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Introduction

Observability problem for the wave equation

We consider the wave equation:
Opu — div (A(t,x)Vu) =0, (t,x) € Rt x Q
u(0,-) = u® € L2(Q)
0w (0,-) =a’ e HT'Q
+ bounded conditions .

Observability problem: Under which conditions can we recover the
(initial) energy of the system by observing the solution on a suitable

subdomain? T
B(0) < c/ /|u\2dxdt?
0 w

o [,012 ~0
E(0) := [[u’llgz + [[a° ][
Answer!: The observability region has to satisfy the Geometric Control
Condition (GCC), stating that each characteristic ray has to enter the
region in a finite time.

1C. BarDOS, G. LEBEAU, J. RAUCH, Sharp sufficient conditions for the
observation, control, and stabilization of waves from the boundary, SIAM J. Control
Optim. 30(5) (1992) 1024-1065.
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Introduction

Controllability problem for the wave equation

observability <= controllability

The mentioned observability problem is equivalent to the following
control one for the adjoint system:

attv —div (A(t,X)V?)) = fX(O,T)va (t,X) € RJr x 2
v(0,-) = vo € H'Q

For any given initial data can we find the control f such that the system
is driven to an arbitrary (e.g. zero) state in a finite time:

o(T,-) = 0w(T, ) =07
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Introduction

Robust observability for the wave equation

We consider the system

Pyuy = Opug — div (Aq(t,x)Vug) =0, (t,x) e Rt x Q
Prus =0, (t7X)€R+XQ
up =0, (t,x) eRT x0Q (1)
u1(0,-) = uf € L2(Q)
61‘,“1(07 ) = ’a(i) € Hil(Q) )

) —is an open, bounded set in R4
A1 — bounded, positive definite matrix field
P, — perturbation operator

Ay = —div (A1V) — the elliptic part of P;
Coefficients of both the operators are bounded and continuous.
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Introduction

Robust observability for the wave equation

We assume for the 15t component

T
2 ~0n2 ~
Bv0) = s + 180 <C [ [ e,
0 w

The key problem

Under which conditions the observability estimate remains
stable under perturbation of the solution by us?

T
Bi(0) < c/ /|u1 - us[2dxdt
0 w
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Robust observability for the wave equation

The relaxed observability inequality

Theorem 1.

Suppose that characteristic sets {p;(t,x,7,€) = 0},i = 1,2 have no
intersection for (t,x) € (0,T) x w, (7, &) € S*.
Then there exists a constant C' such that the observability inequality
T
~ 2 02
By(0) < C ( | o+ walPaxit + i + ||u§’||Hz> @
0 w

holds for any pair of solutions (u,us) to (1).

@ The theorem allows for quite a general class of perturbation
operators.

e No assumption on initial /boundary data for the 24 component.

@ Non-hyperbolic operators directly satisfy the assumption.
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Robust observability for the wave equation

The relaxed observability inequality

@ Non-hyperbolic operators directly satisfy the assumption.

Example: P, — Scrodinger operator

p2=A - £=0=£&=0

has no intersection with
P1 =T2—A1£-€:0.

@ For the wave operator P, the assumption reads as
(A1 — Ay)E - € # 0 on the observability region.

@ The obstacle — compact term on the right hand side.

The proof
@ goes by contradiction:
@ based on H-measures.
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Robust observability for the wave equation

H-measures

A microlocal defect tool: Suppose u, — u in LZ

p=0 iff wu, — win L2 _strongly

Localisation principle

P — (pseudo)differential operator
(un) — (L2 bounded) sequence of solutions to the equation

Pu, =0
For H-measure p ~ (u™)

pr=0,

p - the principal symbol of P.

Specially for the wave equation
Opu™ — div (A(t,x)Vu™) = 0,
the measure p ~ (Vu'™) satisfies
(12 = A(t,x)& - €)= 0.



Robust observability for the wave equation

The strong observability inequality

We want to get rid of the compact term in (2).
Additional assumptions:

@ P, — an evolution operator
Py = (8t)k + CQ(X)Al, keN,

A1 — an elliptic part of the wave operator Py,

#1, k=2

20, k£2 on w.
@ initial data - related by a linear operator such that

((ul(O) +u3(0))] = o) — <u1(0)|w = u5(0)]p = o),

and similarly for initial derivatives.
Then there is C' € R™ such that the strong observability inequality holds:

co — a bounded and continuous function, {

T
Bi(0) < c/ /|u1 +us[2dxdt . (3)
0 w
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Robust observability for the wave equation

Relation to the control theory

If:

e P> is a wave operator

@ initial data coincide on the whole domain 2
the strong observability inequality (3) is equivalent to the averaged
controllability of the adjoint system under a single control

v — div (¢; Vo) = x(0,7)xw (t,x) e RT x Q
vi(0,) = v € H'(Q) (4)
di(0,-) =) € L*(Q), i=1,2,

with f € L2(R* x ). More precisely, the following result holds.

For any choice of initial data of the system (4) and any final target
(vT,9T) € HY(Q) x L2(Q) there exists a control f such that

(vl + UQ)(Tv ) = UTv 8t(vl + UQ)(Ta ) = ﬂT'




Robust observability for the wave equation

Relation to the existing results

The last, averaged control result already obtained in:

LZ14 M. L., E. ZuAzuA, Averaged control and observation of
parameter-depending wave equations, C. R. Acad. Sci. Paris, Ser. |
352 (2014) 497-502

Presented work generalises the observability results of [LZ14] by allowing
for a general evolution operator P, which does not have to be the wave
one.

The proof of the relaxed observability inequality (2) does not rely on the
propagation property of H-measures, which allows for system's
coefficients to be merely continuous (instead of C11).

Such approach avoid technical issues related to the reflection of
H-measures on the domain boundary.
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Robust observability for the Schrédinger equation

Observation of the Schrodinger equation under
non-parabolic perturbations

We consider a system in which the first component, the one for which
observation is made, satisfies the Schrodinger equation:
Pruy = i0yuy + div (A1 (x)Vug) = 0, (t,x) e RT x Q
Pyus =0, (t,x) e Rt x Q
up =0, (t,x) € Rt x 90
u1(0,-) = ud € L2(Q).

(5)

We suppose the observability inequality holds for the main component

T
2 ~
Eq(0) := ||u(1)||L2 < C’/ / luy|?dxdt .
0 w
Does it remain stable under additive perturbations by us?
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Robust observability for the Schrédinger equation

Observation of the Schrodinger equation under
non-parabolic perturbations

As for the wave equation we need to assume separation of characteristic
sets {p;(t,x,7,&) =0},i =1,2.

The problem - how to obtain the separation for two Schrédinger
operators?

P=~AE-{=0¢£=0
and similarly
P2=A€-{=0<=¢£=0
No separation of coefficients A; will imply separation of characteristic
sets.
The solution: — a microlocal defect tool better adopted to a study of

parabolic problems:
parabolic H-measures
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Robust observability for the Schrédinger equation

Parabolic H-measures 2

— similar to the original ones

— difference in scaling of the dual variable, take into account 1:2 ratio
between time and space variables

Localisation principle for parabolic H-measures

P-a (pseudo)differential operator whose principal part is of the type

Z 02 (e )
lex|=
a0, G — bounded and continuous coefF|C|ents
(un) — (L?(R'*?) bounded) sequence of solutions to the equation
Pu, =0
For a parabolic H-measure p ~ (u™)

((%w)mao + > (27ri£)°‘aa>u =0.

|a|=2m

2N. ANTONIG, M.L.: Parabolic H-measures, J. Funct. Anal. 265 (2013)
1190-1239.
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Robust observability for the Schrédinger equation

Example: — the Scrodinger operator

Let (u,) be a sequence of solutions to the Schrodinger equation
10¢uy, + div (A(t,x)Vu,) = 0.

The associated parabolic H-measure p satisfies
(277 + 4 A(t,x)€ - &) p =0,

The measure p is supported within the parabolic characteristic set

2nT = —4m?A(t, x)€ - €.
Consequence: two Scrodinger operators with separated coefficients
(A1 —A2)€ - £#0

have disjoint characteristic sets, as well as supports of corresponding
parabolic H-measures.
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Robust observability for the Schrédinger equation

Robust observation of the Schrodinger equation

We reconsider the system (5)

Pruy = i0yuy + div (A1 (x)Vug) = 0, (t,x) e RT x Q
Pyus =0, (t,x) e Rt x Q
up =0, (t,x) € Rt x 99
u1(0,-) =ud € L2(Q).

We suppose the observability inequality holds for the main component

T
By (0) == [[ud|f%, < 0/ /\u1|2dxdt.
0 w
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Robust observability for the Schrédinger equation

Robust observation of the Schrodinger equation

As for the wave equation we assume:

@ P, — an evolution operator
Py = () + c2(x) A, k> =1,
A1 — an elliptic part of the wave operator P,
#1, k=1 on
#0, k>1

@ initial data - related by a linear operator such that

((1(0) + u2(0)) | = 0) = (wi(0)]., = w2(0) |1, = 0),

¢c2 — a bounded and continuous function, { w.

Then there is C' € R such that the strong observability inequality holds:
T
Eq(0) < C/ / luy + ug|?dxdt .
0 w
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Open problems and perspectives

Open problems and perspectives

Ongoing work:
@ to obtain the result for a more general perturbation operator P;
@ to remove constraints on initial data

@ to consider larger systems:
— with N components;
— or even infinite number of them (both discrete and continuous).

Such generalisations already obtained for a relaxed observability
inequality.
Technical difficulties related to the passage to the strong inequality.

The solution - a better microlocal defect tool:

1-scale H-measures.

Happy anniversary!
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