Motivation

In [${ }^{5}$], a problem of type (9) was considered, but with flux and diffusion independent In [${ }^{5}$], a problem of type (9) was considered, but with x and cfusion independen unknown u_{n} (by applying the Fourier transform). In our work (in progress) we consider the situation of inhomogeneous rough flux. In [${ }^{2}$], a problem of the type $\partial_{t} u=\triangle_{\mathbf{x}^{\prime}} u+\partial_{y} f(u)$, where $\mathbf{x}=\left(\mathbf{x}^{\prime}, y\right) \in \mathbf{R}^{d}$, wa considered. A matter is convected in the y-direction, while it is at the same type diffused in of nonlinear diffusion-convection model $\partial_{t} u=\triangle_{\mathrm{x}} u+\partial_{y} f(u)$.
In some applications, when a flow occurs in the highly heterogeneous porous media (e.g. in the CO_{2} sequestration problems [$\left.{ }^{4}\right]$), we get rough coefficients and flux in the resulting model.

Preliminaries from matrix analysis

Let A be a non-negative definite symmetric matrix of order d. we can write $A=\sigma^{T} \sigma$, $\xrightarrow{\text { Wimece }}$
where we assume that $\left[\sigma_{11}\right]$ is regular matrix of order $k \times k$. We will need a change of variables $\eta=M \xi$, where

$$
M=\left[\begin{array}{cc}
{\left[\sigma_{11}\right]} & {\left[\sigma_{12}\right]} \\
O & I
\end{array}\right]
$$

If $\left[\sigma_{11}\right]$ were not regular, then we would just define matrix M in a different way:

$$
M=\left[\begin{array}{cc}
{\left[\sigma_{11}\right]} & {\left[\sigma_{12}\right]} \\
\tilde{I}_{k} & \tilde{I}_{d-k}
\end{array}\right]
$$

where \tilde{I}_{k} is a matrix with ones on the main diagonal on the places of columns of $\left[\sigma_{11}\right]$ which do not form a linearly independent set, and zeroes otherwise. Similarly for \tilde{I}_{d-k}.

Fourier multipliers I

Let $a: \mathbf{R} \rightarrow M^{d \times d}$ be a non-negative definite matrix. Let

$$
\pi_{P}(\tau, \boldsymbol{\xi}, \lambda)=\frac{(\tau, \boldsymbol{\xi})}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle} .
$$

By Π we will denote the closure of the set $\pi_{P}\left(\mathbf{R} \times \mathbf{R}^{d} \times \mathbf{R}\right)$. Our next step is to show that for $\psi \in \mathrm{C}^{d+1}(\Pi)$ the composition $\psi\left(\pi_{P}\right)$ is a symbol of an $\mathrm{L}^{p}\left(\mathbf{R}^{d+1}\right)$ multiplier (here we consider λ to be fixed).
Lemma. Under conditions stated above, $\psi\left(\pi_{P}\right)$ is an L^{p} multiplier.
We will show that a Fourier multiplier with a symbol $\partial_{j}^{1 / 2} \circ \partial_{\lambda}\left(\frac{1}{\mid(\tau, \xi)+\langle\alpha(\lambda) \xi, \xi\rangle}\right)$ satisfie conditions of Marcinkiewicz's multiplier theorem.
The symbol of $\partial_{\lambda}\left(\mathcal{A}_{\mid(\tau, \xi)+\langle(\alpha)(\lambda) \xi, \xi\rangle}\right)$ is:

$$
\partial_{\lambda}\left(\frac{1}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}\right)=\frac{-\left\langle a^{\prime}(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\right\rangle}{(|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle)^{2}} .
$$

H-measures, H-distributions, and velocity averaging

H-distributions

Theorem. Let $\left(u_{n}(t, \mathbf{x}, \lambda)\right)$ be an uniformly compactly supported sequence weakly converging to zero in $\mathrm{L}^{p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right), p>1$. Let $\left(v_{n}(t, \mathbf{x})\right)$ be an uniformly compactly supported sequence bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$. Then for every $\varepsilon>0$ there exists a subsequence (not relabelled) and a continuous bilinear functional B on $\mathrm{L}^{p^{\prime}+\varepsilon}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right) \otimes \mathrm{C}^{d+1}(\Pi)$ such that for every $\varphi \in \mathrm{L}^{p^{\prime}+\varepsilon}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right)$ and $\psi \in \mathrm{C}^{d+1}(\Pi)$ it holds
$B(\varphi, \psi)=\lim _{n \rightarrow \infty} \int_{\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}} \varphi(t, \mathbf{x}, \lambda) u_{n}(t, \mathbf{x}, \lambda) \overline{\mathcal{A}_{\psi\left(\pi_{P}(\tau, \xi, \lambda)\right)}\left(v_{n}\right)(t, \mathbf{x})} d t d \mathbf{x} d \lambda$.
Furthermore, the bound of functional B is $C_{u} C_{v, s} C_{d, s} \sqrt[s]{C_{\lambda}}$, where C_{u} is the L^{p}-bound of Furthermore, the bound of functional B is $C_{u} C_{v, s} C_{d, s} \sqrt[s]{C_{\lambda}}$, where C_{u} is the L^{p}-bound of 1 ; and $C_{d, s}$ is a constant from the Marcinkiewicz multiplier theorem.

Theorem. The bilinear functional B from the previous Theorem can be extended by continuity to a functional on $\mathrm{L}^{p^{\prime}+\varepsilon}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathrm{C}^{d+1}(\Pi)\right)$. The bound of the extension is equal to $2 C_{u} C_{v, s} C_{d, s} C_{\lambda}$.

H -measures

Theorem. If $\left(u_{n}\right)_{n \in \mathbf{N}}$ is a sequence in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{R}^{r}\right), \Omega \subset \mathbf{R}^{d+1}$, such that $u_{n} \rightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega)$, then there exists subsequence $\left(u_{n^{\prime}} n^{\prime} \subset\left(u_{n}\right) n\right.$ and positive complex bounded $\underset{\substack{\text { measure }}}{\mathrm{C}\left(\mathrm{S}^{d}\right)}=\left\{\mu^{j k}\right\}_{j, k=1, \ldots, r}$ on $\mathbf{R}^{d+1} \times \mathrm{S}^{d}$ such that for all $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}(\Omega)$ and $\psi \in$ $\mathrm{C}\left(\mathrm{S}^{d}\right)$,

$$
\begin{aligned}
& \lim _{n^{\prime} \rightarrow \infty} \int_{\Omega}\left(\varphi_{1} u_{n^{j}}^{j}\right)(\xi) \overline{\mathcal{A}_{\psi\left(\frac{\xi}{f}\right)}\left(\varphi_{2} u_{n}^{k}\right)(\xi)} d \mathbf{x}=\left\langle\mu^{j k}, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle \\
& \quad=\int_{\mathbf{R}^{d+1} \times \mathbf{S}^{d}} \varphi_{1}(\mathbf{x}) \overline{\varphi_{2}(\mathbf{x}) \psi(\xi) d \mu^{j k}(\mathbf{x}, \boldsymbol{\xi})}
\end{aligned}
$$

where $\mathcal{A}_{\psi\left(\frac{\xi}{\xi \mid}\right)}$ is the multiplier operator with the symbol $\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)$.

Preliminaries from matrix analysis II

Clearly, it is a regular change of variables and it holds

$$
\boldsymbol{\eta}=(\tilde{\boldsymbol{\eta}}, \stackrel{\circ}{\boldsymbol{\eta}})=\left([\sigma \boldsymbol{\xi}]_{1, \ldots, k}, \xi_{k+1}, \ldots, \xi_{d}\right) .
$$

Its inverse is given by

$$
M^{-1}=\left[\begin{array}{cc}
{\left[\sigma_{11}\right]^{-1}} & -\left[\sigma_{12}\right]\left[\sigma_{11}\right]^{-1} \\
O & I
\end{array}\right]
$$

Since A is only assumed to be non-negative definite, we can not obtain the bound of $\left\|M^{-1}\right\|_{2}$ only in terms of A. For matrix M one easily gets $\|M\|_{2} \leq \max \left\{1,\|A\|_{2}\right\}+$ $\|A\|_{2}$.
In the case where $A(t)$ depends continuously only one one parameter, we get that the corresponding norms depend continuously on t as well.

Fourier multipliers II

Using a representation $a(\lambda)=\sigma(\lambda)^{T} \sigma(\lambda)$ and the change of variables $\boldsymbol{\eta}=M \boldsymbol{\xi}$, we have $\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle=|\tilde{\boldsymbol{\eta}}|^{2}, \quad \partial_{\lambda}(\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle)=2\left\langle\sigma^{\prime}(\lambda) M^{-1} \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}\right\rangle$.
In the new coordinates, the symbol has the form:

$$
\partial_{\lambda}\left(\frac{1}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}\right)=\frac{-2\left\langle\sigma^{\prime}(\lambda) M^{-1} \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}\right\rangle}{\left(\left|\left(\tau, M^{-1} \boldsymbol{\eta}\right)\right|+|\tilde{\boldsymbol{\eta}}|^{2}\right)^{2}}
$$

The symbol of $\partial_{j}^{1 / 2} \circ \partial_{\lambda}\left(\frac{1}{|(\tau, \xi)|+\langle\langle(\lambda) \xi, \xi\rangle}\right)$ is

$$
\frac{-2\left(2 \pi i \eta_{j}\right)^{1 / 2}\left\langle\sigma^{\prime}(\lambda) M^{-1} \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}\right\rangle}{\left(\left|\left(\tau, M^{-1} \boldsymbol{\eta}\right)\right|+|\tilde{\boldsymbol{\eta}}|^{2}\right)^{2}},
$$

but, for reasons of simplicity, we will show the result for the following symbol (which will yield the same result):

$$
\Psi(\tau, \boldsymbol{\eta}, \lambda)=\frac{-2\left(1+|\boldsymbol{\eta}|^{2}\right)^{1 / 4}\left\langle\sigma^{\prime}(\lambda) M^{-1} \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}\right\rangle}{\left(\left|\left(\tau, M^{-1} \boldsymbol{\eta}\right)\right|+|\tilde{\boldsymbol{\eta}}|^{2}\right)^{2}}
$$

(4)

H-measure see only derivatives of the same highest order. For example, we can change the scaling and put $\boldsymbol{\xi} /\left(\left|\left(\xi_{1}, \ldots, \xi_{k}\right)\right|+\left|\left(\xi_{k+1}, \ldots, \xi_{d}\right)\right|^{2}\right)$ instead of $\boldsymbol{\xi} /|\boldsymbol{\xi}|$, but such H -measure will be able to see the first order derivatives with respect to $\left(x_{1}, \ldots, x_{k}\right)$ and second order derivatives with respect to $\left(x_{i+1}, \ldots, x_{d}\right)$.
this situation by considering multiplier operators with symbols of the form

$$
\psi\left(\frac{(\tau, \boldsymbol{\xi})}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}\right), \psi \in \mathrm{C}\left(\mathbf{R}^{d}\right),
$$

where the matrix a represents the diffusion matrix in the degenerate parabolic equation. By $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$ we shall denote the Fourier multiplier operator with respect to (t, \mathbf{x})-variables.

Marczinkiewicz multiplier result

Corollary. Suppose that $\psi \in \mathrm{C}^{d}\left(\mathbf{R}^{d} \backslash \cup_{j=1}^{d}\left\{\xi_{j}=0\right\}\right)$ is a bounded function such that for some constant $C>0$ it hold

$$
\left|\xi^{\alpha} \partial^{\alpha} \psi(\xi)\right| \leq C, \quad \xi \in \mathbf{R}^{d} \backslash \cup_{j=1}^{d}\left\{\xi_{j}=0\right\}
$$

for every multi-index $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbf{N}_{0}^{d}$ such that $|\boldsymbol{\alpha}|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{d} \leq d$. Then, the function ψ is an L^{p}-multiplier for $p \in\langle 1, \infty\rangle$, and the operator norm of \mathcal{A}_{ψ} equals to $C_{d, p} \cdot C$, where $C_{d, p}$ depends only on p and d

Lemma. If ψ is a symbol of a multiplier bounded on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, then the functions defined by $\psi\left(\cdot+\mathbf{y}_{0}\right), \mathbf{y}_{0} \in \mathbf{R}^{d}, \psi(\lambda \cdot), \lambda>0$, and $\psi(Q \cdot), Q$ orthogonal matrix, are symbols of multipliers bounded on L^{p} with the same operator norm as \mathcal{A}_{ψ}.

Fourier multipliers III

We will assume the following uniform bounds:
$0<c \leq\left\|M^{-1}\right\|_{2} \leq \widehat{C}<\infty, \quad\|M\|_{2} \leq \widetilde{C}, \quad\left\|\sigma^{\prime}\right\|_{2} \leq \bar{C}$,
where $c, \widehat{C}, \widetilde{C}$ and \bar{C} are positive numbers. We already have $\widetilde{C}=\max \left\{1,\|a\|_{2}\right\}+\|a\|_{2}$ and $c=1 / \widetilde{C}$. For \widehat{C} we do not have a uniform bound, so this together with assumption on \bar{C} are the only new assumptions here.

Lemma. Under the conditions (5), Ψ given in (4) is an L^{p} multiplier.

Corollary

- Let $p \in\langle 1, \infty\rangle$. Then $\partial_{\lambda}\left(\mathcal{A}_{\mid(\tau, \xi)+\dagger(a(\lambda) \xi, \xi)}\right)$ continuously maps $\mathrm{L}^{p}\left(\mathbf{R} \times \mathbf{R}^{d}\right)$ to $\mathrm{W}^{1 / 2, p}\left(\mathbf{R} \times \mathbf{R}^{d}\right)$
- Let $r>2(d+1)$. Then $\partial_{\lambda}\left(\mathcal{A}_{\mid(\tau, \xi)+\{(\alpha) \xi, \xi\rangle}\right)$ continuously maps $\mathrm{L}^{r}\left(\mathbf{R} \times \mathbf{R}^{d}\right)$ to $\mathrm{C}^{0}\left(\mathbf{R} \times \mathbf{R}^{d}\right)$.

H -measures

Corollary. If the sequence $\left(u_{n}(t, \mathbf{x}, \lambda)\right)$ is bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right), p>2$, then $\mu \in \mathrm{L}_{w *}^{\left(p^{\prime}+\varepsilon\right)^{\prime}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathcal{M}(\Pi)\right)$, where $\mathcal{M}(\Pi)$ is the space of Radon measures.

Lemma. Let $\mu \in \mathrm{L}_{w *}^{\left(p^{\prime}+\varepsilon\right)^{\prime}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathcal{M}(\Pi)\right)$ be the functional defined in the previous Corollary. Let $K_{\lambda} \subset \mathbf{R}$ be a fixed arbitrary compact set.
If the function $F \in \mathrm{C}_{0}\left(\mathbf{R}^{+} \times \mathbf{R}^{d+1} \times \Pi\right.$) is such that for some
II) is such that for some $\alpha>0$ exists $N>0$ suc that
$\operatorname{esssup}_{(t, \mathbf{x}) \in \mathbf{R}^{+} \times \mathbf{R}^{d}} \sup _{|(\tau, \boldsymbol{\xi})|>N} \operatorname{meas}\left\{\lambda \in K_{\lambda}:\left|F\left(t, \mathbf{x}, \lambda, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)\right)\right| \leq \sigma\right\} \leq \sigma^{\alpha}$
and for a.e. $(t, \mathbf{x}, \lambda) \in \mathbf{R}^{+} \times \mathbf{R}^{d+1}$ it holds (in the sense of the dual pairing betwee $\mathcal{M}\left(\mathbf{R}^{d+1}\right)$ and $\mathrm{C}_{0}\left(\mathbf{R}^{d+1}\right)$, where $\mu \circ \pi_{P}$ is push-forward of measure μ by projection π_{P}
for simplicity reasons we use notation $\mu \circ \pi_{P}$ instead of $\left.\left(\pi_{P}\right)_{*} \mu\right)$:
then

$$
\left\langle\left(\mu \circ \pi_{P}(\cdot, \cdot, \lambda)\right)(t, \mathbf{x}, \lambda), F\left(t, \mathbf{x}, \lambda, \pi_{P}(\cdot, \cdot, \lambda)\right)\right\rangle \equiv 0,
$$

$\mu \equiv 0$.

Velocity averaging

$\partial_{t} u_{n}(t, \mathbf{x}, \lambda)+\operatorname{div}\left(f(t, \mathbf{x}, \lambda) u_{n}(t, \mathbf{x}, \lambda)\right)$
$=\operatorname{div}\left(\operatorname{div}\left(a(\lambda) u_{n}(t, \mathbf{x}, \lambda)\right)\right)+\partial_{\lambda} G_{n}(t, \mathbf{x}, \lambda)+\operatorname{div} P_{n}(t, \mathbf{x}, \lambda)$,
a) (u_{n}) weakly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right), q \geq 2$;
b) $a \in \mathrm{C}^{0,1}\left(\mathbf{R} ; \mathbf{R}^{d \times d}\right)$;
c) $f \in \mathrm{~L}^{p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathbf{R}^{d}\right), p>1$
d) $G_{n} \rightarrow 0$ strongly in $\mathrm{L}^{r_{0}}\left(\mathbf{R} ; \mathrm{W}^{-1 / 2, r_{0}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)\right)$ for some $r_{0} \in\langle 1, \infty\rangle$;
e) $P_{n} \rightarrow 0$ strongly in $\mathrm{L}^{p_{0}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathbf{R}^{d}\right)$ for some $p_{0} \in\langle 1, \infty\rangle$.

From assumptions on a it follows that $\sigma \in \mathrm{C}^{0,1}\left(\mathbf{R} ; \mathbf{R}^{d \times d}\right)$
Theorem. Assume that the function
$F\left(t, \mathbf{x}, \lambda, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)\right)=i \frac{\tau+\langle\boldsymbol{\xi}, f(t, \mathbf{x}, \lambda)\rangle}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}+\frac{\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}$
satisfies non-degeneracy condition (6). Then, for any $\rho \in \mathrm{C}_{c}^{1}(\mathbf{R})$, the sequence $\left(\int_{\mathbf{R}} \rho(\lambda) u_{n}(t, \mathbf{x}, \lambda) d \lambda\right)$ is strongly precompact in $\mathrm{L}_{\text {loc }}^{1}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$.

Degenerate parabolic equation

Cauchy problem

$$
\partial_{t} u+\operatorname{div}_{\mathbf{x}} \mathfrak{f}(t, \mathbf{x}, u)=D^{2} \cdot A(u)
$$

$$
\left.u\right|_{t=0}=u_{0}(\mathbf{x}) \in \mathrm{L}^{1}\left(\mathbf{R}^{d}\right) \cap \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right) .
$$

The equation describes a flow governed by

- the convection effects (bulk motion of particles) which are represented by the first order terms;
- diffusion effects which are represented by the second order term and the matrix $A(\lambda)=\left[A_{i j}(\lambda)\right]_{i, j=1, \ldots, d}$ (more precisely its derivative with respect to λ) describes direction and intensity of the diffusion,
The equation is degenerate in the sense that the derivative of the diffusion matrix $A^{\prime}=a$ can be equal to zero in some direction. Roughly speaking, if this is the case (i.e. if for some vector $\boldsymbol{\xi} \in \mathbf{R}^{d}$ we have $\left\langle A^{\prime}(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\right\rangle=0$), then diffusion effects do not exist at th
point \mathbf{x} for the state λ in the direction $\boldsymbol{\xi}$.
Example. $A(u)=\left[\begin{array}{cc}u & -\frac{u^{2}}{2} \\ -\frac{u^{2}}{2} & \frac{u^{5}}{3}\end{array}\right], \quad a(\lambda)=\left[\begin{array}{cc}1 & -\lambda \\ -\lambda & \lambda^{2}\end{array}\right], \quad M(\lambda)=\left[\begin{array}{cc}1 & -\lambda \\ 0 & 1\end{array}\right]$

Assumptions

The initial data are bounded between a and b and the flux function annuls at $\lambda=\tilde{a}$ and $\lambda=\tilde{b}$:
$\tilde{a} \leq u_{0}(\mathbf{x}) \leq \tilde{b} \quad$ and $\quad \mathfrak{f}(t, \mathbf{x}, \tilde{a})=\mathfrak{f}(t, \mathbf{x}, \tilde{b})=0$ a.e. $(t, \mathbf{x}) \in \mathbf{R}^{+} \times \mathbf{R}^{d}$. (11)
The convective term $\mathfrak{f}(t, \mathbf{x}, \lambda)$ is continuously differentiable with respect to $\lambda \in \mathbf{R}$ and it belongs to $\mathrm{L}^{r}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times[\tilde{a}, \tilde{b}]\right), r>1$ We also assume:

$$
\begin{equation*}
\operatorname{div}_{\mathbf{x}} \mathfrak{f}(t, \mathbf{x}, \lambda) \in \mathcal{M}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times[\tilde{a}, \tilde{,}]\right) . \tag{12}
\end{equation*}
$$

The matrix $A(\lambda)=\left(A_{i j}(\lambda)\right)_{i, j=1, \ldots, d} \in \mathrm{C}^{1,1}\left(\mathbf{R} ; \mathbf{R}^{d \times d}\right)$, is non-decreasing with respect to $\lambda \in \mathbf{R}$, i.e. the (diffusion) matrix $a(\lambda)=A^{\prime}(\lambda)$ satisfies
$\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle \geq 0$.

References

[1] Q.G. Chen, K.H. Karlsen: Quasilinear Anisotropic Degenerate Parabolic Equations with Time-Space Dependent Diffusion Coefficients, Comm. Pure and Applied Analysis 4 (2005) 241-266.
[2] M. Escobedo, J.L. Vazquez, Enrike Zuazua: Entropy solutions for diffusion-convection equations with partial diffusivity, Transactions of the American Mathematical Society 343 (1994) 829-842.
[3] M. Mišur, D. Mitrović: On a generalization of compensated compactness in the $L^{p}-L^{q}$ setting, Journal of Functional Analysis 268 (2015) 1904-1927.
[4] J.M. Nordbotten, M.A. Celia: Geological Storage of CO2: Modeling Approaches for Large-Scale Simulation, John Wiley and Sons, 2011.
[5] E. Tadmor, T. Tao: Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Communications on Pure and Applied Mathematics 60 (2007) 14881521.

Quasi-solution and kinetic formulation

Definition. A measurable function u defined on $\mathbf{R}^{+} \times \mathbf{R}$ is called a quasi-solution to (9) if $\mathfrak{f}_{k}(t, \mathbf{x}, u), A_{k j}(u) \in \mathrm{L}_{l o c}^{1}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right), k, j=1, \ldots, d$, and for a.e. $\lambda \in \mathbf{R}$ the Kruzhkov type entropy equality holds

$$
\begin{gather*}
\partial_{t}|u-\lambda|+\operatorname{div}[\operatorname{sgn}(u-\lambda)(\mathfrak{f}(t, \mathbf{x}, u)-\mathfrak{f}(t, \mathbf{x}, \lambda)]] \tag{13}\\
-D^{2} \cdot[\operatorname{sgn}(u-\lambda)(A(u)-A(\lambda))]=-\zeta(t, \mathbf{x}, \lambda),
\end{gather*}
$$

where $\zeta \in \mathrm{C}\left(\mathbf{R}_{\lambda} ; w \star-\mathcal{M}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)\right)$ we call the quasi-entropy defect measure
Remark that for a regular flux \mathfrak{f}, the measure $\zeta(t, \mathbf{x}, \lambda)$ can be rewritten in the form $\zeta(t, \mathbf{x}, \lambda)=\bar{\zeta}(t, \mathbf{x}, \lambda)+\operatorname{sgn}(u-\lambda) \operatorname{div}_{\mathbf{x}} \mathfrak{f}(t, \mathbf{x}, \lambda)$, for a measure $\bar{\zeta}$. If $\bar{\zeta}$ is non-negative, then the quasi-solution u is an entropy solution to (9). For the uniqueness of such entropy solution, we additionally need the chain rule.
Theorem. If function u is a quasi-solution to (9), then the function
$h(t, \mathbf{x}, \lambda)=\operatorname{sgn}(u(t, \mathbf{x})-\lambda)=-\partial_{\lambda}|u(t, \mathbf{x})-\lambda|$
(14)
is a weak solution to the following linear equation.

$$
\partial_{t} h+\operatorname{div}(\mathfrak{F}(t, \mathbf{x}, \lambda) h)-D^{2} \cdot[a(\lambda) h]=\partial_{\lambda} \zeta(t, \mathbf{x}, \lambda),
$$

(15)
where $\mathfrak{F}=f_{\lambda}^{\prime}$ and $a=A_{\lambda}^{\prime}$.
Theorem. Assume that $\mathfrak{F}=f_{\lambda}^{\prime}$ and $a=A_{\lambda}^{\prime}$ are such that the function
$F\left(t, \mathbf{x}, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)\right)=i \frac{\tau+\langle\boldsymbol{\xi}, \mathfrak{F}(t, \mathbf{x}, \lambda)\rangle}{|(\tau, \boldsymbol{\xi})|+\langle A(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}+\frac{\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}{|(\tau, \boldsymbol{\xi})|+\langle A(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}$
satisfies (6)
Then, there exists a solution to (9) augmented with the initial conditions $\left.u\right|_{t=0}=u_{0}(\mathbf{x})$, $\tilde{a} \leq u_{0} \leq \tilde{b}$.

