\mathbf{x}) R_{n}^{T}(\mathbf{x}) \mathbf{M}_{i} R_{n}(\mathbf{x}), \qquad (4.1)$$

where $R_n \in L^{\infty}(\Omega; SO(\mathbf{R}^d))$, $\boldsymbol{\chi}^n \in L^{\infty}(\Omega; T)$ is a sequence of characteristic functions and $T = \{\boldsymbol{\vartheta} \in \{0, 1\}^m : \sum_{i=1}^m \vartheta_i = 1\}$. If

$$\chi^n \xrightarrow{*} \theta$$
 in $L^{\infty}(\Omega, \mathbf{R}^m)$,
 $\mathbf{M}^n \xrightarrow{H} \mathbf{M}$ in $\mathfrak{M}_2(\alpha, \beta; \Omega)$

then we say that **M** is a homogenized tensor of a m-phase composite... By \mathcal{G}_{θ} we denote all $\mathbf{M} \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ obtained in such way (for fixed $\theta \in L^{\infty}(\Omega; \overline{T})$)

More general composites

Fill $\Omega \subseteq \mathbf{R}^d$ with m constant materials $\mathbf{M}_1, \mathbf{M}_2, \dots, \mathbf{M}_m \in \mathfrak{M}_2(\alpha, \beta; \Omega)$:

$$\mathbf{M}^{n}(\mathbf{x}) = \sum_{i=1}^{m} \chi_{i}^{n}(\mathbf{x}) R_{n}^{T}(\mathbf{x}) \mathbf{M}_{i} R_{n}(\mathbf{x}), \qquad (4.1)$$

where $R_n \in L^{\infty}(\Omega; SO(\mathbf{R}^d))$, $\boldsymbol{\chi}^n \in L^{\infty}(\Omega; T)$ is a sequence of characteristic functions and $T = \{\boldsymbol{\vartheta} \in \{0, 1\}^m : \sum_{i=1}^m \vartheta_i = 1\}$. If

$$\chi^n \xrightarrow{*} \theta$$
 in $L^{\infty}(\Omega, \mathbf{R}^m)$,
 $\mathbf{M}^n \xrightarrow{H} \mathbf{M}$ in $\mathfrak{M}_2(\alpha, \beta; \Omega)$

then we say that **M** is a homogenized tensor of a m-phase composite... By $\mathcal{G}_{\boldsymbol{\theta}}$ we denote all $\mathbf{M} \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ obtained in such way (for fixed $\boldsymbol{\theta} \in L^{\infty}(\Omega; \overline{T})$)

G-closure problem

For $\boldsymbol{\theta} \in \overline{T} := \operatorname{Cl}\operatorname{conv} T = \{\boldsymbol{\vartheta} \in [0,1]^m : \sum_{i=1}^m \vartheta_i = 1\}$, let

$$G_{\boldsymbol{\theta}} := \{ \mathbf{M} \in \mathcal{L}(\mathrm{Sym}) : (\exists (\boldsymbol{\chi}^n) \& (R_n)) \quad \boldsymbol{\chi}^n \xrightarrow{*} \boldsymbol{\theta} \text{ in } \mathrm{L}^{\infty}(\Omega; \mathbf{R}^m) \& \\ \mathbf{M}^n(\mathbf{x}) := \sum_{i=1}^m \chi_i^n(\mathbf{x}) R_n^T(\mathbf{x}) \mathbf{M}_i R_n(\mathbf{x}) \xrightarrow{H} \mathbf{M} \text{ in } \mathfrak{M}_2(\alpha, \beta; \Omega) \}.$$

Theorem

For $oldsymbol{ heta}\in\mathrm{L}^\infty(\Omega,\overline{T})$ it holds

 $\mathcal{G}_{\boldsymbol{\theta}} = \{ \mathbf{M} \in \mathcal{L}(\mathrm{Sym}) : \mathbf{M}(x) \in G_{\boldsymbol{\theta}(x)}, \ a.e. \ \mathbf{x} \in \Omega \}.$ (4.2)

G-closure problem

For $\boldsymbol{\theta} \in \overline{T} := \operatorname{Cl}\operatorname{conv} T = \{\boldsymbol{\vartheta} \in [0,1]^m : \sum_{i=1}^m \vartheta_i = 1\}$, let

$$G_{\boldsymbol{\theta}} := \{ \mathbf{M} \in \mathcal{L}(\mathrm{Sym}) : (\exists (\boldsymbol{\chi}^n) \& (R_n)) \quad \boldsymbol{\chi}^n \xrightarrow{*} \boldsymbol{\theta} \text{ in } \mathrm{L}^{\infty}(\Omega; \mathbf{R}^m) \& \\ \mathbf{M}^n(\mathbf{x}) := \sum_{i=1}^m \chi_i^n(\mathbf{x}) R_n^T(\mathbf{x}) \mathbf{M}_i R_n(\mathbf{x}) \xrightarrow{H} \mathbf{M} \text{ in } \mathfrak{M}_2(\alpha, \beta; \Omega) \}.$$

Theorem

For $oldsymbol{ heta}\in\mathrm{L}^\infty(\Omega,\overline{T})$ it holds

$$\mathcal{G}_{\boldsymbol{\theta}} = \{ \mathbf{M} \in \mathcal{L}(\mathrm{Sym}) : \mathbf{M}(x) \in G_{\boldsymbol{\theta}(x)}, \ a.e. \ \mathbf{x} \in \Omega \}.$$
(4.2)

G-closure problem

For $\boldsymbol{\theta} \in \overline{T} := \operatorname{Cl}\operatorname{conv} T = \{\boldsymbol{\vartheta} \in [0,1]^m : \sum_{i=1}^m \vartheta_i = 1\}$, let

$$G_{\boldsymbol{\theta}} := \{ \mathbf{M} \in \mathcal{L}(\mathrm{Sym}) : (\exists (\boldsymbol{\chi}^n) \& (R_n)) \quad \boldsymbol{\chi}^n \xrightarrow{*} \boldsymbol{\theta} \text{ in } \mathrm{L}^{\infty}(\Omega; \mathbf{R}^m) \& \\ \mathbf{M}^n(\mathbf{x}) := \sum_{i=1}^m \chi_i^n(\mathbf{x}) R_n^T(\mathbf{x}) \mathbf{M}_i R_n(\mathbf{x}) \xrightarrow{H} \mathbf{M} \text{ in } \mathfrak{M}_2(\alpha, \beta; \Omega) \}.$$

Theorem

For $\pmb{\theta} \in \mathrm{L}^\infty(\Omega,\overline{T})$ it holds

$$\mathcal{G}_{\boldsymbol{\theta}} = \{ \mathbf{M} \in \mathcal{L}(\mathrm{Sym}) : \mathbf{M}(x) \in G_{\boldsymbol{\theta}(x)}, \ \boldsymbol{a.e.} \ \mathbf{x} \in \Omega \}.$$
(4.2)

Density of periodic mixtures

Let $\mathbf{M}(x) := \sum_{i=1}^{m} \chi_i(\mathbf{x}) R^T(\mathbf{x}) \mathbf{M}_i R(\mathbf{x})$, for $\boldsymbol{\chi} \in \mathrm{L}^{\infty}(Y;T)$, $R \in \mathrm{L}^{\infty}(Y; SO(\mathbf{R}^d))$, and let us extend these functions periodically to \mathbf{R}^d . Take $\chi_n(\mathbf{x}) := \chi(n\mathbf{x})$, $R_n(\mathbf{x}) := R(n\mathbf{x})$ and $\mathbf{M}_n(\mathbf{x}) = \mathbf{M}(n\mathbf{x})$, so that

$$\chi_n \xrightarrow{*} \theta := \int_Y \chi \, d\mathbf{x}$$
$$R_n \xrightarrow{*} \int_Y R \, d\mathbf{x}$$
$$\mathbf{M}_n \xrightarrow{H} \mathbf{M}^*$$

For fixed $\theta \in \overline{T}$, all H-limits \mathbf{M}^* obtained in this way we denote by P_{θ} .

Theorem

For every $\boldsymbol{\theta} \in \overline{T}$ it holds $G_{\boldsymbol{\theta}} = \mathrm{Cl} P_{\boldsymbol{\theta}}$

Density of periodic mixtures

Let $\mathbf{M}(x) := \sum_{i=1}^{m} \chi_i(\mathbf{x}) R^T(\mathbf{x}) \mathbf{M}_i R(\mathbf{x})$, for $\boldsymbol{\chi} \in L^{\infty}(Y;T)$, $R \in L^{\infty}(Y; SO(\mathbf{R}^d))$, and let us extend these functions periodically to \mathbf{R}^d . Take $\boldsymbol{\chi}_n(\mathbf{x}) := \boldsymbol{\chi}(n\mathbf{x})$, $R_n(\mathbf{x}) := R(n\mathbf{x})$ and $\mathbf{M}_n(\mathbf{x}) = \mathbf{M}(n\mathbf{x})$, so that

$$\chi_n \xrightarrow{*} \boldsymbol{\theta} := \int_Y \boldsymbol{\chi} \, d\mathbf{x}$$
$$R_n \xrightarrow{*} \int_Y R \, d\mathbf{x}$$
$$\mathbf{M}_n \xrightarrow{H} \mathbf{M}^*$$

For fixed $\theta \in \overline{T}$, all H-limits **M**^{*} obtained in this way we denote by P_{θ} .

Theorem

For every $oldsymbol{ heta}\in\overline{T}$ it holds $G_{oldsymbol{ heta}}=\mathrm{Cl}P_{oldsymbol{ heta}}$

Density of periodic mixtures

Let $\mathbf{M}(x) := \sum_{i=1}^{m} \chi_i(\mathbf{x}) R^T(\mathbf{x}) \mathbf{M}_i R(\mathbf{x})$, for $\boldsymbol{\chi} \in L^{\infty}(Y;T)$, $R \in L^{\infty}(Y; SO(\mathbf{R}^d))$, and let us extend these functions periodically to \mathbf{R}^d . Take $\boldsymbol{\chi}_n(\mathbf{x}) := \boldsymbol{\chi}(n\mathbf{x})$, $R_n(\mathbf{x}) := R(n\mathbf{x})$ and $\mathbf{M}_n(\mathbf{x}) = \mathbf{M}(n\mathbf{x})$, so that

$$\chi_n \xrightarrow{*} \boldsymbol{\theta} := \int_Y \boldsymbol{\chi} \, d\mathbf{x}$$
$$R_n \xrightarrow{*} \int_Y R \, d\mathbf{x}$$
$$\mathbf{M}_n \xrightarrow{H} \mathbf{M}^*$$

For fixed $\theta \in \overline{T}$, all H-limits **M**^{*} obtained in this way we denote by P_{θ} .

Theorem

For every $\boldsymbol{\theta} \in \overline{T}$ it holds $G_{\boldsymbol{\theta}} = \mathrm{Cl}P_{\boldsymbol{\theta}}$.

Two-phase simple laminates

Lemma

Let **A** and **B** be two constant tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ and $\chi_n(x_1)$ be a sequence of characteristic functions that converges to $\theta(x_1)$ in $L^{\infty}(\Omega; [0, 1])$ weakly-*. Then, a sequence (\mathbf{M}^n) of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$, defined as

$$\mathbf{M}^{n}(x_{1}) = \chi_{n}(x_{1})\mathbf{A} + (1 - \chi_{n}(x_{1}))\mathbf{B}$$

H-converges to

$$\begin{split} \mathbf{M}^* &= \theta \mathbf{A} + (1-\theta) \mathbf{B} \\ &- \frac{\theta (1-\theta) (\mathbf{A} - \mathbf{B}) (\mathbf{e}_1 \otimes \mathbf{e}_1) \otimes (\mathbf{A} - \mathbf{B})^T (\mathbf{e}_1 \otimes \mathbf{e}_1)}{(1-\theta) \mathbf{A} (\mathbf{e}_1 \otimes \mathbf{e}_1) : (\mathbf{e}_1 \otimes \mathbf{e}_1) + \theta \mathbf{B} (\mathbf{e}_1 \otimes \mathbf{e}_1) : (\mathbf{e}_1 \otimes \mathbf{e}_1)}, \end{split}$$

which also depends only on x_1 .

Two-phase simple laminates cont.

Corollary

If we take some other unit vector $\mathbf{e} \in \mathbf{R}^d$ for lamination direction, and let $\theta(x \cdot \mathbf{e})$ be the weak limit of the sequence $\chi_n(x \cdot \mathbf{e})$, then the corrsponding H-limit is

$$\begin{split} \mathbf{M}^* &= \theta \mathbf{A} + (1 - \theta) \mathbf{B} \\ &- \frac{\theta (1 - \theta) (\mathbf{A} - \mathbf{B}) (\mathbf{e} \otimes \mathbf{e}) \otimes (\mathbf{A} - \mathbf{B})^T (\mathbf{e} \otimes \mathbf{e})}{(1 - \theta) \mathbf{A} (\mathbf{e} \otimes \mathbf{e}) : (\mathbf{e} \otimes \mathbf{e}) + \theta \mathbf{B} (\mathbf{e} \otimes \mathbf{e}) : (\mathbf{e} \otimes \mathbf{e})} \end{split}$$

Corollary

If (A - B) is invertible, then the above formula is equivalent to

$$\theta(\mathbf{M}^* - \mathbf{B})^{-1} = (\mathbf{A} - \mathbf{B})^{-1} + \frac{1 - \theta}{\mathbf{B}(\mathbf{e} \otimes \mathbf{e}) : (\mathbf{e} \otimes \mathbf{e})} (\mathbf{e} \otimes \mathbf{e}) \otimes (\mathbf{e} \otimes \mathbf{e}).$$

Two-phase simple laminates cont.

Corollary

If we take some other unit vector $\mathbf{e} \in \mathbf{R}^d$ for lamination direction, and let $\theta(x \cdot \mathbf{e})$ be the weak limit of the sequence $\chi_n(x \cdot \mathbf{e})$, then the corrsponding H-limit is

$$\begin{split} \mathbf{M}^* &= \theta \mathbf{A} + (1 - \theta) \mathbf{B} \\ &- \frac{\theta (1 - \theta) (\mathbf{A} - \mathbf{B}) (\mathbf{e} \otimes \mathbf{e}) \otimes (\mathbf{A} - \mathbf{B})^T (\mathbf{e} \otimes \mathbf{e})}{(1 - \theta) \mathbf{A} (\mathbf{e} \otimes \mathbf{e}) : (\mathbf{e} \otimes \mathbf{e}) + \theta \mathbf{B} (\mathbf{e} \otimes \mathbf{e}) : (\mathbf{e} \otimes \mathbf{e})} \end{split}$$

Corollary

If $(\mathbf{A} - \mathbf{B})$ is invertible, then the above formula is equivalent to

$$\theta(\mathbf{M}^* - \mathbf{B})^{-1} = (\mathbf{A} - \mathbf{B})^{-1} + \frac{1 - \theta}{\mathbf{B}(\mathbf{e} \otimes \mathbf{e}) : (\mathbf{e} \otimes \mathbf{e})} (\mathbf{e} \otimes \mathbf{e}) \otimes (\mathbf{e} \otimes \mathbf{e}).$$

Sequential laminates

rank-1 (sim.) laminate \mathbf{A}_1^* : mix \mathbf{A} , \mathbf{B} ; proportions θ_1 , $1 - \theta_1$; direction \mathbf{e}_1 . rank-2 sequential lam. \mathbf{A}_2^* : mix \mathbf{A}_1^* , \mathbf{B} ; proportions θ_2 , $1 - \theta_2$; direction \mathbf{e}_2 .

rank-p seq. lam. \mathbf{A}_p^* : mix \mathbf{A}_{p-1}^* , **B**; proportions θ_p , $1 - \theta_p$; direction \mathbf{e}_p . **A** - core phase, **B** - matrix phase

Theorem

Let $\theta_i \in [0, 1]$ and let $\mathbf{e}_i \in \mathbf{R}^d$ be unit vectors, $1 \le i \le p$. Then

$$(\prod_{j=1}^{p} \theta_j) (\mathbf{A}_p^* - \mathbf{B})^{-1} = (\mathbf{A} - \mathbf{B})^{-1} + \sum_{i=1}^{p} \left((1 - \theta_i) \prod_{j=1}^{i-1} \theta_j \right) \frac{(\mathbf{e}_i \otimes \mathbf{e}_i) \otimes (\mathbf{e}_i \otimes \mathbf{e}_i)}{\mathbf{B}(\mathbf{e}_i \otimes \mathbf{e}_i) : (\mathbf{e}_i \otimes \mathbf{e}_i)}.$$

Sequential laminates

rank-1 (sim.) laminate \mathbf{A}_1^* : mix \mathbf{A} , \mathbf{B} ; proportions θ_1 , $1 - \theta_1$; direction \mathbf{e}_1 . rank-2 sequential lam. \mathbf{A}_2^* : mix \mathbf{A}_1^* , \mathbf{B} ; proportions θ_2 , $1 - \theta_2$; direction \mathbf{e}_2 .

rank-p seq. lam. \mathbf{A}_p^* : mix \mathbf{A}_{p-1}^* , **B**; proportions θ_p , $1 - \theta_p$; direction \mathbf{e}_p . **A** - core phase, **B** - matrix phase

Theorem

Let $\theta_i \in [0,1]$ and let $\mathbf{e}_i \in \mathbf{R}^d$ be unit vectors, $1 \leq i \leq p$. Then

$$(\prod_{j=1}^{p} \theta_j) (\mathbf{A}_p^* - \mathbf{B})^{-1} = (\mathbf{A} - \mathbf{B})^{-1} + \sum_{i=1}^{p} \left((1 - \theta_i) \prod_{j=1}^{i-1} \theta_j \right) \frac{(\mathbf{e}_i \otimes \mathbf{e}_i) \otimes (\mathbf{e}_i \otimes \mathbf{e}_i)}{\mathbf{B}(\mathbf{e}_i \otimes \mathbf{e}_i) : (\mathbf{e}_i \otimes \mathbf{e}_i)}.$$

Hashin-Shtrikman bounds

Theorem

For any $\boldsymbol{\xi} \in \text{Sym}$, the effective energy of a composite material $\mathbf{A}^* \in G_{\theta}$ satisfies the following bounds:

$$\mathbf{A}^*\boldsymbol{\xi}: \boldsymbol{\xi} \ge \mathbf{A}\boldsymbol{\xi}: \boldsymbol{\xi} + (1-\theta) \max_{\boldsymbol{\eta} \in \operatorname{Sym}} [2\boldsymbol{\xi}: \boldsymbol{\eta} - (\mathbf{B} - \mathbf{A})^{-1}\boldsymbol{\eta}: \boldsymbol{\eta} - \theta g(\boldsymbol{\eta})],$$

where $g({oldsymbol \eta})$ is defined by

$$g(\boldsymbol{\eta}) = \sup_{\mathbf{k} \in \mathbf{Z}^d, \mathbf{k} \neq 0} \frac{|(\mathbf{k} \otimes \mathbf{k}) : \boldsymbol{\eta}|^2}{\mathbf{A}(\mathbf{k} \otimes \mathbf{k}) : (\mathbf{k} \otimes \mathbf{k})}$$

and

Hashin-Shtrikman bounds cont.

Theorem

$$\mathbf{A}^*\boldsymbol{\xi}: \boldsymbol{\xi} \leq \mathbf{B}\boldsymbol{\xi}: \boldsymbol{\xi} + \theta \min_{\boldsymbol{\eta} \in \operatorname{Sym}} [2\boldsymbol{\xi}: \boldsymbol{\eta} + (\mathbf{B} - \mathbf{A})^{-1}\boldsymbol{\eta}: \boldsymbol{\eta} - (1 - \theta)h(\boldsymbol{\eta})],$$

where $h(\pmb{\eta})$ is defined by

$$h(\boldsymbol{\eta}) = \inf_{\mathbf{k} \in \mathbf{Z}^d, \mathbf{k} \neq 0} \frac{|(\mathbf{k} \otimes \mathbf{k}) : \boldsymbol{\eta}|^2}{\mathbf{B}(\mathbf{k} \otimes \mathbf{k}) : (\mathbf{k} \otimes \mathbf{k})}.$$

Moreover, these bounde are optimal, and optimality is achieved by a finite-rank sequential laminate.

Now what?

- Small-amplitude homogenization non-periodic case
- Explicit Hashin-Shtrikman bounds (2D, isotropic case, first correction in small-amplitude regime)
- G-closure problem
- Optimal design of plates

Shank you for your attention!

Now what?

- Small-amplitude homogenization non-periodic case
- Explicit Hashin-Shtrikman bounds (2D, isotropic case, first correction in small-amplitude regime)
- G-closure problem
- Optimal design of plates

Shank you for your attention!