Generalisation of compactness by compensation

Marin Mišur^{*a*} and Darko Mitrović^{*b*}

^aUniversity of Zagreb, Croatia, pfobos@gmail.com

^bUniversity of Montenegro, Montenegro, matematika@t-com.me

Panov's result

The most general version of the classical L^2 results has recently been proved by E. Yu. Panov (2011): Assume that the sequence (\mathbf{u}_n) is bounded in $L^p(\mathbf{R}^d; \mathbf{R}^r)$, $2 \le p < \infty$, and converges weakly in $\mathcal{D}'(\mathbf{R}^d)$ to a vector function **u**.

Let q = p' if $p < \infty$, and q > 1 if $p = \infty$. Assume that the sequence

$$\sum_{k=1}^{\nu} \partial_k (\mathbf{A}^k \mathbf{u}_n) + \sum_{k,l=\nu+1}^{d} \partial_{kl} (\mathbf{B}^{kl} \mathbf{u}_n)$$

is precompact in the anisotropic Sobolev space $W_{loc}^{-1,-2;q}(\mathbf{R}^d;\mathbf{R}^m)$, where $m \times r$ matrices \mathbf{A}^k and \mathbf{B}^{kl} have variable coefficients belonging to $L^{2\bar{q}}(\mathbf{R}^d)$, $\bar{q} = \frac{p}{p-2}$ if p > 2, and to the space $C(\mathbf{R}^d)$ if p = 2.

We introduce the set $\Lambda(\mathbf{x})$

$$\Lambda(\mathbf{x}) = \left\{ \boldsymbol{\lambda} \in \mathbf{C}^r \, | \, (\exists \boldsymbol{\xi} \in \mathbf{R}^d \setminus \{0\}) : \left(i \sum_{k=1}^{\nu} \xi_k \mathbf{A}^k(\mathbf{x}) - 2\pi \sum_{k,l=\nu+1}^d \xi_k \xi_l \mathbf{B}^{kl}(\mathbf{x}) \right) \boldsymbol{\lambda} = \mathbf{0}_m \right\},$$

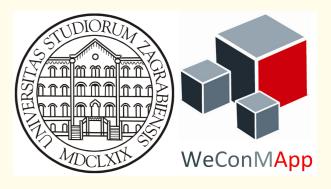
and consider the bilinear form on \mathbf{C}^r

$$q(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\eta}) = \mathbf{Q}(\mathbf{x}) \boldsymbol{\lambda} \cdot \boldsymbol{\eta},$$

where $\mathbf{Q} \in L_{loc}^{\bar{q}}(\mathbf{R}^d; \operatorname{Sym}_r)$ if p > 2 and $\mathbf{Q} \in C(\mathbf{R}^d; \operatorname{Sym}_r)$ if p = 2. Finally, let $q(\mathbf{x}, \mathbf{u}_n, \mathbf{u}_n) \rightharpoonup \omega$ weakly in the space of distributions.

The following theorem holds

Theorem. Assume that $(\forall \lambda \in \Lambda(\mathbf{x})) q(\mathbf{x}, \lambda, \lambda) \ge 0$ (a.e. $\mathbf{x} \in \mathbf{R}^d$) and $\mathbf{u}_n \rightharpoonup \mathbf{u}$, then $q(\mathbf{x}, \mathbf{u}(\mathbf{x}), \mathbf{u}(\mathbf{x})) \le \omega$.



H-distributions

(1)

H-distributions were introduced by N. Antonić and D. Mitrović (2011) as an extension of H-measures to the $L^p - L^q$ context.

M. Lazar and D. Mitrović (2012) extended and applied them on a velocity averaging problem.

We need multiplier operators with symbols defined on a manifold P determined by an *d*-tuple $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_d) \in \mathbf{R}^d_+$ where $\alpha_k \in \mathbf{N}$ or $\alpha_k \geq d$:

$$\mathbf{P} = \Big\{ \boldsymbol{\xi} \in \mathbf{R}^d : \sum_{k=1}^d |\xi_k|^{2\alpha_k} = 1 \Big\},$$

We shall use the following variant of H-distributions.

Theorem. Let (u_n) be a bounded sequence in $L^p(\mathbf{R}^d)$, p > 1, and let (v_n) be a bounded sequence of uniformly compactly supported functions in $L^q(\mathbf{R}^d)$, 1/q + 1/p < 1, weakly converging to 0 in the sense of distributions. Then, after passing to a subsequence (not relabelled), for any $\bar{s} \in (1, \frac{pq}{p+q})$ there exists a continuous bilinear functional B on $L^{\bar{s}'}(\mathbf{R}^d) \otimes C^d(\mathbf{P})$ such that for every $\varphi \in L^{\bar{s}'}(\mathbf{R}^d)$ and $\psi \in C^d(\mathbf{P})$, it holds

$$B(\varphi,\psi) = \lim_{n \to \infty} \int_{\mathbf{R}^d} \varphi(\mathbf{x}) u_n(\mathbf{x}) (\mathcal{A}_{\psi_{\mathrm{P}}} v_n)(\mathbf{x}) d\mathbf{x} \,,$$

The connection between q and Λ given in the previous theorem, we shall call *the consistency condition*.

Goal: to formulate and extend the results from the preceding theorem to the $L^p - L^q$ framework for appropriate (greater than one) indices p and q where p < 2.

Localisation principle

For $\alpha \in \mathbf{R}^+$, we define $\partial_{x_k}^{\alpha}$ to be a pseudodifferential operator with a polyhomogeneous symbol $(2\pi i\xi_k)^{\alpha}$, i.e.

$$\partial_{x_k}^{\alpha} u = ((2\pi i \xi_k)^{\alpha} \hat{u}(\boldsymbol{\xi}))^{\tilde{k}}$$

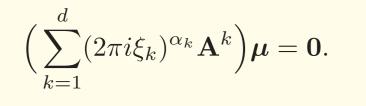
In the sequel, we shall assume that sequences (\mathbf{u}_r) and (\mathbf{v}_r) are uniformly compactly supported. This assumption can be removed if the orders of derivatives $(\alpha_1, \ldots, \alpha_d)$ are natural numbers.

Lemma. Assume that sequences (\mathbf{u}_n) and (\mathbf{v}_n) are bounded in $L^p(\mathbf{R}^d; \mathbf{R}^r)$ and $L^q(\mathbf{R}^d; \mathbf{R}^r)$, respectively, and converge toward **0** and **v** in the sense of distributions. Furthermore, assume that sequence (\mathbf{u}_n) satisfies:

$$\mathbf{G}_{n} := \sum_{k=1}^{d} \partial_{k}^{\alpha_{k}} (\mathbf{A}^{k} \mathbf{u}_{n}) \to \mathbf{0} \text{ in } W^{-\alpha_{1}, \dots, -\alpha_{d}; p}(\Omega; \mathbf{R}^{m}),$$
(2)

where either $\alpha_k \in \mathbf{N}$, k = 1, ..., d or $\alpha_k > d$, k = 1, ..., d, and elements of matrices \mathbf{A}^k belong to $L^{\bar{s}'}(\mathbf{R}^d)$, $\bar{s} \in (1, \frac{pq}{p+q})$.

Finally, by μ denote a matrix *H*-distribution corresponding to subsequences of (\mathbf{u}_n) and $(\mathbf{v}_n - \mathbf{v})$. Then the following relation holds



Compactness by compensation result

Introduce the set

$$\Lambda_{\mathcal{D}} = \left\{ \boldsymbol{\mu} \in L^{\bar{s}}(\mathbf{R}^d; (C^d(\mathbf{P}))')^r : \left(\sum_{k=1}^n (2\pi i \xi_k)^{\alpha_k} \mathbf{A}^k \right) \boldsymbol{\mu} = \mathbf{0}_m \right\},$$

where the given equality is understood in the sense of $L^{\bar{s}}(\mathbf{R}^d; (C^d(\mathbf{P}))')^m$. Let us assume that coefficients of the bilinear form q from (1)

belong to space $L_{loc}^t(\mathbf{R}^d)$, where 1/t + 1/p + 1/q < 1.

Definition. We say that set $\Lambda_{\mathcal{D}}$, bilinear form q from (1) and matrix $\boldsymbol{\mu} = [\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_r], \boldsymbol{\mu}_j \in L^{\overline{s}}(\mathbf{R}^d; (C^d(\mathbf{P}))')^r$ satisfy the strong consistency condition if $(\forall j \in \{1, \dots, r\}) \boldsymbol{\mu}_j \in \Lambda_{\mathcal{D}}$, and it holds

 $\langle \phi \mathbf{Q} \otimes 1, \boldsymbol{\mu} \rangle \ge \mathbf{0}, \ \phi \in L^{\bar{s}}(\mathbf{R}^d; \mathbf{R}_0^+).$

Theorem. Assume that sequences (\mathbf{u}_n) and (\mathbf{v}_n) are bounded in $L^p(\mathbf{R}^d; \mathbf{R}^r)$ and $L^q(\mathbf{R}^d; \mathbf{R}^r)$, respectively, and converge toward \mathbf{u} and \mathbf{v} in the sense of distributions. Assume that (2) holds and that

$$q(\mathbf{x};\mathbf{u}_n,\mathbf{v}_n) \rightharpoonup \omega$$
 in $\mathcal{D}'(\mathbf{R}^d)$.

If the set $\Lambda_{\mathcal{D}}$, the bilinear form (1), and matrix *H*-distribution μ , corresponding to subsequences of $(\mathbf{u}_n - \mathbf{u})$ and $(\mathbf{v}_n - \mathbf{v})$, satisfy the strong consistency condition, then

 $q(\mathbf{x}; \mathbf{u}, \mathbf{v}) \leq \omega \text{ in } \mathcal{D}'(\mathbf{R}^d).$

where $\mathcal{A}_{\psi_{\mathrm{P}}}$ is the Fourier multiplier operator on \mathbf{R}^d associated to $\psi \circ \pi_{\mathrm{P}}$.

The bilinear functional B can be continuously extended as a linear functional on $L^{\bar{s}'}(\mathbf{R}^d; C^d(\mathbf{P}))$.

Case $L^p - L^{p'}$, p > 1

In the case 1/p + 1/q = 1, applying the same proof gives us continuous bilinear functional on $C(\mathbf{R}^d) \otimes C^d(\mathbf{P})$. Using Schwartz's kernel theorem, we can only extend it to a distribution from $\mathcal{D}'(\mathbf{R}^d \times \mathbf{P})$. Introduce the truncation operator $T_l(v) = v$ if $|v| \leq l$ and

 $T_l(v) = 0$ if $|v| \ge l$, for $l \in \mathbf{N}$.

Theorem. Assume that

- sequences (u_r) and (v_r) are bounded in L^p(R^d; R^N) and L^{p'}(R^d; R^N), where 1/p+1/p' = 1, and converge toward u and v in the sense of distributions;
- for every l ∈ N, the sequences (T_l(v_r)) converge weakly in L^{p'}(R^d; R^N) toward h^l, where the truncation operator T_l is understood coordinatewise;
- there exists a vector valued function $\mathbf{V} \in L^{p'}(\mathbf{R}^d; \mathbf{R}^N)$ such that $\mathbf{v}_r \leq \mathbf{V}$ holds coordinatewise for every $r \in \mathbf{N}$;
- (2) holds with $a_{skl} \in C_0(\mathbf{R}^d)$ and that $q_{jm} \in C(\mathbf{R}^d)$.

Assume that

$$q(\mathbf{x};\mathbf{u}_r,\mathbf{v}_r) \rightharpoonup \omega \text{ in } \mathcal{D}'(\mathbf{R}^d).$$

If for every $l \in \mathbf{N}$, the set $\Lambda_{\mathcal{D}}$, the bilinear form (1), and the (matrix of) *H*-distributions μ_l corresponding to the sequences $(\mathbf{u}_r - \mathbf{u})$ and $(T_l(\mathbf{v}_r) - \mathbf{h}^l)_r$ satisfy the strong consistency condition, then it holds

$$q(\mathbf{x}; \mathbf{u}, \mathbf{v}) \leq \omega$$
 in $\mathcal{D}'(\mathbf{R}^d)$.

Application

Let us consider the non-linear parabolic type equation

 $L(u) = \partial_t u - \operatorname{div} \operatorname{div} \left(g(t, \mathbf{x}, u) \mathbf{A}(t, \mathbf{x}) \right),$

on $(0, \infty) \times \Omega$, where Ω is an open subset of \mathbb{R}^d . For p, q and s such that 1/p + 1/q + 1/s < 1, assume

 $u \in L^p((0,\infty) \times \Omega), \ g(t,\mathbf{x},u(t,\mathbf{x})) \in L^q((0,\infty) \times \Omega),$

 $\mathbf{A} \in L^s_{loc}((0,\infty) \times \Omega)^{d \times d},$

and that the matrix \mathbf{A} is strictly positive definite, i.e.

 $\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi}>0, \ \boldsymbol{\xi}\in\mathbf{R}^d\setminus\{\mathbf{0}\}, \ (a.e.(t,\mathbf{x})\in(0,\infty)\times\Omega).$

Furthermore, assume that g is a Carathèodory function and non-decreasing with respect to the third variable. **Theorem.** Assume that sequences

- (u_r) and $g(\cdot, u_r)$ are such that $u_r, g(u_r) \in L^2(\mathbb{R}^+ \times \mathbb{R}^d)$ for every $r \in \mathbb{N}$;
- that they are bounded in $L^p(\mathbf{R}^+ \times \mathbf{R}^d)$, $p \in (1, 2]$, and $L^q(\mathbf{R}^+ \times \mathbf{R}^d)$, q > 2, respectively, where 1/p + 1/q < 1;
- $u_r \rightharpoonup u$ and, for some, $f \in W^{-1,-2;p}(\mathbf{R}^+ \times \mathbf{R}^d)$, the sequence

 $L(u_r) = f_r \to f \quad \text{strongly in } W^{-1,-2;p}(\mathbf{R}^+ \times \mathbf{R}^d).$

Under the assumptions given above, it holds

L(u) = f in $\mathcal{D}'(\mathbf{R}^+ \times \mathbf{R}^d)$.

References

- [1] N. Antonić, D. Mitrović: *H*-distributions: An Extension of *H*-Measures to an $L^p - L^q$ Setting, Abstr. Appl. Anal. (2011), Article ID 901084, 12 pages.
- [2] M. Lazar, D. Mitrović: On an extension of a bilinear functional on $L^p(\mathbb{R}^n) \times E$ to Bôchner spaces with an application to velocity averaging, C. R. Math. Acad. Sci. Paris 351 (2013) 261–264.
- [3] E. Yu. Panov: Ultraparabolic H-measures and compensated compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011) 47–62.
- [4] L. Tartar: *H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs*, Proc. Roy. Soc. Edinburgh Sect. A **115** (1990) 193–230.