Classical optimal designs on annuli

Petar Kunštek
Joint work with Marko Vrdoljak

University of Zagreb, Croatia

WeConMApp

Petrovac, Crna Gora, September 25 - October 2, 2016

Introduction

Let $\Omega \subset \mathbb{R}^{d}$ be open and bounded set.
Two phases each with different isotropic conductivity: α, β
$(0<\alpha<\beta)$.
q_{α} is the prescribed volume of the first phase $\alpha\left(0<q_{\alpha}<|\Omega|\right)$.
$\chi \in L^{\infty}(\Omega,\{0,1\})$ a measurable characteristic function.
Conductivity can be expressed as

$$
\mathbf{A}(\chi):=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}
$$

where

$$
\int_{\Omega} \chi(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=q_{\alpha}
$$

Introduction

State functions $u_{i} \in \mathrm{H}_{0}^{1}(\Omega), i=1,2, \ldots, m$ are solutions of the following boundary value problems:

$$
\left\{\begin{array}{cc}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} & \text { in } \Omega \tag{1}\\
u_{i}=0 & \text { on } \partial \Omega,
\end{array} \quad i=1,2, \ldots, m .\right.
$$

Notation: $\quad \boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$.
Energy functional:

$$
I(\chi):=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i}(\boldsymbol{x}) u_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

where $\mu_{i}>0, i=1,2, \ldots, m$.

Statement of the problem

Optimal design problem:

$$
\left\{\begin{array}{c}
I(\chi)=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} \mathrm{~d} \boldsymbol{x} \rightarrow \max \tag{2}\\
\text { s.t. } \quad \chi \in L^{\infty}(\Omega,\{0,1\}), \quad \int_{\Omega} \chi \mathrm{d} \boldsymbol{x}=q_{\alpha}, \\
\boldsymbol{u} \text { solves }(1) \text { with } \mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I} .
\end{array}\right.
$$

If solution χ exists for (2) we call it classical solution.
Important: For general optimal design problems the classical solutions usually does not exists.

Aim of this talk:

- to express design problem as max-min optimization.
- to present examples of classical solutions on annuli.

Relaxed design

For characteristic functions relaxation consists of:

$$
\begin{equation*}
\chi \in L^{\infty}(\Omega,\{0,1\}) \quad \rightsquigarrow \quad \theta \in L^{\infty}(\Omega,[0,1]), \tag{3}
\end{equation*}
$$

with

$$
\int_{\Omega} \theta \mathrm{d} \boldsymbol{x}:=q_{\alpha} .
$$

Notion of H-convergence is introduced for conductivity \mathbf{A}. Effective conductivities:

$$
\mathcal{K}(\theta) \subset M_{d}(\mathbb{R}) \text { with local fraction } \theta \in[0,1]
$$

Precisely, $A \in \mathcal{K}(\theta)$ iff there exists sequence of characteristic functions

$$
\left\{\begin{array}{c}
\chi_{n} \stackrel{L^{\infty} \star}{\rightharpoonup} \theta \\
\mathbf{A}^{n}=\chi_{n} \alpha \mathbf{I}+\left(1-\chi_{n}\right) \beta \mathbf{I} \xrightarrow{H} A .
\end{array}\right.
$$

Effective conductivities - set $\mathcal{K}(\theta)$

$\mathcal{K}(\theta)$ is given in terms of eigenvalues

$$
\begin{aligned}
& \lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d \\
& \sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha} \\
& \sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}},
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda_{\theta}^{+} & =\theta \alpha+(1-\theta) \beta \\
\frac{1}{\lambda_{\theta}^{-}} & =\frac{\theta}{\alpha}+\frac{1-\theta}{\beta} .
\end{aligned}
$$

Visual representation of a set $\mathcal{K}(\theta)$

For dimension $d=2$:

For dimension $d=3$:

Relaxed problem A

Relaxed design:

$$
\mathcal{A}=\left\{(\theta, \mathbf{A}) \in L^{\infty}\left(\Omega,[0,1] \times \operatorname{Sym}_{d}\right) \left\lvert\, \begin{array}{c}
\int_{\Omega} \theta \mathrm{d} \boldsymbol{x}=q_{\alpha} \\
\mathbf{A}(\boldsymbol{x}) \in \mathcal{K}(\theta(\boldsymbol{x})), \text { a.e. } \boldsymbol{x}
\end{array}\right.\right\}
$$

Relaxed problem can be written as:

$$
\begin{equation*}
\max _{(\theta, \mathbf{A}) \in \mathcal{A}} J(\theta, \mathbf{A})=\max _{(\theta, \mathbf{A}) \in \mathcal{A}} \sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} \mathrm{~d} \boldsymbol{x} \tag{A}
\end{equation*}
$$

Unfortunately, \mathcal{A} is not a convex set.

Generalized (convex) problem B

To achieve convexity, an enlarged set is introduced:
$\mathcal{B}=\left\{(\theta, \mathbf{A}) \in L^{\infty}\left(\Omega,[0,1] \times \operatorname{Sym}_{d}\right) \left\lvert\, \begin{array}{c}\int_{\Omega} \theta \mathrm{d} \boldsymbol{x}=q_{\alpha}, \\ \lambda_{\theta(\boldsymbol{x})}^{-} \mathbf{I} \leq \mathbf{A}(\boldsymbol{x}) \leq \lambda_{\theta(\boldsymbol{x})}^{+} \mathbf{I}, \text { a.e. } \boldsymbol{x}\end{array}\right.\right\}$
and with it
(B)

$$
\max _{(\theta, \mathbf{A}) \in \mathcal{B}} J(\theta, \mathbf{A})=\max _{(\theta, \mathbf{A}) \in \mathcal{B}} \sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} \mathrm{~d} \boldsymbol{x}
$$

Set \mathcal{B} is convex and closed.
Observe that

$$
\max _{(\theta, \mathbf{A}) \in \mathcal{A}} J(\theta, \mathbf{A}) \leq \max _{(\theta, \mathbf{A}) \in \mathcal{B}} J(\theta, \mathbf{A})
$$

Rewrite B as a max-min problem

Define $\mathcal{S}:=\left\{\boldsymbol{\sigma}=\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2}, \ldots, \boldsymbol{\sigma}_{m}\right) \mid \boldsymbol{\sigma}_{i} \in L^{2}\left(\Omega, \mathbb{R}^{d}\right),-\operatorname{div}\left(\boldsymbol{\sigma}_{i}\right)=f_{i}\right\}$
One can rewrite functional J in terms of fluxes:

$$
J(\theta, \mathbf{A})=\min _{\boldsymbol{\sigma} \in \mathcal{S}} \sum_{i=1}^{m} \mu_{i} \int_{\Omega} \mathbf{A}^{-1} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{i}
$$

With notation $\mathcal{C}=\left\{(\theta, \mathbf{A}) \mid\left(\theta, \mathbf{A}^{-1}\right) \in \mathcal{B}\right\}$

$$
\begin{aligned}
\max _{(\theta, \mathbf{A}) \in \mathcal{B}} J(\theta, \mathbf{A}) & =\max _{(\theta, \mathbf{A}) \in \mathcal{B}} \min _{\boldsymbol{\sigma} \in \mathcal{S}} \sum_{i=1}^{m} \mu_{i} \int_{\Omega} \mathbf{A}^{-1} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{i} \\
& =\max _{(\theta, \mathbf{B}) \in \mathcal{C}} \min _{\boldsymbol{\sigma} \in \mathcal{S}} \sum_{i=1}^{m} \mu_{i} \int_{\Omega} \mathbf{B} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{i}
\end{aligned}
$$

Observe that

$$
L(\boldsymbol{\sigma},(\theta, \mathbf{B}))=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} \mathbf{B} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{i}
$$

$$
\boldsymbol{\sigma} \mapsto L(\boldsymbol{\sigma},(\theta, \mathbf{B}))
$$

$$
(\theta, \mathbf{B}) \mapsto L(\boldsymbol{\sigma},(\theta, \mathbf{B}))
$$

- quadratic (strictly convex)
- continuous in $L^{2}(\Omega)$ (l.s.c.)
- $(\exists(\theta, \mathbf{B})) \quad \boldsymbol{\sigma} \mapsto L(\boldsymbol{\sigma},(\theta, \mathbf{B}))$ $\left.\lim _{\|\boldsymbol{\sigma}\| \rightarrow+\infty} L(\boldsymbol{\sigma},(\theta, \mathbf{B}))\right)=+\infty$
- linear (concave)
- continuous in $L^{\infty} \star$ (u.s.c.)
- $\operatorname{set} \mathcal{C}$ is compact (in $L^{\infty} \star$).

Min-max theory

Previous conclusions for the Lagrange functional L implies:

- set of saddle points $\mathcal{S}_{0} \times \mathcal{C}_{0} \subset \mathcal{S} \times \mathcal{C}$ is not empty
- min and max are interchangeable
- $\boldsymbol{\sigma} \mapsto L(\boldsymbol{\sigma},(\theta, \mathbf{B}))$ is strictly convex $\quad \Rightarrow \quad \mathcal{S}_{0}=\left\{\boldsymbol{\sigma}^{*}\right\}$.

This means that there exists unique σ^{*} such that this holds

$$
\begin{aligned}
\max _{(\theta, \mathbf{A}) \in \mathcal{B}} J(\theta, \mathbf{A}) & =\max _{(\theta, \mathbf{B}) \in \mathcal{C}} \min _{\boldsymbol{\sigma} \in \mathcal{S}} L(\boldsymbol{\sigma},(\theta, \mathbf{B})) \\
& =\max _{(\theta, \mathbf{B}) \in \mathcal{C}} L\left(\boldsymbol{\sigma}^{*},(\theta, \mathbf{B})\right) \\
& =\max _{(\theta, \mathbf{B}) \in \mathcal{C}} \sum_{i=1}^{m} \mu_{i} \int_{\Omega} \mathbf{B} \boldsymbol{\sigma}_{i}^{*} \cdot \boldsymbol{\sigma}_{i}^{*}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{i=1}^{m} \mu_{i} \int_{\Omega} \mathbf{B} \boldsymbol{\sigma}_{i}^{*} \cdot \boldsymbol{\sigma}_{i}^{*} \text { achieves max in }\left(\theta^{*}, \mathbf{B}^{*}\right) \in \mathcal{C} \\
\Longleftrightarrow \quad \mathbf{B}^{*} \boldsymbol{\sigma}_{i}^{*}=\frac{1}{\lambda_{\theta^{*}}^{-}} \boldsymbol{\sigma}_{i}^{*} \quad i=1,2, \ldots, m
\end{gathered}
$$

This means problem (B) achieves max in $\left(\theta^{*}, \mathbf{A}^{*}\right) \in \mathcal{B}$

$$
\Longleftrightarrow \quad \mathbf{A}^{*} \nabla u_{i}^{*}=\lambda_{\theta^{*}}^{-} \nabla u_{i}^{*} \quad i=1,2, \ldots, m
$$

Instead of solving convex problem B, one can solve the following optimization problem:

$$
\begin{equation*}
I(\theta)=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} \mathrm{~d} x \rightarrow \max \tag{I}
\end{equation*}
$$

s.t. $\quad \theta \in L^{\infty}(\Omega,[0,1]), \int_{\Omega} \theta=q_{\alpha}$, where \boldsymbol{u} satisfies
$-\operatorname{div}\left(\lambda_{\theta}^{-} \nabla u_{i}\right)=f_{i}, \quad u_{i} \in \mathrm{H}_{0}^{1}(\Omega), \quad i=1, \ldots, m$,

The necessary and sufficient condition of optimality

Define

$$
\psi:=\sum_{i=1}^{m} \mu_{i}\left|\boldsymbol{\sigma}_{i}^{*}\right|^{2}
$$

Lemma

The necessary and sufficient condition of optimality for solution θ^{*} of optimal design problem (I) simplifies to the existence of a Lagrange multiplier $c \geq 0$ such that
(4)

$$
\begin{aligned}
& \psi=\sum_{i=1}^{m} \mu_{i}\left|\sigma_{i}^{*}\right|^{2}>c \Rightarrow \theta^{*}=1 \\
& \psi=\sum_{i=1}^{m} \mu_{i}\left|\sigma_{i}^{*}\right|^{2}<c \Rightarrow \theta^{*}=0
\end{aligned}
$$

Spherical symmetry

For spherically symmetric problem such that:

- $\Omega=R(\Omega)$ for any rotation R
- f_{i} are radial functions
it can be proved that there exists radial solution θ_{R}^{*} of (I).
In particular, it can be shown that

$$
\max _{(\theta, \mathbf{A}) \in \mathcal{A}} J(\theta, \mathbf{A})=I\left(\theta_{R}^{*}\right)
$$

Examples

Design problems with spherical symmetry were studied for ball:

- Single state equations Murat \& Tartar (1985) Calculus of Variations and Homogenization
- there exists relaxed solution $\left(\theta^{*}, \mathbf{A}^{*}\right)$ among simple laminates.
- Multiple state equations

Vrdoljak, M. (2016) Classical Optimal Design in Two-Phase
Conductivity Problems. SIAM Journal on Control and Optimization: 2020-2035

Single state optimal design problem

Single state equation:

(5) $\quad\left\{\begin{array}{cc}-\operatorname{div}\left(\lambda_{\theta}^{-}(x) \nabla u\right)=1 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{array}\right.$
where $\lambda_{\theta}^{-}(x)=\left(\frac{\theta(x)}{\alpha}+\frac{1-\theta(x)}{\beta}\right)^{-1}$.

Optimization problem:

For

$$
\theta \in \mathcal{T}:=\left\{\theta \in L^{\infty}(\Omega,[0,1]): \int_{\Omega} \theta \mathrm{d} \boldsymbol{x}=q_{\alpha}\right\}
$$

$$
I(\theta)=\int_{\Omega} u \mathrm{~d} x \rightarrow \max
$$

(5) in polar coordinates :

$$
\left\{\begin{array}{c}
-\frac{1}{r^{d-1}}(r^{d-1} \underbrace{\lambda_{\theta}^{-} u^{\prime}(r)}_{\sigma})^{\prime}=1 \quad \text { in }\left\langle r_{1}, r_{2}\right\rangle \\
u\left(r_{1}\right)=u\left(r_{2}\right)=0
\end{array}\right.
$$

Observe that σ satisfies

$$
\sigma=-\frac{r}{d}+\frac{\gamma}{r^{d-1}}, \quad \gamma>0
$$

$\sigma(r):\langle 0, \infty\rangle \rightarrow \mathbb{R}$ is a strictly decreasing function.

The necessary and sufficient condition of optimality for θ^{*} states

$$
\begin{aligned}
& \left|\sigma^{*}\right|>c \Rightarrow \theta^{*}=1 \\
& \left|\sigma^{*}\right|<c \Rightarrow \theta^{*}=0
\end{aligned}
$$

There are only three possible candidates for optimal design:

1) $\theta^{*}(r)= \begin{cases}1, & r \in\left[r_{1}, r_{+}\right\rangle \\ 0, & r \in\left[r_{+}, r_{-}\right\rangle \\ 1, & r \in\left[r_{-}, r_{2}\right]\end{cases}$
2) $\theta^{*}(r)= \begin{cases}1, & r \in\left[r_{1}, r_{+}\right\rangle \\ 0, & r \in\left[r_{+}, r_{2}\right\rangle\end{cases}$
3) $\theta^{*}(r)= \begin{cases}0, & r \in\left[r_{1}, r_{-}\right\rangle \\ 1, & r \in\left[r_{-}, r_{2}\right\rangle\end{cases}$

Simplification to a non-linear system

Necessary and sufficient condition of optimality can also be expressed as a non-linear system (unknowns $\gamma, c, r_{+} r_{-}$):

$$
\left\{\begin{array}{c}
S_{d} \int_{r_{1}}^{r_{2}} \theta(\rho) \rho^{d-1} \mathrm{~d} \rho=q_{\alpha} \\
u\left(r_{2}\right)=0 \Longleftrightarrow \gamma \int_{r_{1}}^{r_{2}}\left(\frac{1}{a(\rho) \rho^{d-1}}\right) \mathrm{d} \rho=\int_{r_{1}}^{r_{2}} \frac{\rho}{a(\rho)} \mathrm{d} \rho \tag{6}\\
\sigma\left(r_{+}\right)=c, \quad \sigma\left(r_{-}\right)=-c, \quad \text { where } c>0
\end{array}\right.
$$

where

$$
\sigma(r)=\frac{\gamma}{r^{d-1}}-\frac{r}{d}, \quad \& \quad a(r)=\left(\frac{\theta(r)}{\alpha}+\frac{1-\theta(r)}{\beta}\right)^{-1} .
$$

Results $d=2$ or $d=3$

3) case beta-alpha

Non-linear system (6) does not admit a solution for design in the case beta-alpha.
We have proof for $d=2$ and $d=3$.

Therefore, cases: 1) and 2) should be considered as possible solutions.

Results $d=2$ or $d=3$

Numerical results $\left(\alpha=1, \beta=2, r_{1}=1, r_{2}=2, d=2\right)$:

alpha-beta-alpha
$\left(q_{\alpha}>3.22 \%\right)$

One can easily prove if q_{α} is very small, case alpha-beta is always solution (for arbitrary parameters $\alpha, \beta, r_{1}, r_{2}$).

Multiple state optimal design problem, $d=2$

Multiple state equations:

$$
\begin{aligned}
& \left\{\begin{array}{cl}
-\operatorname{div}\left(\lambda_{\theta}^{-}(x) \nabla u_{1}\right)=1=f_{1} & \text { in } \Omega \\
u_{1}=0 & \text { on } \partial \Omega
\end{array}\right. \\
& \left\{\begin{array}{cl}
-\operatorname{div}\left(\lambda_{\theta}^{-}(x) \nabla u_{2}\right)=\frac{b}{r(b-r)^{2}}=f_{2} & \text { in } \Omega \\
u_{2}=0 & \text { on } \partial \Omega
\end{array}\right.
\end{aligned}
$$

where $b>r_{2}$ and $\lambda_{\theta}^{-}(x)=\left(\frac{\theta(x)}{\alpha}+\frac{1-\theta(x)}{\beta}\right)$.
Optimization problem:
Find $\theta \in \mathcal{T}$ s.t.

$$
I(\theta)=\mu_{1} \int_{\Omega} f_{1} u_{1} \mathrm{~d} x+\mu_{2} \int_{\Omega} f_{2} u_{2} \mathrm{~d} x \rightarrow \max
$$

with $\mu_{1}, \mu_{2}>0$

One can easily calculate:

$$
\sigma_{1}=-\frac{r}{2}+\frac{\gamma_{1}}{r}, \gamma_{1}>0 \quad \sigma_{2}=\frac{1}{r-b}+\frac{\gamma_{2}}{r}, \gamma_{2}>0
$$

For any $\mu_{1}, \mu_{2}>0$ function $\psi:\left[r_{1}, r_{2}\right] \rightarrow \mathbb{R}$,

$$
\psi:=\mu_{1} \sigma_{1}^{2}+\mu_{2} \sigma_{2}^{2}
$$

is a strictly convex function.

The necessary and sufficient condition of optimality states that there exists $c>0$ such that:

$$
\begin{aligned}
& \psi^{*}>c \quad \Rightarrow \quad \theta^{*}=1 \\
& \psi^{*}<c \quad \Rightarrow \quad \theta^{*}=0
\end{aligned}
$$

As before this implies that there can only be 3 cases:

$$
\begin{aligned}
& \text { 1) } \theta^{*}(r)= \begin{cases}1, & r \in\left[r_{1}, r_{+}\right\rangle \\
0, & r \in\left[r_{+}, r_{-}\right\rangle \\
1, & r \in\left[r_{-}, r_{2}\right]\end{cases} \\
& \text { 2) } \theta^{*}(r)= \begin{cases}1, & r \in\left[r_{1}, r_{+}\right\rangle \\
0, & r \in\left[r_{+}, r_{2}\right\rangle\end{cases} \\
& \text { 3) } \theta^{*}(r)= \begin{cases}0, & r \in\left[r_{1}, r_{-}\right\rangle \\
1, & r \in\left[r_{-}, r_{2}\right\rangle\end{cases}
\end{aligned}
$$

Results

Unlike previous one state example here all 3 cases (with variations of parameters: $\left.\alpha, \beta, r_{1}, r_{2}, \mu_{1}, \mu_{2}\right)$ can be possible solutions.

1) alpha-beta-alpha 2) alpha-beta

3)beta-alpha

