Stability of Observations of Partial Differential Equations under Uncertain Perturbations

Martin Lazar
University of Dubrovnik

Zagreb '16
International workshop on PDEs: analysis and modelling Celebrating $80^{\text {th }}$ anniversary of Prof. Nedžad Limić

Outline

(1) Introduction
(2) Robust observability for the wave equation
(3) Robust observability for the Schrödinger equation
(4) Open problems and perspectives

Observability problem for the wave equation

We consider the wave equation:

$$
\begin{gathered}
\partial_{t t} u-\operatorname{div}(\mathbf{A}(t, \mathbf{x}) \nabla u)=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \Omega \\
u(0, \cdot)=u^{0} \in \mathrm{~L}^{2}(\Omega) \\
\partial_{t} u(0, \cdot)=\tilde{u}^{0} \in \mathrm{H}^{-1} \Omega \\
+ \text { bounded conditions } .
\end{gathered}
$$

Observability problem: Under which conditions can we recover the (initial) energy of the system by observing the solution on a suitable subdomain?

$$
E(0) \leqslant C \int_{0}^{T} \int_{\omega}|u|^{2} d \mathbf{x} d t ?
$$

$E(0):=\left\|u^{0}\right\|_{\mathrm{L}^{2}}^{2}+\left\|\tilde{u}^{0}\right\|_{\mathrm{H}^{-1}}$
Answer ${ }^{1}$: The observability region has to satisfy the Geometric Control Condition (GCC), stating that each characteristic ray has to enter the region in a finite time.

[^0]
Controllability problem for the wave equation

observability \Longleftrightarrow controllability

The mentioned observability problem is equivalent to the following control one for the adjoint system:

$$
\begin{aligned}
\partial_{t t} v-\operatorname{div}(\mathbf{A}(t, \mathbf{x}) \nabla v) & =f \chi_{\langle 0, T\rangle \times \omega}, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \Omega \\
v(0, \cdot) & =v_{0} \in \mathrm{H}^{1} \Omega \\
\partial_{t} v(0, \cdot) & =\tilde{v}_{0} \in \mathrm{~L}^{2}(\Omega) .
\end{aligned}
$$

For any given initial data can we find the control f such that the system is driven to an arbitrary (e.g. zero) state in a finite time:

$$
v(T, \cdot)=\partial_{t} v(T, \cdot)=0 ?
$$

Robust observability for the wave equation

We consider the system

$$
\begin{align*}
& P_{1} u_{1}=\partial_{t t} u_{1}-\operatorname{div}\left(\mathbf{A}_{1}(t, \mathbf{x}) \nabla u_{1}\right)=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \Omega \\
& P_{2} u_{2}=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \Omega \\
& u_{1}=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \partial \Omega \tag{1}\\
& u_{1}(0, \cdot)=u_{1}^{0} \in \mathrm{~L}^{2}(\Omega) \\
& \partial_{t} u_{1}(0, \cdot)=\tilde{u}_{1}^{0} \in \mathrm{H}^{-1}(\Omega),
\end{align*}
$$

Ω - is an open, bounded set in \mathbf{R}^{d}
\mathbf{A}_{1} - bounded, positive definite matrix field
P_{2} - perturbation operator
$\mathcal{A}_{1}=-\operatorname{div}\left(\mathbf{A}_{1} \nabla\right)$ - the elliptic part of P_{1}
Coefficients of both the operators are bounded and continuous.

Robust observability for the wave equation

We assume for the $1^{\text {st }}$ component

$$
E_{1}(0):=\left\|u_{1}^{0}\right\|_{\mathrm{L}^{2}}^{2}+\left\|\tilde{u}_{1}^{0}\right\|_{\mathrm{H}^{-1}}^{2} \leq \tilde{C} \int_{0}^{T} \int_{\omega}\left|u_{1}\right|^{2} d \mathbf{x} d t
$$

The key problem
Under which conditions the observability estimate remains stable under perturbation of the solution by u_{2} ?

$$
E_{1}(0) \leq C \int_{0}^{T} \int_{\omega}\left|u_{1}+u_{2}\right|^{2} d \mathbf{x} d t
$$

The relaxed observability inequality

Theorem 1.

Suppose that characteristic sets $\left\{p_{i}(t, \mathbf{x}, \tau, \boldsymbol{\xi})=0\right\}, i=1,2$ have no intersection for $(t, \mathbf{x}) \in\langle 0, T\rangle \times \omega,(\tau, \boldsymbol{\xi}) \in \mathrm{S}^{d}$.
Then there exists a constant \tilde{C} such that the observability inequality

$$
\begin{equation*}
E_{1}(0) \leq \tilde{C}\left(\int_{0}^{T} \int_{\omega}\left|u_{1}+u_{2}\right|^{2} d \mathbf{x} d t+\left\|u_{1}^{0}\right\|_{\mathrm{H}^{-1}}^{2}+\left\|\tilde{u}_{1}^{0}\right\|_{\mathrm{H}^{-2}}^{2}\right) \tag{2}
\end{equation*}
$$

holds for any pair of solutions $\left(u_{1}, u_{2}\right)$ to (1).

- The theorem allows for quite a general class of perturbation operators.
- No assumption on initial/boundary data for the $2^{\text {nd }}$ component.
- Non-hyperbolic operators directly satisfy the assumption.

The relaxed observability inequality

- Non-hyperbolic operators directly satisfy the assumption.

Example: P_{2} - Scrödinger operator

$$
p_{2}=\mathbf{A}_{2} \boldsymbol{\xi} \cdot \boldsymbol{\xi}=0 \Longleftrightarrow \boldsymbol{\xi}=0
$$

has no intersection with

$$
p_{1}=\tau^{2}-\mathbf{A}_{1} \boldsymbol{\xi} \cdot \boldsymbol{\xi}=0 .
$$

- For the wave operator P_{2} the assumption reads as $\left(\mathbf{A}_{1}-\mathbf{A}_{2}\right) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \neq 0$ on the observability region.
- The obstacle - compact term on the right hand side.

The proof

- goes by contradiction:
- based on H -measures.

H-measures

A microlocal defect tool: Suppose $u_{n} \longrightarrow u$ in $\mathrm{L}_{\text {loc }}^{2}$

$$
\mu=0 \text { iff } \quad u_{n} \longrightarrow u \text { in } \mathrm{L}_{\text {loc }}^{2} \text { strongly }
$$

Localisation principle

P - (pseudo)differential operator
(u_{n}) - (L^{2} bounded) sequence of solutions to the equation

$$
P u_{n}=0
$$

For H-measure $\mu \sim\left(u^{n}\right)$
p - the principal symbol of P.

$$
p \mu=0,
$$

Specially for the wave equation

$$
\partial_{t t} u^{n}-\operatorname{div}\left(\mathbf{A}(t, \mathbf{x}) \nabla u^{n}\right)=0,
$$

the measure $\mu \sim\left(\nabla u^{n}\right)$ satisfies

$$
\left(\tau^{2}-\mathbf{A}(t, \mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi}\right) \mu=0
$$

The strong observability inequality

We want to get rid of the compact term in (2). Additional assumptions:

- P_{2} - an evolution operator

$$
P_{2}=\left(\partial_{t}\right)^{k}+c_{2}(\mathbf{x}) \mathcal{A}_{1}, \quad k \in \mathbf{N},
$$

\mathcal{A}_{1} - an elliptic part of the wave operator P_{1},
c_{2} - a bounded and continuous function, $\left\{\begin{array}{ll}\neq 1, & k=2 \\ \neq 0, & k \neq 2\end{array}\right.$ on ω.

- initial data - related by a linear operator such that

$$
\left(\left.\left(u_{1}(0)+u_{2}(0)\right)\right|_{\omega}=0\right) \Longrightarrow\left(\left.u_{1}(0)\right|_{\omega}=\left.u_{2}(0)\right|_{\mid \omega}=0\right)
$$

and similarly for initial derivatives.
Then there is $C \in \mathbf{R}^{+}$such that the strong observability inequality holds:

$$
\begin{equation*}
E_{1}(0) \leq C \int_{0}^{T} \int_{\omega}\left|u_{1}+u_{2}\right|^{2} d \mathbf{x} d t \tag{3}
\end{equation*}
$$

Relation to the control theory

If:

- P_{2} is a wave operator
- initial data coincide on the whole domain Ω
the strong observability inequality (3) is equivalent to the averaged controllability of the adjoint system under a single control

$$
\begin{aligned}
\partial_{t t} v_{i}-\operatorname{div}\left(c_{i} \nabla v_{i}\right) & =\chi_{\langle 0, T\rangle \times \omega} f, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \Omega \\
v_{i}(0, \cdot) & =v_{i}^{0} \in \mathrm{H}^{1}(\Omega) \\
\partial_{t} v_{i}(0, \cdot) & =\tilde{v}_{i}^{0} \in \mathrm{~L}^{2}(\Omega), \quad i=1,2,
\end{aligned}
$$

with $f \in \mathrm{~L}^{2}\left(\mathbf{R}^{+} \times \Omega\right)$. More precisely, the following result holds.

Theorem

For any choice of initial data of the system (4) and any final target $\left(v^{T}, \tilde{v}^{T}\right) \in \mathrm{H}^{1}(\Omega) \times \mathrm{L}^{2}(\Omega)$ there exists a control f such that

$$
\left(v_{1}+v_{2}\right)(T, \cdot)=v^{T}, \quad \partial_{t}\left(v_{1}+v_{2}\right)(T, \cdot)=\tilde{v}^{T} .
$$

Relation to the existing results

The last, averaged control result already obtained in:
LZ14 M. L., E. Zuazua, Averaged control and observation of parameter-depending wave equations, C. R. Acad. Sci. Paris, Ser. I 352 (2014) 497-502

Presented work generalises the observability results of [LZ14] by allowing for a general evolution operator P_{2} which does not have to be the wave one.

The proof of the relaxed observability inequality (2) does not rely on the propagation property of H -measures, which allows for system's coefficients to be merely continuous (instead of $\mathrm{C}^{1,1}$).

Such approach avoid technical issues related to the reflection of H -measures on the domain boundary.

Observation of the Schrödinger equation under non-parabolic perturbations

We consider a system in which the first component, the one for which observation is made, satisfies the Schrödinger equation:

$$
\begin{align*}
& P_{1} u_{1}=i \partial_{t} u_{1}+\operatorname{div}\left(\mathbf{A}_{1}(\mathbf{x}) \nabla u_{1}\right)=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \Omega \\
& P_{2} u_{2}=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \Omega \\
& u_{1}=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \partial \Omega \tag{5}\\
& u_{1}(0, \cdot)=u_{1}^{0} \in \mathrm{~L}^{2}(\Omega) .
\end{align*}
$$

We suppose the observability inequality holds for the main component

$$
E_{1}(0):=\left\|u_{1}^{0}\right\|_{\mathrm{L}^{2}}^{2} \leq \tilde{C} \int_{0}^{T} \int_{\omega}\left|u_{1}\right|^{2} d \mathbf{x} d t
$$

Does it remain stable under additive perturbations by u_{2} ?

Observation of the Schrödinger equation under non-parabolic perturbations

As for the wave equation we need to assume separation of characteristic sets $\left\{p_{i}(t, \mathbf{x}, \tau, \boldsymbol{\xi})=0\right\}, i=1,2$.
The problem - how to obtain the separation for two Schrödinger operators?

$$
p_{1}=\mathbf{A}_{1} \boldsymbol{\xi} \cdot \boldsymbol{\xi}=0 \Longleftrightarrow \boldsymbol{\xi}=0
$$

and similarly

$$
p_{2}=\mathbf{A}_{2} \boldsymbol{\xi} \cdot \boldsymbol{\xi}=0 \Longleftrightarrow \boldsymbol{\xi}=0
$$

No separation of coefficients \mathbf{A}_{i} will imply separation of characteristic sets.
The solution: - a microlocal defect tool better adopted to a study of parabolic problems:
parabolic H-measures

Parabolic H-measures ${ }^{2}$

- similar to the original ones
- difference in scaling of the dual variable, take into account 1:2 ratio between time and space variables

Localisation principle for parabolic \mathbf{H}-measures

P - a (pseudo)differential operator whose principal part is of the type

$$
\partial_{t}^{m}\left(a_{0} \cdot\right)+\sum_{|\boldsymbol{\alpha}|=2 m} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}}\left(a_{\boldsymbol{\alpha}} \cdot\right)
$$

$a_{0}, a_{\boldsymbol{\alpha}}$ - bounded and continuous coefficients
$\left(u_{n}\right)-\left(\mathrm{L}^{2}\left(\mathbf{R}^{1+d}\right)\right.$ bounded) sequence of solutions to the equation

$$
P u_{n}=0
$$

For a parabolic H -measure $\mu \sim\left(u^{n}\right)$

$$
\left((2 \pi i \tau)^{m} a_{0}+\sum_{|\boldsymbol{\alpha}|=2 m}(2 \pi i \boldsymbol{\xi})^{\boldsymbol{\alpha}} a_{\boldsymbol{\alpha}}\right) \mu=0
$$

[^1]
Example: - the Scrödinger operator

Let $\left(u_{n}\right)$ be a sequence of solutions to the Schrödinger equation

$$
i \partial_{t} u_{n}+\operatorname{div}\left(\mathbf{A}(t, \mathbf{x}) \nabla u_{n}\right)=0
$$

The associated parabolic H -measure μ satisfies

$$
\left(2 \pi \tau+4 \pi^{2} \mathbf{A}(t, \mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi}\right) \mu=0
$$

The measure $\boldsymbol{\mu}$ is supported within the parabolic characteristic set

$$
2 \pi \tau=-4 \pi^{2} \mathbf{A}(t, \mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi}
$$

Consequence: two Scrödinger operators with separated coefficients

$$
\left(\mathbf{A}_{1}-\mathbf{A}_{2}\right) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \neq 0
$$

have disjoint characteristic sets, as well as supports of corresponding parabolic H -measures.

Robust observation of the Schrödinger equation

We reconsider the system (5)

$$
\begin{aligned}
& P_{1} u_{1}=i \partial_{t} u_{1}+\operatorname{div}\left(\mathbf{A}_{1}(\mathbf{x}) \nabla u_{1}\right)=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \Omega \\
& P_{2} u_{2}=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \Omega \\
& u_{1}=0, \quad(t, \mathbf{x}) \in \mathbf{R}^{+} \times \partial \Omega \\
& u_{1}(0, \cdot)=u_{1}^{0} \in \mathrm{~L}^{2}(\Omega) .
\end{aligned}
$$

We suppose the observability inequality holds for the main component

$$
E_{1}(0):=\left\|u_{1}^{0}\right\|_{\mathrm{L}^{2}}^{2} \leq \tilde{C} \int_{0}^{T} \int_{\omega}\left|u_{1}\right|^{2} d \mathbf{x} d t
$$

Robust observation of the Schrödinger equation

As for the wave equation we assume:

- P_{2} - an evolution operator

$$
P_{2}=\left(\partial_{t}\right)^{k}+c_{2}(\mathbf{x}) \mathcal{A}_{1}, \quad k>=1,
$$

\mathcal{A}_{1} - an elliptic part of the wave operator P_{1},
c_{2} - a bounded and continuous function, $\left\{\begin{array}{ll}\neq 1, & k=1 \\ \neq 0, & k>1\end{array}\right.$ on ω.

- initial data - related by a linear operator such that

$$
\left(\left.\left(u_{1}(0)+u_{2}(0)\right)\right|_{\omega}=0\right) \Longrightarrow\left(\left.u_{1}(0)\right|_{\omega}=\left.u_{2}(0)\right|_{\mid \omega}=0\right)
$$

Then there is $C \in \mathbf{R}^{+}$such that the strong observability inequality holds:

$$
E_{1}(0) \leq C \int_{0}^{T} \int_{\omega}\left|u_{1}+u_{2}\right|^{2} d \mathbf{x} d t
$$

Open problems and perspectives

Ongoing work:

- to obtain the result for a more general perturbation operator P_{2}
- to remove constraints on initial data
- to consider larger systems:
- with N components;
- or even infinite number of them (both discrete and continuous).

Such generalisations already obtained for a relaxed observability inequality.
Technical difficulties related to the passage to the strong inequality.
The solution - a better microlocal defect tool:

$$
\begin{aligned}
& \text { 1-scale H-measures. } \\
& \text { Happy anniversary! }
\end{aligned}
$$

[^0]: ${ }^{1}$ C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim. 30(5) (1992) 1024-1065.

[^1]: ${ }^{2}$ N. Antonić, M.L.: Parabolic H-measures, J. Funct. Anal. 265 (2013) 1190-1239.

