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H-measures

Theorem. If (un)n∈N is a sequence in L2
loc(Ω;Rr), Ω ⊂ Rd+1, such that un ⇀ 0 in

L2
loc(Ω), then there exists subsequence (un′)n′ ⊂ (un)n and positive complex bounded

measure µ = {µjk}j,k=1,...,r on Rd+1 × Sd such that for all ϕ1, ϕ2 ∈ C0(Ω) and ψ ∈
C(Sd),

lim
n′→∞

∫
Ω

(ϕ1u
j
n′)(ξ)Aψ( ξ

|ξ| )
(ϕ2ukn′)(ξ)dx = 〈µjk, ϕ1ϕ̄2ψ〉

=

∫
Rd+1×Sd

ϕ1(x)ϕ2(x)ψ(ξ)dµjk(x, ξ)

where Aψ( ξ
|ξ| )

is the multiplier operator with the symbol ψ(ξ/|ξ|).

H-distributions

Theorem. If un −⇀ 0 in Lploc(Rd) and vn
∗−⇀ v in Lqloc(Rd) for some p ∈ 〈1,∞〉

and q ≥ p′, then there exist subsequences (un′), (vn′) and a complex valued distribution
µ ∈ D′(Rd × Sd−1), such that, for every ϕ1, ϕ2 ∈ C∞c (Rd) and ψ ∈ Cκ(Sd−1), for
κ = [d/2] + 1, one has:

lim
n′→∞

∫
Rd

Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim
n′→∞

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2 � ψ〉,

where Aψ : Lp(Rd) −→ Lp(Rd) is the Fourier multiplier operator with symbol ψ ∈
Cκ(Sd−1).

Hörmander-Mihlin theorem

Theorem. Let ψ ∈ L∞(Rd) have partial derivatives of order less than or equal to κ =
[d/2] + 1. If for some k > 0

(∀r > 0)(∀α ∈ Nd
0) |α| ≤ κ =⇒

∫
r/2≤|ξ|≤r

|∂αψ(ξ)|2dξ ≤ k2rd−2|α|,

then for any p ∈ 〈1,∞〉 and the associated multiplier operator Aψ there exists a constant
Cd such that

‖Aψ‖Lp→Lp ≤ Cd max{p, 1/(p− 1)}(k + ‖ψ‖L∞(Rd)).

For ψ ∈ Cκ(Sd−1), extended by homogeneity to Rd\{0}, we can take k = ‖ψ‖Cκ(Sd−1).

Anisotropic distributions
Let X and Y be open sets in Rd and Rr (or C∞ manifolds of dimenions d and r) and
Ω ⊆ X × Y an open set. By Cl,m(Ω) we denote the space of functions f on Ω, such that
for any α ∈ Nd

0 and β ∈ Nr
0, if |α| ≤ l and |β| ≤ m, ∂α,βf = ∂αx ∂

β
y f ∈ C(Ω).

Cl,m(Ω) becomes a Fréchet space if we define a sequence of seminorms

pl,mKn (f) := max
|α|≤l,|β|≤m

‖∂α,βf‖L∞(Kn) ,

where Kn ⊆ Ω are compacts, such that Ω = ∪n∈NKn and Kn ⊆ IntKn+1,
Consider the space

Cl,mc (Ω) :=
⋃
n∈N

Cl,mKn (Ω) ,

and equip it by the topology of strict inductive limit.

Anisotropic distributions II
Definition. A distribution of order l in x and order m in y is any linear functional on
Cl,mc (Ω), continuous in the strict inductive limit topology. We denote the space of such
functionals by D′l,m(Ω).

Conjecture. Let X,Y be C∞ manifolds and let u be a linear functional on Cl,mc (X ×Y ).
If u ∈ D′(X × Y ) and satisfies
(∀K ∈ K(X))(∀L ∈ K(Y )(∃C > 0)(∀ϕ ∈ C∞K (X))(∀ψ ∈ C∞L (Y ))

|〈u, ϕ� ψ〉| ≤ CplK(ϕ)pmL (ψ),

then u can be uniquely extended to a continuous functional on Cl,mc (X×Y ) (i.e. it can be
considered as an element of D′l,m(X × Y )). �

Anisotropic distributions III
From the proof of the existence of H-distributions, we already have µ ∈ D′(Rd × Sd−1)
and the following bound with ϕ := ϕ1ϕ2:

|〈µ, ϕ� ψ〉| ≤ C‖ψ‖Cκ(Sd−1)‖ϕ‖CKl (Rd) ,

where C does not depend on ϕ and ψ.

If the conjecture were true, then the H-distribution µ belongs to the space
D′0,κ(Rd × Sd−1), i.e. it is a distribution of order 0 in x and of order not more than κ
in ξ.

The Schwartz kernel theorem
Let X and Y be two C∞ manifolds. Then the following statements hold:

Theorem. a) Let K ∈ D′(X × Y ). Then for every ϕ ∈ D(X), the linear form Kϕ

defined as ψ 7→ 〈K,ϕ � ψ〉 is a distribution on Y . Furthermore, the mapping ϕ 7→ Kϕ,
taking D(X) to D′(Y ) is linear and continuous.

b) Let A : D(X) → D′(Y ) be a continous linear operator. Then there exists unique
distribution K ∈ D′(X × Y ) such that for any ϕ ∈ D(X) and ψ ∈ D(Y )

〈K,ϕ� ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉.

The Schwartz kernel theorem for anisotropic distributions
Let X and Y be two C∞ manifolds of dimensions d and r, respectively. Then the fol-
lowing statements hold:

Theorem. a) Let K ∈ D′l,m(X × Y ). Then for every ϕ ∈ Clc(X), the linear form Kϕ

defined as ψ 7→ 〈K,ϕ�ψ〉 is a distribution of order not more than m on Y . Furthermore,
the mapping ϕ 7→ Kϕ, taking Clc(X) to D′m(Y ) is linear and continuous.

b) Let A : Clc(X) → D′m(Y ) be a continous linear operator. Then there exists unique
distribution K ∈ D′(X × Y ) such that for any ϕ ∈ D(X) and ψ ∈ D(Y )

〈K,ϕ� ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉.

Furthermore, K ∈ D′l,r(m+2)(X × Y ).

How to prove it?
Standard attempts:
◦ regularisation? (Schwartz)
◦ constructive proof? (Simanca, Gask, Ehrenpreis)
◦ nuclear spaces? (Treves)

Use the structure theorem of distributions (Dieudonne). There are two steps:
Step I: assume the range of A is C(Y )
Step II: use structure theorem and go back to Step I

Consequence: H-distributions are of order 0 in x and of finite order not greater than
d(κ+ 2) with respect to ξ.

Applications: localisation principle for H-distributions and Peetre’s theorem

Localisation principle

Theorem. Assume that un −⇀ 0 in Lploc(Rd) and fn −→ 0 in W−1,q
loc (Rd) for some

p ∈ 〈1,∞〉 and q ∈ 〈1, d〉, such that they satisfy

d∑
i=1

∂i(ai(x)un(x)) = fn(x) ,

where ai ∈ Cc(R
d). Take an arbitrary sequence (vn) bounded in L∞loc(R

d), and by
µ denote the H-distribution corresponding to some subsequences of sequences (un) and
(vn). Then,

d∑
i=1

ai(x)ξiµ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1.

We can also obtain a corresponding variant of compactness by compensation theory.

A variant by application of the Bogdanowicz result
We can reformulate the main result of Bogdanowicz’s article to our setting:

Theorem. For every bilinear functional B on the space C∞c (X1) × Clc(X2) which is
continuous with respect to each variable separately, there exists a unique anisotropic dis-
tribution T ∈ D′∞,l(X1 ×X2) such that

B(ϕ, φ) = 〈T, ϕ⊗ φ〉 , ϕ ∈ C∞c (X1), φ ∈ Clc(X2) .

It is worth noting that Bogdanowicz’s result also holds when X2 is a smooth manifold and
that only elementary properties of Frechet and (LF)-spaces were used to prove it.
The same result can be obtained using the adjoint of operator A.

Additional results

Lemma. If u ∈ D′l,m(X1 × X2) is of compact support such that suppu ⊂ {0} × X2,
then for any Φ ∈ C∞c (X1 ×X2) it holds:

u =
∑

α∈Nd
0 ,|α|≤l

〈uα,Φα〉 ,

where uα ∈ D′m(X2) and Φα(y) = Dα
x Φ(0,y).

Corollary. If u ∈ D′l,m(X1 ×X2) has compact support such that suppu ⊂ {x0} ×X2,
for some x0 ∈ X1, then

u =
∑

α∈Nd
0 ,|α|≤l

Dα
x δx0

⊗ uα ,

where uα ∈ D′m(X2).

Theorem. Let A : C∞c (X) → D′m(X) be a continuous map. Its kernel is supported by
the diagonal {(x,x) : x ∈ X} if and only if for any ϕ ∈ C∞c (X):

Aϕ =
∑

α∈Nd
0

aα ⊗Dαϕ,

where aα ∈ D′m(X) and the above sum is locally finite. Moreover, this representation is
unique.

Classical Peetre’s result and notation

Theorem. Let A : C∞c (Ω)→ C∞c (Ω) be a linear mapping such that the following holds:

supp(Au) ⊂ supp(u) , u ∈ C∞c (Ω).

Then A is a differential operator on Ω with C∞ coefficients.

Let Ω ⊂ Rd be an open set and by U ⊂ Ω let us denote its arbitrary open and relatively
compact subset. For k ∈ N, f ∈ C∞c (Ω) and g ∈ D′(Ω), let us introduce the following
seminorms and operator norms:

‖f‖k := sup
x∈Ω,α∈Nd

0 ,|α|≤k
|Dαf(x)| ,

‖g‖−k = ‖g, U‖−k := sup
h∈C∞c (U)

|〈g, h〉|
‖h‖k

.

Let us remark that ‖g, U‖−k <∞ for k large enough (this follows from the properties of
distributions with compact support).
Assume we are given A : C∞c (Ω)→ D′(Ω), a linear (not neccessary continuous) operator
such that:

supp (Af) ⊂ supp f , f ∈ C∞c (Ω) .

For given k ∈ N and x ∈ Ω, let us define j = j(k,x) ∈ N in the following way:

j(k,x) := inf

{
j ∈ N : ∃U 3 x neighbourhood, sup

h∈C∞c (U)

‖Ah,U‖−k
‖h‖j

<∞

}
,

if it exists, otherwise we set j(k,x) := ∞. Neighbourhoods U of x in the definition of
j(k,x) are assumed to be open and relatively compact.

Peetre’s result with distributions
Definition. We say that x ∈ Ω is a point of continuity of A if there exists an open and
relatively compact neighbourhood U of x such that the restriction A|C∞c (U) : C∞c (U) →
D′(U) is continuous.
Otherwise, we say that it is a point of discontinuity and the set of all points of discontinuity
we denote by Λ.
From the definitions of Λ and j(k,x), we conclude:
◦ if x ∈ Λ, then j(k,x) =∞ for every k;
◦ if x /∈ Λ, then there exists k ∈ N such that j(k,x) <∞.

Lemma. The set Λ is locally finite (i.e. discrete). For every U ⊂ Ω open and relatively
compact set, the function j(k, ·) is bounded on U \ Λ for k large enough.

Theorem. Let A : C∞c (Ω) → D′(Ω) be linear operator such that supp (Af) ⊂ supp f
for f ∈ C∞c (Ω). Then there exists locally finite family of distributions (aα) ∈ D′(Ω),
unique on Ω \ Λ, such that it holds:

supp
(
Af −

∑
α

aαD
αf
)
⊂ Λ , f ∈ C∞c (Ω) .

If the image of the operator A is contained in some D′m(Ω), then ‖Af,U‖−m < ∞, and
we write j(x) for j(m,x). The definition of point of continuity remains unchanged and
we have that j(·) is locally bounded on Ω \ Λ.

Theorem. Let A : C∞c (Ω)→ D′m(Ω) be linear operator such that

supp (Af) ⊂ supp f , f ∈ C∞c (Ω) . (1)

Then there exists locally finite family of distributions (aα) ∈ D′m(Ω), unique on Ω \ Λ,
such that it holds:

supp
(
Af −

∑
α

aαD
αf
)
⊂ Λ , f ∈ C∞c (Ω) .

Proof of the Peetre’s theorem
Proof. LetU ⊂ Ω be an open and relatively compact set. Then there exists j = j(U) ∈ N
such that for any x0 ∈ U \ Λ, there is a neighbourhood V of x0 such that

|〈Af, g〉| ≤ C‖f‖j‖g‖m , f ∈ C∞c (V ), g ∈ Cmc (V ) .

Schwartz kernel theorem gives existence of K ∈ D′∞,m(V × V ) such that 〈Af, g〉 =
〈K, f ⊗ g〉. The locality assumption (1) implies that the distribution K is supported on a
diagonal of a set V :

suppK ⊂ {(x,x) : x ∈ V } ,

which puts us within the conditions of the theorem on diagonal support and we can write:

Aϕ =
∑

α∈Nd
0

aα ⊗Dαϕ , ϕ ∈ C∞c (V ) ,

where family (aα) ⊂ D′m(V ) is locally finite (remark that in Peetre’s article, who used
results of Ehrenpreis’ on Schwartz kernel theorem, it is obtained that α in the above re-
presentation formula are at most of order j +m+ 2d+ 1, with j dependent on V , that is
U ).
Taking ϕ ∈ C∞c (Ω) equal to one on V , we obtain Aϕ = a0 in V . Therefore, a0 in
uniquely determined by the operatorA, and we can extend it to a distribution on the whole
U . By using monomials xα, we can obtain the same conclusion for other aα.
Now, we conclude:

supp
(
Af −

∑
α

aαD
αf
)
⊂ Λ , f ∈ C∞c (U) .

Since U ⊂ Ω was arbitrary, the claim of the theorem follows.

Counterexample
As already noticed by Peetre in the standard case, the result in the statement of the prece-
eding theorem is the best possible. Namely, it can happen A−

∑
α aαD

α 6= 0, as we can
easily see from the following example:
for x0 ∈ Ω, take a linear form F defined for sequence (cα) such that it can not be written
in the form F =

∑
α b

αcα, for any finite collection of bα. Then

(Af)(x) = F (Dαf(x0))δ0(x− x0)

has desired properties without being continuous: we have supp (Af) ⊂ {x0} and A is
continuous everywhere except at the point x0.
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