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Motivation
In [5], a problem of type (9) was considered, but with flux and diffusion independent
of t and x. The homogeneity of the flux allowed the separation of coefficients from the
unknown un (by applying the Fourier transform). In our work (in progress) we consider
the situation of inhomogeneous rough flux.

In [2], a problem of the type ∂tu = 4x′u + ∂yf(u), where x = (x′, y) ∈ Rd, was
considered. A matter is convected in the y-direction, while it is at the same type diffused in
all other orthogonal directions. Such problem arose while studying asymptotic behaviour
of nonlinear diffusion-convection model ∂tu = 4xu+ ∂yf(u).

In some applications, when a flow occurs in the highly heterogeneous porous media (e.g. in
the CO2 sequestration problems [4]), we get rough coefficients and flux in the resulting
model.

H-measures

Theorem. If (un)n∈N is a sequence in L2
loc(Ω;Rr), Ω ⊂ Rd+1, such that un ⇀ 0 in

L2
loc(Ω), then there exists subsequence (un′)n′ ⊂ (un)n and positive complex bounded

measure µ = {µjk}j,k=1,...,r on Rd+1 × Sd such that for all ϕ1, ϕ2 ∈ C0(Ω) and ψ ∈
C(Sd),

lim
n′→∞

∫
Ω

(ϕ1u
j
n′)(ξ)Aψ( ξ

|ξ| )
(ϕ2ukn′)(ξ)dx = 〈µjk, ϕ1ϕ̄2ψ〉

=

∫
Rd+1×Sd

ϕ1(x)ϕ2(x)ψ(ξ)dµjk(x, ξ)

(1)

where Aψ( ξ
|ξ| )

is the multiplier operator with the symbol ψ(ξ/|ξ|).

H-measure see only derivatives of the same highest order. For example, we can change the
scaling and put ξ/(|(ξ1, . . . , ξk)|+|(ξk+1, . . . , ξd)|2) instead of ξ/|ξ|, but such H-measure
will be able to see the first order derivatives with respect to (x1, . . . , xk) and second order
derivatives with respect to (xi+1, . . . , xd).
In other words, no changing of the highest order of the equation is permitted. We overcome
this situation by considering multiplier operators with symbols of the form

ψ

(
(τ, ξ)

|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

)
, ψ ∈ C(Rd),

where the matrix a represents the diffusion matrix in the degenerate parabolic equation.
By Aψ : Lp(R+ ×Rd)→ Lp(R+ ×Rd) we shall denote the Fourier multiplier operator
with respect to (t,x)-variables.

Preliminaries from matrix analysis
Let A be a non-negative definite symmetric matrix of order d. we can write A = σTσ,
where

σ =

[
[σ11] [σ12]
O O

]
,

where we assume that [σ11] is regular matrix of order k × k. We will need a change of
variables η = Mξ, where

M =

[
[σ11] [σ12]
O I

]
.

If [σ11] were not regular, then we would just define matrix M in a different way:

M =

[
[σ11] [σ12]

Ĩk Ĩd−k

]
,

where Ĩk is a matrix with ones on the main diagonal on the places of columns of [σ11]
which do not form a linearly independent set, and zeroes otherwise. Similarly for Ĩd−k.

Preliminaries from matrix analysis II
Clearly, it is a regular change of variables and it holds

η = (η̃,
◦
η) = ([σξ]1,...,k, ξk+1, . . . , ξd). (2)

Its inverse is given by:

M−1 =

[
[σ11]−1 −[σ12][σ11]−1

O I

]
.

Since A is only assumed to be non-negative definite, we can not obtain the bound of
‖M−1‖2 only in terms of A. For matrix M one easily gets ‖M‖2 ≤ max {1, ‖A‖2} +
‖A‖2.
In the case where A(t) depends continuously only one one parameter, we get that the
corresponding norms depend continuously on t as well.

Marczinkiewicz multiplier result

Corollary. Suppose that ψ ∈ Cd(Rd\ ∪dj=1 {ξj = 0}) is a bounded function such that
for some constant C > 0 it holds

|ξα∂αψ(ξ)| ≤ C, ξ ∈ Rd\ ∪dj=1 {ξj = 0} (3)

for every multi-index α = (α1, . . . , αd) ∈ Nd
0 such that |α| = α1 + α2 + · · ·+ αd ≤ d.

Then, the function ψ is an Lp-multiplier for p ∈ 〈1,∞〉, and the operator norm of Aψ
equals to Cd,p · C, where Cd,p depends only on p and d.

Lemma. If ψ is a symbol of a multiplier bounded on Lp(Rd), then the functions defined
by ψ( · + y0), y0 ∈ Rd, ψ(λ · ), λ > 0, and ψ(Q · ), Q orthogonal matrix, are symbols
of multipliers bounded on Lp with the same operator norm as Aψ .

Fourier multipliers I
Let a : R→Md×d be a non-negative definite matrix. Let

πP (τ, ξ, λ) =
(τ, ξ)

|(τ, ξ)|+ 〈a(λ)ξ, ξ〉
.

By Π we will denote the closure of the set πP (R×Rd×R). Our next step is to show that
for ψ ∈ Cd+1(Π) the composition ψ(πP ) is a symbol of an Lp(Rd+1) multiplier (here,
we consider λ to be fixed).

Lemma. Under conditions stated above, ψ(πP ) is an Lp multiplier.

We will show that a Fourier multiplier with a symbol ∂1/2
j ◦∂λ

(
1

|(τ,ξ)|+〈a(λ)ξ,ξ〉

)
satisfies

conditions of Marcinkiewicz’s multiplier theorem.
The symbol of ∂λ

(
A 1

|(τ,ξ)|+〈a(λ)ξ,ξ〉

)
is:

∂λ

(
1

|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

)
=

−〈a′(λ)ξ, ξ〉
(|(τ, ξ)|+ 〈a(λ)ξ, ξ〉)2 .

Fourier multipliers II
Using a representation a(λ) = σ(λ)Tσ(λ) and the change of variables η = Mξ, we have

〈a(λ)ξ, ξ〉 = |η̃|2, ∂λ (〈a(λ)ξ, ξ〉) = 2〈σ′(λ)M−1η, η̃〉.

In the new coordinates, the symbol has the form:

∂λ

(
1

|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

)
=
−2
〈
σ′(λ)M−1η, η̃

〉
( |(τ,M−1η)|+ |η̃|2 )

2 .

The symbol of ∂1/2
j ◦ ∂λ

(
1

|(τ,ξ)|+〈a(λ)ξ,ξ〉

)
is:

−2(2πiηj)
1/2
〈
σ′(λ)M−1η, η̃

〉
( |(τ,M−1η)|+ |η̃|2 )

2 ,

but, for reasons of simplicity, we will show the result for the following symbol (which will
yield the same result):

Ψ(τ,η, λ) =
−2(1 + |η|2)1/4

〈
σ′(λ)M−1η, η̃

〉
( |(τ,M−1η)|+ |η̃|2 )

2 . (4)

Fourier multipliers III
We will assume the following uniform bounds:

0 < c ≤ ‖M−1‖2 ≤ Ĉ <∞ , ‖M‖2 ≤ C̃ , ‖σ′‖2 ≤ C̄ , (5)

where c, Ĉ, C̃ and C̄ are positive numbers. We already have C̃ = max{1, ‖a‖2} + ‖a‖2
and c = 1/C̃. For Ĉ we do not have a uniform bound, so this together with assumption on
C̄ are the only new assumptions here.

Lemma. Under the conditions (5), Ψ given in (4) is an Lp multiplier.

Corollary.

• Let p ∈ 〈1,∞〉. Then ∂λ
(
A 1

|(τ,ξ)|+〈a(λ)ξ,ξ〉

)
continuously maps Lp(R × Rd) to

W1/2,p(R×Rd).

• Let r > 2(d + 1). Then ∂λ
(
A 1

|(τ,ξ)|+〈a(λ)ξ,ξ〉

)
continuously maps Lr(R ×Rd) to

C0(R×Rd).

H-measures, H-distributions, and velocity averaging

H-distributions

Theorem. Let (un(t,x, λ)) be an uniformly compactly supported sequence weakly
converging to zero in Lp(R+ × Rd × R), p > 1. Let (vn(t,x)) be an uniformly
compactly supported sequence bounded in L∞(R+ × Rd). Then for every ε > 0
there exists a subsequence (not relabelled) and a continuous bilinear functional B on
Lp

′+ε(R+ ×Rd ×R) ⊗ Cd+1(Π) such that for every ϕ ∈ Lp
′+ε(R+ ×Rd ×R) and

ψ ∈ Cd+1(Π) it holds

B(ϕ,ψ) = lim
n→∞

∫
R+×Rd×R

ϕ(t,x, λ)un(t,x, λ)Aψ(πP (τ,ξ,λ))(vn)(t,x) dtdxdλ.

Furthermore, the bound of functionalB is CuCv,sCd,s
s
√
Cλ, where Cu is the Lp-bound of

sequence (un); Cv,s is the Ls-bound of the sequence (vn), where 1/p+1/(p′+ε)+1/s =
1; and Cd,s is a constant from the Marcinkiewicz multiplier theorem.

Theorem. The bilinear functional B from the previous Theorem can be extended by
continuity to a functional on Lp

′+ε(R+×Rd×R; Cd+1(Π)). The bound of the extension
is equal to 2CuCv,sCd,sCλ.

H-measures

Corollary. If the sequence (un(t,x, λ)) is bounded in Lp(R+ ×Rd ×R), p > 2, then
µ ∈ L

(p′+ε)′

w∗ (R+ ×Rd ×R;M(Π)), whereM(Π) is the space of Radon measures.

Lemma. Let µ ∈ L
(p′+ε)′

w∗ (R+ × Rd × R;M(Π)) be the functional defined in the
previous Corollary. Let Kλ ⊂ R be a fixed arbitrary compact set.
If the function F ∈ C0(R+ ×Rd+1 ×Π) is such that for some α > 0 exists N > 0 such
that

esssup(t,x)∈R+×Rd sup
|(τ,ξ)|>N

meas{λ ∈ Kλ : |F (t,x, λ, πP (τ, ξ, λ)) | ≤ σ} ≤ σα

(6)
and for a.e. (t,x, λ) ∈ R+ × Rd+1 it holds (in the sense of the dual pairing between
M(Rd+1) and C0(Rd+1), where µ ◦ πP is push-forward of measure µ by projection πP ;
for simplicity reasons we use notation µ ◦ πP instead of (πP )∗µ):

〈 (µ ◦ πP (·, ·, λ)) (t,x, λ), F (t,x, λ, πP (·, ·, λ)) 〉 ≡ 0 , (7)

then
µ ≡ 0.

Velocity averaging

∂tun(t,x, λ) + div (f(t,x, λ)un(t,x, λ))

= div
(
div (a(λ)un(t,x, λ))

)
+ ∂λGn(t,x, λ) + divPn(t,x, λ),

(8)

where

a) (un) weakly converges to zero in Lq(R+ ×Rd ×R), q ≥ 2;

b) a ∈ C0,1(R;Rd×d);

c) f ∈ Lp(R+ ×Rd ×R;Rd), p > 1;

d) Gn → 0 strongly in Lr0(R; W−1/2,r0(R+ ×Rd)) for some r0 ∈ 〈1,∞〉;

e) Pn → 0 strongly in Lp0(R+ ×Rd ×R;Rd) for some p0 ∈ 〈1,∞〉.

From assumptions on a it follows that σ ∈ C0,1(R;Rd×d).

Theorem. Assume that the function

F (t,x, λ, πP (τ, ξ, λ)) = i
τ + 〈ξ, f(t,x, λ)〉
|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

+
〈a(λ)ξ, ξ〉

|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

satisfies non-degeneracy condition (6). Then, for any ρ ∈ C1
c(R), the sequence

(
∫
R
ρ(λ)un(t,x, λ)dλ) is strongly precompact in L1

loc(R
+ ×Rd).

Degenerate parabolic equation

Cauchy problem

∂tu+ divxf(t,x, u) = D2 ·A(u) (9)

u|t=0 = u0(x) ∈ L1(Rd) ∩ L∞(Rd). (10)

The equation describes a flow governed by

• the convection effects (bulk motion of particles) which are represented by the first
order terms;

• diffusion effects which are represented by the second order term and the matrix
A(λ) = [Aij(λ)]i,j=1,...,d (more precisely its derivative with respect to λ) describes
direction and intensity of the diffusion;

The equation is degenerate in the sense that the derivative of the diffusion matrix A′ = a
can be equal to zero in some direction. Roughly speaking, if this is the case (i.e. if for
some vector ξ ∈ Rd we have 〈A′(λ)ξ, ξ〉 = 0), then diffusion effects do not exist at the
point x for the state λ in the direction ξ.

Example. A(u) =

[
u −u

2

2

−u
2

2
u3

3

]
, a(λ) =

[
1 −λ
−λ λ2

]
, M(λ) =

[
1 −λ
0 1

]
.

Assumptions
• The initial data are bounded between a and b and the flux function annuls at λ = ã

and λ = b̃:

ã ≤ u0(x) ≤ b̃ and f(t,x, ã) = f(t,x, b̃) = 0 a.e. (t,x) ∈ R+ ×Rd. (11)

• The convective term f(t,x, λ) is continuously differentiable with respect to λ ∈ R,
and it belongs to Lr(R+ ×Rd × [ã, b̃]), r > 1

We also assume:

divx f(t,x, λ) ∈M(R+ ×Rd × [ã, b̃]). (12)

• The matrix A(λ) = (Aij(λ))i,j=1,...,d ∈ C1,1(R;Rd×d), is non-decreasing with
respect to λ ∈ R, i.e. the (diffusion) matrix a(λ) = A′(λ) satisfies

〈a(λ)ξ, ξ〉 ≥ 0.

Quasi-solution and kinetic formulation
Definition. A measurable function u defined on R+ ×R is called a quasi-solution to (9)
if fk(t,x, u), Akj(u) ∈ L1

loc(R
+×Rd), k, j = 1, . . . , d, and for a.e. λ ∈ R the Kruzhkov

type entropy equality holds

∂t|u− λ|+ div [sgn(u− λ)(f(t,x, u)− f(t,x, λ)]] (13)

−D2 · [sgn(u− λ)(A(u)−A(λ))] = −ζ(t,x, λ),

where ζ ∈ C(Rλ;w ?−M(R+ ×Rd)) we call the quasi-entropy defect measure.

Remark that for a regular flux f, the measure ζ(t,x, λ) can be rewritten in the form
ζ(t,x, λ) = ζ̄(t,x, λ) + sgn(u − λ)divx f(t,x, λ), for a measure ζ̄. If ζ̄ is non-negative,
then the quasi-solution u is an entropy solution to (9). For the uniqueness of such entropy
solution, we additionally need the chain rule.

Theorem. If function u is a quasi-solution to (9), then the function

h(t,x, λ) = sgn(u(t,x)− λ) = −∂λ|u(t,x)− λ| (14)

is a weak solution to the following linear equation:

∂th+ div (F(t,x, λ)h)−D2 · [a(λ)h] = ∂λζ(t,x, λ) , (15)

where F = f′λ and a = A′λ.

Theorem. Assume that F = f′λ and a = A′λ are such that the function

F (t,x, πP (τ, ξ, λ)) = i
τ + 〈ξ,F(t,x, λ)〉
|(τ, ξ)|+ 〈A(λ)ξ, ξ〉

+
〈a(λ)ξ, ξ〉

|(τ, ξ)|+ 〈A(λ)ξ, ξ〉

satisfies (6).
Then, there exists a solution to (9) augmented with the initial conditions u|t=0 = u0(x),
ã ≤ u0 ≤ b̃.
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