Some new applications of microlocal defect functionals Marko Erceg, Marin Mišur^{*a*}, Darko Mitrović

^aUniversity of Zagreb, Croatia, mmisur@math.hr

Motivation	H-measures	
In [⁵], a problem of type (9) was considered, but with flux and diffusion independent of t and x. The homogeneity of the flux allowed the separation of coefficients from the unknown u_n (by applying the Fourier transform). In our work (in progress) we consider the situation of inhomogeneous rough flux. In [²], a problem of the type $\partial_t u = \triangle_{\mathbf{x}'} u + \partial_y f(u)$, where $\mathbf{x} = (\mathbf{x}', y) \in \mathbf{R}^d$, was considered. A matter is convected in the y-direction, while it is at the same type diffused in all other orthogonal directions. Such problem arose while studying asymptotic behaviour of nonlinear diffusion-convection model $\partial_t u = \triangle_{\mathbf{x}} u + \partial_y f(u)$. In some applications, when a flow occurs in the highly heterogeneous porous media (e.g. in the CO_2 sequestration problems [⁴]), we get rough coefficients and flux in the resulting model.	Theorem. If $(u_n)_{n \in \mathbb{N}}$ is a sequence in $L^2_{loc}(\Omega; \mathbb{R}^r)$, $\Omega \subset \mathbb{R}^{d+1}$, such that $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, then there exists subsequence $(u_{n'})_{n'} \subset (u_n)_n$ and positive complex bounded measure $\mu = {\mu^{jk}}_{j,k=1,,r}$ on $\mathbb{R}^{d+1} \times \mathbb{S}^d$ such that for all $\varphi_1, \varphi_2 \in C_0(\Omega)$ and $\psi \in C(\mathbb{S}^d)$, $\lim_{n' \to \infty} \int_{\Omega} (\varphi_1 u_{n'}^j)(\boldsymbol{\xi}) \overline{\mathcal{A}_{\psi(\frac{\boldsymbol{\xi}}{ \boldsymbol{\xi} })}(\varphi_2 u_{n'}^k)(\boldsymbol{\xi})} d\mathbf{x} = \langle \mu^{jk}, \varphi_1 \overline{\varphi_2} \psi \rangle$ $= \int_{\mathbb{R}^{d+1} \times \mathbb{S}^d} \varphi_1(\mathbf{x}) \overline{\varphi_2(\mathbf{x})} \psi(\boldsymbol{\xi}) d\mu^{jk}(\mathbf{x}, \boldsymbol{\xi})$ where $\mathcal{A}_{\psi(\frac{\boldsymbol{\xi}}{ \boldsymbol{\xi} })}$ is the multiplier operator with the symbol $\psi(\boldsymbol{\xi}/ \boldsymbol{\xi})$.	H-measure see only derivatives of the same highest order. For example, we can change the scaling and put $\boldsymbol{\xi}/((\xi_1,\ldots,\xi_k) + (\xi_{k+1},\ldots,\xi_d) ^2)$ instead of $\boldsymbol{\xi}/ \boldsymbol{\xi} $, but such H-measure will be able to see the first order derivatives with respect to (x_1,\ldots,x_k) and second order derivatives with respect to (x_{i+1},\ldots,x_d) . In other words, no changing of the highest order of the equation is permitted. We overcome this situation by considering multiplier operators with symbols of the form $\psi\left(\frac{(\tau,\boldsymbol{\xi})}{ (\tau,\boldsymbol{\xi}) +\langle a(\lambda)\boldsymbol{\xi},\boldsymbol{\xi}\rangle}\right), \psi \in C(\mathbf{R}^d),$ where the matrix <i>a</i> represents the diffusion matrix in the degenerate parabolic equation. By $\mathcal{A}_{\psi} : L^p(\mathbf{R}^+ \times \mathbf{R}^d) \to L^p(\mathbf{R}^+ \times \mathbf{R}^d)$ we shall denote the Fourier multiplier operator with respect to (t, \mathbf{x}) -variables.
Preliminaries from matrix analysis	Preliminaries from matrix analysis II	Marczinkiewicz multiplier result
Let A be a non-negative definite symmetric matrix of order d. we can write $A = \sigma^T \sigma$, where $\sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ O & O \end{bmatrix},$ where we assume that $[\sigma_{11}]$ is regular matrix of order $k \times k$. We will need a change of	Clearly, it is a regular change of variables and it holds $\eta = (\tilde{\eta}, \overset{\circ}{\eta}) = ([\sigma \xi]_{1,,k}, \xi_{k+1}, \dots, \xi_d). (2)$ Its inverse is given by:	Corollary. Suppose that $\psi \in C^d(\mathbf{R}^d \setminus \bigcup_{j=1}^d \{\xi_j = 0\})$ is a bounded function such that for some constant $C > 0$ it holds $ \boldsymbol{\xi}^{\boldsymbol{\alpha}} \partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi}) \leq C, \ \boldsymbol{\xi} \in \mathbf{R}^d \setminus \bigcup_{j=1}^d \{\xi_j = 0\}$ (3)
variables $\boldsymbol{\eta} = M\boldsymbol{\xi}$, where $M = \begin{bmatrix} \sigma_{11} & \sigma_{12} \end{bmatrix}$	$M^{-1} = \begin{bmatrix} [\sigma_{11}]^{-1} & -[\sigma_{12}][\sigma_{11}]^{-1} \\ O & I \end{bmatrix}.$	for every multi-index $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbf{N}_0^d$ such that $ \boldsymbol{\alpha} = \alpha_1 + \alpha_2 + \dots + \alpha_d \leq d$. Then, the function ψ is an \mathbf{L}^p -multiplier for $p \in \langle 1, \infty \rangle$, and the operator norm of \mathcal{A}_{ψ}

If $[\sigma_{11}]$ were not regular, then we would just define matrix M in a different way:

O

 $M = \begin{bmatrix} [\sigma_{11}] & [\sigma_{12}] \\ \tilde{I}_k & \tilde{I}_{d-k} \end{bmatrix},$

where I_k is a matrix with ones on the main diagonal on the places of columns of $[\sigma_{11}]$ which do not form a linearly independent set, and zeroes otherwise. Similarly for I_{d-k} .

Fourier multipliers I

Let $a : \mathbf{R} \to M^{d \times d}$ be a non-negative definite matrix. Let

 $\pi_P(\tau, \boldsymbol{\xi}, \lambda) = \frac{(\tau, \boldsymbol{\xi})}{|(\tau, \boldsymbol{\xi})| + \langle a(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle}.$

By Π we will denote the closure of the set $\pi_P(\mathbf{R} \times \mathbf{R}^d \times \mathbf{R})$. Our next step is to show that for $\psi \in C^{d+1}(\Pi)$ the composition $\psi(\pi_P)$ is a symbol of an $L^p(\mathbf{R}^{d+1})$ multiplier (here, we consider λ to be fixed).

Lemma. Under conditions stated above, $\psi(\pi_P)$ is an L^p multiplier.

We will show that a Fourier multiplier with a symbol $\partial_j^{1/2} \circ \partial_\lambda \left(\frac{1}{|(\tau, \boldsymbol{\xi})| + \langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi} \rangle} \right)$ satisfies conditions of Marcinkiewicz's multiplier theorem. The symbol of $\partial_{\lambda} \left(\mathcal{A}_{\frac{1}{|(\tau, \boldsymbol{\xi})| + \langle a(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle}} \right)$ is:

$$\partial_{\lambda} \left(\frac{1}{|(\tau, \boldsymbol{\xi})| + \langle a(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle} \right) = \frac{-\langle a'(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle}{\left(|(\tau, \boldsymbol{\xi})| + \langle a(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle\right)^2}.$$

Since A is only assumed to be non-negative definite, we can not obtain the bound of $||M^{-1}||_2$ only in terms of A. For matrix M one easily gets $||M||_2 \le \max\{1, ||A||_2\} +$ $||A||_2.$

In the case where A(t) depends continuously only one one parameter, we get that the corresponding norms depend continuously on t as well.

equals to $C_{d,p} \cdot C$, where $C_{d,p}$ depends only on p and d.

Lemma. If ψ is a symbol of a multiplier bounded on $L^p(\mathbf{R}^d)$, then the functions defined by $\psi(\cdot + \mathbf{y}_0)$, $\mathbf{y}_0 \in \mathbf{R}^d$, $\psi(\lambda \cdot)$, $\lambda > 0$, and $\psi(Q \cdot)$, Q orthogonal matrix, are symbols of multipliers bounded on L^p with the same operator norm as \mathcal{A}_{ψ} .

Fourier multipliers II	Fourier multipliers III
Using a representation $a(\lambda) = \sigma(\lambda)^T \sigma(\lambda)$ and the change of variables $\eta = M\xi$, we have	We will assume the following uniform bounds:
$\langle a(\lambda)\boldsymbol{\xi},\boldsymbol{\xi}\rangle = \tilde{\boldsymbol{\eta}} ^2, \partial_{\lambda}\left(\langle a(\lambda)\boldsymbol{\xi},\boldsymbol{\xi}\rangle\right) = 2\langle \sigma'(\lambda)M^{-1}\boldsymbol{\eta},\tilde{\boldsymbol{\eta}}\rangle.$	$0 < c \le \ M^{-1}\ _2 \le \widehat{C} < \infty, \qquad \ M\ _2 \le \widetilde{C}, \qquad \ \sigma'\ _2 \le \overline{C}, \tag{5}$
In the new coordinates, the symbol has the form:	where $c, \widehat{C}, \widetilde{C}$ and \overline{C} are positive numbers. We already have $\widetilde{C} = \max\{1, \ a\ _2\} + \ a\ _2$
$\partial_{\lambda}\left(\underbrace{1}_{$	and $c = 1/C$. For C we do not have a uniform bound, so this together with assumption on \overline{C} are the only new assumptions here.
$O_{\lambda} \left((\tau, \boldsymbol{\xi}) + \langle a(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle \right)^{-} \left((\tau, M^{-1}\boldsymbol{\eta}) + \tilde{\boldsymbol{\eta}} ^2 \right)^2.$	Lemma. Under the conditions (5), Ψ given in (4) is an L^p multiplier.
The symbol of $\partial_j^{1/2} \circ \partial_\lambda \left(\frac{1}{ (\tau, \boldsymbol{\xi}) + \langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi} \rangle} \right)$ is:	Corollary.
$\frac{-2(2\pi i\eta_j)^{1/2}\left\langle \sigma'(\lambda)M^{-1}\boldsymbol{\eta},\tilde{\boldsymbol{\eta}}\right\rangle}{\left(\left (\tau,M^{-1}\boldsymbol{\eta})\right + \tilde{\boldsymbol{\eta}} ^2\right)^2},$	• Let $p \in \langle 1, \infty \rangle$. Then $\partial_{\lambda} \left(\mathcal{A}_{\frac{1}{ (\tau, \boldsymbol{\xi}) + \langle a(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle}} \right)$ continuously maps $L^{p}(\mathbf{R} \times \mathbf{R}^{d})$ to $W^{1/2, p}(\mathbf{R} \times \mathbf{R}^{d})$.
but, for reasons of simplicity, we will show the result for the following symbol (which will yield the same result):	• Let $r > 2(d+1)$. Then $\partial_{\lambda} \left(\mathcal{A}_{\frac{1}{ (\tau, \boldsymbol{\xi}) + \langle a(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle}} \right)$ continuously maps $L^{r}(\mathbf{R} \times \mathbf{R}^{d})$ to $C^{0}(\mathbf{R} \times \mathbf{R}^{d})$.
$\Psi(\tau, \boldsymbol{\eta}, \lambda) = \frac{-2(1+ \boldsymbol{\eta} ^2)^{1/4} \left\langle \sigma'(\lambda) M^{-1} \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}} \right\rangle}{\left(\left (\tau, M^{-1} \boldsymbol{\eta}) \right + \tilde{\boldsymbol{\eta}} ^2 \right)^2}.$ (4)	

H-measures, H-distributions, and velocity averaging

H-distributions	H-measures	Velocity averaging
Theorem. Let $(u_n(t, \mathbf{x}, \lambda))$ be an uniformly compactly supported sequence weakly converging to zero in $L^p(\mathbf{R}^+ \times \mathbf{R}^d \times \mathbf{R})$, $p > 1$. Let $(v_n(t, \mathbf{x}))$ be an uniformly compactly supported sequence bounded in $L^{\infty}(\mathbf{R}^+ \times \mathbf{R}^d)$. Then for every $\varepsilon > 0$ there exists a subsequence (not relabelled) and a continuous bilinear functional B on $L^{p'+\varepsilon}(\mathbf{R}^+ \times \mathbf{R}^d \times \mathbf{R}) \otimes C^{d+1}(\Pi)$ such that for every $\varphi \in L^{p'+\varepsilon}(\mathbf{R}^+ \times \mathbf{R}^d \times \mathbf{R})$ and $\psi \in C^{d+1}(\Pi)$ it holds $B(\varphi, \psi) = \lim_{n \to \infty} \int_{\mathbf{R}^+ \times \mathbf{R}^d \times \mathbf{R}} \varphi(t, \mathbf{x}, \lambda) u_n(t, \mathbf{x}, \lambda) \overline{\mathcal{A}_{\psi(\pi_F(\tau, \xi, \lambda))}(v_n)(t, \mathbf{x})} dt d\mathbf{x} d\lambda$. Furthermore, the bound of functional B is $C_u C_{v,s} C_{d,s} \sqrt[s]{C}_{\lambda}$, where C_u is the L^p -bound of sequence (u_n) ; $C_{v,s}$ is the L^s -bound of the sequence (v_n) , where $1/p + 1/(p' + \varepsilon) + 1/s =$ 1; and $C_{d,s}$ is a constant from the Marcinkiewicz multiplier theorem. Theorem. The bilinear functional B from the previous Theorem can be extended by continuity to a functional on $L^{p'+\varepsilon}(\mathbf{R}^+ \times \mathbf{R}^d \times \mathbf{R}; C^{d+1}(\Pi))$. The bound of the extension is equal to $2C_u C_{v,s} C_{d,s} C_{\lambda}$.	Corollary. If the sequence $(u_n(t, \mathbf{x}, \lambda))$ is bounded in $L^p(\mathbf{R}^+ \times \mathbf{R}^d \times \mathbf{R}), p > 2$, then $\mu \in L_{w*}^{(p'+\varepsilon)'}(\mathbf{R}^+ \times \mathbf{R}^d \times \mathbf{R}; \mathcal{M}(\Pi))$, where $\mathcal{M}(\Pi)$ is the space of Radon measures. Lemma. Let $\mu \in L_{w*}^{(p'+\varepsilon)'}(\mathbf{R}^+ \times \mathbf{R}^d \times \mathbf{R}; \mathcal{M}(\Pi))$ be the functional defined in the previous Corollary. Let $K_\lambda \subset \mathbf{R}$ be a fixed arbitrary compact set. If the function $F \in C_0(\mathbf{R}^+ \times \mathbf{R}^{d+1} \times \Pi)$ is such that for some $\alpha > 0$ exists $N > 0$ such that $esssup_{(t,\mathbf{x})\in\mathbf{R}^+ \times \mathbf{R}^d} \sup_{ (\tau,\xi) >N} meas\{\lambda \in K_\lambda : F(t,\mathbf{x},\lambda,\pi_P(\tau,\xi,\lambda)) \le \sigma\} \le \sigma^{\alpha}$ (6) and for a.e. $(t,\mathbf{x},\lambda) \in \mathbf{R}^+ \times \mathbf{R}^{d+1}$ it holds (in the sense of the dual pairing between $\mathcal{M}(\mathbf{R}^{d+1})$ and $C_0(\mathbf{R}^{d+1})$, where $\mu \circ \pi_P$ instead of $(\pi_P)_*\mu$): $(\mu \circ \pi_P(\cdot, \cdot, \lambda))(t, \mathbf{x}, \lambda), F(t, \mathbf{x}, \lambda, \pi_P(\cdot, \cdot, \lambda))) \ge 0$, (7) then $\mu \equiv 0$.	$\begin{aligned} \partial_{t}u_{n}(t,\mathbf{x},\lambda) + \operatorname{div}\left(f(t,\mathbf{x},\lambda)u_{n}(t,\mathbf{x},\lambda)\right) &= \operatorname{div}\left(\operatorname{div}\left(a(\lambda)u_{n}(t,\mathbf{x},\lambda)\right) + \partial_{\lambda}G_{n}(t,\mathbf{x},\lambda) + \operatorname{div}P_{n}(t,\mathbf{x},\lambda), \end{aligned} \right) \\ \text{where} \\ a) & (u_{n}) \text{ weakly converges to zero in } \mathbf{L}^{q}(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}), q \geq 2; \\ b) & a \in \mathbf{C}^{0,1}(\mathbf{R}; \mathbf{R}^{d \times d}); \\ c) & f \in \mathbf{L}^{p}(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}; \mathbf{R}^{d}), p > 1; \\ d) & G_{n} \to 0 \text{ strongly in } \mathbf{L}^{r_{0}}(\mathbf{R}; \mathbf{W}^{-1/2, r_{0}}(\mathbf{R}^{+} \times \mathbf{R}^{d})) \text{ for some } r_{0} \in \langle 1, \infty \rangle; \\ e) & P_{n} \to 0 \text{ strongly in } \mathbf{L}^{p_{0}}(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}; \mathbf{R}^{d}) \text{ for some } p_{0} \in \langle 1, \infty \rangle. \end{aligned}$ From assumptions on <i>a</i> it follows that $\sigma \in \mathbf{C}^{0,1}(\mathbf{R}; \mathbf{R}^{d \times d}). $ Theorem. Assume that the function $F(t, \mathbf{x}, \lambda, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)) = i \frac{\tau + \langle \boldsymbol{\xi}, f(t, \mathbf{x}, \lambda) \rangle}{ (\tau, \boldsymbol{\xi}) + \langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi} \rangle} + \frac{\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi} \rangle}{ (\tau, \boldsymbol{\xi}) + \langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi} \rangle} \\ \text{satisfies non-degeneracy condition (6). Then, for any } \rho \in \mathbf{C}^{1}_{c}(\mathbf{R}), \text{ the sequence} (\int_{\mathbf{R}} \rho(\lambda)u_{n}(t, \mathbf{x}, \lambda) d\lambda) \text{ is strongly precompact in } \mathbf{L}^{1}_{loc}(\mathbf{R}^{+} \times \mathbf{R}^{d}). \end{aligned}$
Cauchy problem	Assumptions	Quasi-solution and kinetic formulation

 $\partial_t u + \operatorname{div}_{\mathbf{x}} \mathfrak{f}(t, \mathbf{x}, u) = D^2 \cdot A(u)$

 $u|_{t=0} = u_0(\mathbf{x}) \in \mathcal{L}^1(\mathbf{R}^d) \cap \mathcal{L}^\infty(\mathbf{R}^d).$

The equation describes a flow governed by

- the convection effects (bulk motion of particles) which are represented by the first order terms;
- The initial data are bounded between a and b and the flux function annuls at $\lambda = a$ and $\lambda = \tilde{b}$:
- $\tilde{a} \le u_0(\mathbf{x}) \le \tilde{b}$ and $\mathfrak{f}(t, \mathbf{x}, \tilde{a}) = \mathfrak{f}(t, \mathbf{x}, \tilde{b}) = 0$ a.e. $(t, \mathbf{x}) \in \mathbf{R}^+ \times \mathbf{R}^d$. (11)
- The convective term $f(t, \mathbf{x}, \lambda)$ is continuously differentiable with respect to $\lambda \in \mathbf{R}$, and it belongs to $L^r(\mathbf{R}^+ \times \mathbf{R}^d \times [\tilde{a}, \tilde{b}]), r > 1$

div_{**x**} $\mathbf{f}(t, \mathbf{x}, \lambda) \in \mathcal{M}(\mathbf{R}^+ \times \mathbf{R}^d \times [\tilde{a}, \tilde{b}]).$

• The matrix $A(\lambda) = (A_{ij}(\lambda))_{i,j=1,\dots,d} \in C^{1,1}(\mathbf{R};\mathbf{R}^{d\times d})$, is non-decreasing with

 $\langle a(\lambda)\boldsymbol{\xi},\boldsymbol{\xi}\rangle \geq 0.$

respect to $\lambda \in \mathbf{R}$, i.e. the (diffusion) matrix $a(\lambda) = A'(\lambda)$ satisfies

We also assume:

Definition. A measurable function u defined on $\mathbb{R}^+ \times \mathbb{R}$ is called a quasi-solution to (9) if $\mathfrak{f}_k(t, \mathbf{x}, u), A_{kj}(u) \in L^1_{loc}(\mathbf{R}^+ \times \mathbf{R}^d), k, j = 1, \dots, d$, and for a.e. $\lambda \in \mathbf{R}$ the Kruzhkov

type entropy equality holds

(12)

 $\partial_t |u - \lambda| + \operatorname{div} \left[\operatorname{sgn}(u - \lambda)(\mathfrak{f}(t, \mathbf{x}, u) - \mathfrak{f}(t, \mathbf{x}, \lambda))\right]$ (13) $-D^{2} \cdot [\operatorname{sgn}(u-\lambda)(A(u) - A(\lambda))] = -\zeta(t, \mathbf{x}, \lambda),$

where $\zeta \in C(\mathbf{R}_{\lambda}; w \star - \mathcal{M}(\mathbf{R}^{+} \times \mathbf{R}^{d}))$ we call the quasi-entropy defect measure.

• diffusion effects which are represented by the second order term and the matrix $A(\lambda) = [A_{ij}(\lambda)]_{i,j=1,\dots,d}$ (more precisely its derivative with respect to λ) describes direction and intensity of the diffusion;

The equation is degenerate in the sense that the derivative of the diffusion matrix A' = acan be equal to zero in some direction. Roughly speaking, if this is the case (i.e. if for some vector $\boldsymbol{\xi} \in \mathbf{R}^d$ we have $\langle A'(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle = 0$, then diffusion effects do not exist at the point x for the state λ in the direction $\boldsymbol{\xi}$.

Example. $A(u) = \begin{bmatrix} u & -\frac{u^2}{2} \\ -\frac{u^2}{2} & \frac{u^3}{3} \end{bmatrix}$, $a(\lambda) = \begin{bmatrix} 1 & -\lambda \\ -\lambda & \lambda^2 \end{bmatrix}$, $M(\lambda) = \begin{bmatrix} 1 & -\lambda \\ 0 & 1 \end{bmatrix}$.

References

[1] Q.G. Chen, K.H. Karlsen: Quasilinear Anisotropic Degenerate Parabolic Equations with Time-Space Dependent Diffusion Coefficients, Comm. Pure and Applied Analysis 4 (2005) 241–266.

(9)

(10)

- [2] M. Escobedo, J.L. Vazquez, Enrike Zuazua: Entropy solutions for diffusion-convection equations with partial diffusivity, Transactions of the American Mathematical Society 343 (1994) 829–842.
- [3] M. Mišur, D. Mitrović: On a generalization of compensated compactness in the $L^p L^q$ setting, Journal of Functional Analysis 268 (2015) 1904–1927.
- [4] J.M. Nordbotten, M.A. Celia: Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation, John Wiley and Sons, 2011.
- [5] E. Tadmor, T. Tao: Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Communications on Pure and Applied Mathematics 60 (2007) 1488– 1521.

Remark that for a regular flux f, the measure $\zeta(t, \mathbf{x}, \lambda)$ can be rewritten in the form $\zeta(t, \mathbf{x}, \lambda) = \overline{\zeta}(t, \mathbf{x}, \lambda) + \operatorname{sgn}(u - \lambda) \operatorname{div}_{\mathbf{x}} \mathfrak{f}(t, \mathbf{x}, \lambda),$ for a measure $\overline{\zeta}$. If $\overline{\zeta}$ is non-negative, then the quasi-solution u is an entropy solution to (9). For the uniqueness of such entropy solution, we additionally need the chain rule. **Theorem.** If function u is a quasi-solution to (9), then the function $h(t, \mathbf{x}, \lambda) = \operatorname{sgn}(u(t, \mathbf{x}) - \lambda) = -\partial_{\lambda} |u(t, \mathbf{x}) - \lambda|$ (14)is a weak solution to the following linear equation: $\partial_t h + \operatorname{div} \left(\mathfrak{F}(t, \mathbf{x}, \lambda)h\right) - D^2 \cdot \left[a(\lambda)h\right] = \partial_\lambda \zeta(t, \mathbf{x}, \lambda),$ (15)where $\mathfrak{F} = \mathfrak{f}'_{\lambda}$ and $a = A'_{\lambda}$. **Theorem.** Assume that $\mathfrak{F} = \mathfrak{f}'_{\lambda}$ and $a = A'_{\lambda}$ are such that the function $F(t, \mathbf{x}, \pi_P(\tau, \boldsymbol{\xi}, \lambda)) = i \frac{\tau + \langle \boldsymbol{\xi}, \mathfrak{F}(t, \mathbf{x}, \lambda) \rangle}{|(\tau, \boldsymbol{\xi})| + \langle A(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle} + \frac{\langle a(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle}{|(\tau, \boldsymbol{\xi})| + \langle A(\lambda)\boldsymbol{\xi}, \boldsymbol{\xi} \rangle}$ satisfies (6). Then, there exists a solution to (9) augmented with the initial conditions $u|_{t=0} = u_0(\mathbf{x})$, $\tilde{a} \leq u_0 \leq b.$