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The problem framework

An optimal control problem for an abstract heat equation:
{

−y′(t) = Ay(t) for t > 0
y (0) = u ∈ H.

(1)

H - Hilbert space
A – positive semidefinite, self-adjoint unbounded operator on H ,

– with dense domain D(A),
– with compact resolvent.

Keynote example: A = −∆, the Dirichlet Laplacian in L2(Ω).

{St}t≥0 – strongly continuous semigroup of non-expansive linear operators
generated by −A

Control u – initial datum aiming to:

(1) steer the solution (arbitrarily closed) to a desired target in
a given time horizon,

(2) minimise a given energy functional.



The system (1) is controllable to a target state yT ∈ H in time T > 0 if there
is u ∈ H such that

STu = yT .

In general, system (1) is NOT controllable to an arbitrary target.
E.g. A = −∆, the Dirichlet Laplacian in L2(Ω)

(∀ t > 0) StH ⊆ D(A) = H2(Ω) ∩H1
0(Ω)

– no target state yT ∈ H \D(A) can be attained in any time.

System (1) is approximately controllable:
for every target time T > 0, target state yT , tolerance ε > 0,
there exists an initial datum u ∈ H such that

‖STu− yT ‖H ≤ ε.



The problem

Given a tolerance ε > 0, a control time T > 0, and a target state yT , find

(P) û = argmin
u∈H

{

J (u) : ‖STu− yT ‖H ≤ ε
}

,

where

J (u) =
α

2
‖u‖2H +

1

2

∫ T

0

β (t) ‖Stu− yd (t) ‖2H dt,

with

◮ yd ∈ L2 (0, T ;H), target trajectory;

◮ α > 0, weight of the control cost;

◮ 0 ≤ β ∈ L2 (0, T ), weight of the control on the trajectory.



Outline

• Problem formulation

• Characterisation of the solution

• Numerical recovery

• Numerical examples



The solution is unique!
Indeed, by means of the indicator function:

IC (y) =

{

0 if y ∈ C

+∞ else.

the problem (P) is restated as

min
u∈H

{J (u) + IB̄ (STu)} ,

where B̄ = B (yT ; ε) .

J + IB̄ ◦ ST is proper, strongly convex and lower-semicontinuous

=⇒ problem (P) has a unique solution û.
Let ũ denote the unique solution of the unconstrained problem

ũ = argmin
u∈H

J (u) ,

and ỹ = ST ũ the corresponding final state.

Proposition

If ‖ỹ − yT ‖H ≤ ε, then û = ũ.
Otherwise, the optimal final state verifies ŷ ∈ ∂B̄.



Standard approaches to the problem

β = 0 (no desired trajectory)
HUM (Hilbert Uniqueness Method), some penalised version:

– based on the dual problem,

– discretisation of the system,

– approximation by a finite dimensional problem,

– iterative algorithm for getting the control.

Glowinski, R., Lions, J. L. Exact and approximate controllability for
distributed parameter systems, Acta Numer. (1994), 269-378.

Boyer, F. On the penalized HUM approach and its application to the
numerical approximation of null-controls for parabolic problems, ESAIM:
Proceedings (2013), no. 41, 15-58.

β 6= 0
– even a more complex numerical treatment (convex optimisation techniques)

We present a different approach based on spectral decomposition of the
solution by eigenfunctions of A,



Geometrical interpretation

Introduce sublevel sets of ψ = (J ◦ S−T ):

Wc = {y ∈ H : ψ(y) ≤ c}

= {y ∈ H : y = STu for some u ∈ H with J (u) ≤ c} .

Wc is empty for c < c̃ = J (ũ).

(Wc)c≥c̃ – a nested family of nonempty closed convex sets centred at ỹ, that
increases with c.

b

b

Bε(yT )
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Wĉ
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yT ε

Figure: Sublevel sets Wc and the target ball.



The target ball is hit for the first time by Wĉ, where ĉ = J(û).
The intersection ŷ is the optimal final state.

ŷ − yT = −γ̂∇ψ (ŷ) ,

for some γ̂ > 0.
Together with

‖ŷ − yT ‖H = ε

we get a fully determined system for γ̂, ŷ.
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Figure: Optimal final state ŷ as intersection of Wĉ and Bε(yT )



Spectral decomposition
Denote:
(ϕn)n∈N

– an orthonormal basis of H , consisting of eigenfunctions of A
(λn)n∈N – a sequence of corresponding (nonnegative) eigenvalues λn,

lim
n
λn = +∞

yn – the n-th Fourier coefficient of y ∈ H .

The ellipsoids Wc can be now characterised as

Wc =







∑

n

ynϕn :
∑

n

(
any

2
n + bnyn + cn

)

︸ ︷︷ ︸

ψ(y)=J(u)

≤ c







, (2)

where

an =

(
α

2
+

1

2

∫ T

0

β (t) e−2λntdt

)

e2λnT ;

bn = −eλnT

∫ T

0

β (t) e−λntydn (t) dt;

cn =
1

2

∫ T

0

β (t)
(

ydn(t)
)2

dt.



The geometrical interpretation

ŷ − yT = −γ̂∇ψ (ŷ) ,

together with
(∇ψ(y))n = 2anyn + bn, n ∈ N,

we get an explicit formula for the Fourier coefficients of the optimal final state
ŷ:

ŷn =
yTn − γ̂bn
1 + 2γ̂an

. (3)

It remains to determine the constant γ̂ > 0.

Condition ‖ŷ − yT ‖ = ε together with (3) implies

G(γ̂) :=
∑

n

(

γ̂
(
2any

T
n + bn

)

1 + 2γan

)2

= ε2. (4)



G – strictly increasing,
– G(0)=0,
– limγ→∞ = ‖ỹ − yT ‖ =: εc.

The equation
G(γ̂) = ε2

has the unique solution for every ε ∈
(
0, ‖ỹ − yT ‖H

)
.

Theorem [Generalised HUM]∗

The solution of the optimal control problem (P) is given by

û =
∑

n

ûnϕn =
∑

n

eλnT ŷnϕn,

where the Fourier coefficients (ŷn)n∈N of the final state ŷ are given by (3) and
(4).

∗ L., M., Molinari, C., Peypouquet, J.: Optimal control of parabolic
equations by spectral decomposition. Optimization 66 (8), 1359-1381
(2017)
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Obtained explicit formulas incorporate infinite series.
Truncation required.
Denote by GN the truncation of series G to first N terms.
Solve

GN (γ) = ε2.

For every ε < limγ→∞GN (γ) < εc = ‖ỹ − yT ‖H it has a unique solution,
denoted by γ̂N .
Introduce the truncated approximation of the optimal final state, ŷN :

ŷN =
N∑

n=1

ŷNn ϕn, with ŷNn =
yTn − γ̂Nbn
1 + 2γ̂Nan

. (5)

Truncated Fourier series with approximate coefficients.

Theorem

The following estimate holds

‖ŷN − ŷ‖2H ≤ 4‖yT − yT,N‖2H +
4‖β‖2L2(0,T )

α2e2λNT
‖yd − yd,N‖2L2(0,T ;H),

where yT,N =
∑N

n=0 y
T
nϕn and yd,N (t) =

∑N

n=0 y
d
n (t)ϕn the truncated series

representation of the target final state and the reference trajectory in the
distributed cost, respectively.



Numerical algorithm

– produces the approximate optimal final state ŷN , with precision ρ.

Step 1. Determine N such that

max

{

‖yT − yT,N‖2H ,
‖β‖2L2(0,T )

α2e2λNT
‖yd − yd,N‖2L2(0,T ;H)

}

≤
ρ2

8
.

Step 2. Compute εN := limγ→∞GN (γ).
Step 3. For ε ≥ εN the approximative solution is ũN =

∑N

n=1 −
bn
2an

eλnTϕn.
Otherwise, proceed to Step 4.
Step 4. Solve equation GN (γ) = ε2 numerically to find γ̂N (bisection method
or other).
Step 5. Compute the approximate optimal final state ŷN using (5), and the
approximate optimal control ûN by

ûN =

N∑

n=1

ûNn ϕn =

N∑

n=1

eλnT ŷNn ϕn.
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Example 1 - Energy minimisation in 2D

The heat equation on Ω = (0, 1)× (0, 1)







d
dt
y −∆y = 0 Ω× (0, T )

y = 0 ∂Ω× (0, T )

y(0) = u (0, π).

(6)

Target time T = 0.001
We use the eigenfunctions of the Dirichlet Laplacian on the rectangle

ϕj,k(x1, x2) = sin (jπx1) sin (kπx2) , j, k = 1, 2, . . . ,

with corresponding eigenvalues

λj,k = (jπ)2 + (kπ)2 .



Example 1 - Energy minimisation in 2D

α = 1
β = 0 - no prescribed reference trajectory.

(P) û ∈ arg min
u∈L2(0,π)

{
1

2
‖u‖2L2 : STu ∈ Bε (yT )

}

.

We choose a reachable final target yT .
We introduce

u(x1, x2) = exp
(
−
(
x2
1 + x2

2

))
· sin

(
5πx3

1

)
· sin

(
5πx7

2

)
,

and we set uT = uN , the Fourier representation of u using the first 15× 15
coefficients.

The final target, given as yT = STu
T , has a finite series representation.

The aim: Explore the differences between the initial datum uT that generates
the target and the solution û for various values of ε.



Figure: Initial data (left) and final state (right) for different values of ε.



Figure: Initial data (left) and final state (right) for different values of ε.



ε2 J
(
ûN
)

0 0.2235

10−6 · ‖yT ‖2L2 0.1772

0.5 · ‖yT ‖2L2 0.0057

0.99 · ‖yT ‖2L2 1.486e−6

Table: Values of the energy functional J for the solution corresponding to different
tolerances ε.



Example 2 - Energy minimisation and trajectory regulation, 1D
The heat equation on Ω = (0, π), T = 0.01

◮ α = 10−4;
◮ β (t) = 1[t1,t2] (t), with t1 = T/3 and t2 = 2T/3;
◮ yd (x, t) as a smoothing regularisation (through classical mollifier) of the

function x 7−→ 1[x1,x2] (x), with x1 = π/5 and x2 = 2π/5;
◮ yT (x) as a smoothing regularisation (again, through mollifier) of the

function x 7−→ 1[x3,x4] (x), with x3 = 3π/5 and x4 = 4π/5.

Figure: Top: reference trajectory yd for the distributed cost. Bottom: target final
state yT , in comparison with their reconstructions after Fourier decomposition with
N=185 coefficients (indistinguishable).



Figure: For the three values of ε: evolution of the solution in time and comparison
with the reference trajectory yd(t) (t = 0.004), and with the target yT (T = 0.01).



Conclusion

The new approach:

– exploring spectral representation of the solution by eigenfunctions of A,

– an explicit expression of the optimal final state ŷ = ST û in terms of the
given problem data.

– the numerical issues are reduced to finding the unique root of a scalar
function.

Price to pay:

– knowledge of eigenfunctions.

If the problem has to be considered many times for different data, but the same
operator, this can be done offline.

The method applicable to distributed control problem (recent result):

∗ L, M., Molinari, C.: Optimal distributed control of the heat-type equations
by spectral decomposition, submitted.

– dual problem involved

– more complex relations.
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Thanks for your attention!
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