Propagation principle for parabolic H -measures

Ivan Ivec and Martin Lazar

Novi Sad, October 26, 2017.

Applications of Generalized Functions in Harmonic Analysis, Mechanics, Stochastics and PDE

H -measures
Classical H-measures
Parabolic H-measures

Anisotropic and parabolic classes of symbols and operators
Definition
Basic properties

General form of the propagation principle
Results
Applications

Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in the late 1980s and their existence is established by the following theorem.

Theorem 1. If $\left(\mathrm{u}_{n}\right)$ is a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$ such that $\mathrm{u}_{n} \longrightarrow 0$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and an $r \times r$ Hermitian complex matrix Radon measure $\boldsymbol{\mu}$ on $\mathbf{R}^{d} \times \mathrm{S}^{d-1}$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ one has:

Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in the late 1980s and their existence is established by the following theorem.

Theorem 1. If $\left(\mathrm{u}_{n}\right)$ is a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$ such that $\mathrm{u}_{n} \longrightarrow 0$, then there exist a subsequence ($\mathrm{u}_{n^{\prime}}$) and an $r \times r$ Hermitian complex matrix Radon measure $\boldsymbol{\mu}$ on $\mathbf{R}^{d} \times \mathrm{S}^{d-1}$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ one has:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right) \otimes \mathcal{A}_{\psi}\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right) d \mathbf{x} & =\left\langle\boldsymbol{\mu},\left(\varphi_{1} \overline{\varphi_{2}}\right) \boxtimes \bar{\psi}\right\rangle \\
& =\int_{\mathbf{R}^{d} \times \mathbf{S}^{d-1}} \varphi_{1}(\mathbf{x}) \overline{\varphi_{2}(\mathbf{x}) \psi(\boldsymbol{\xi})} d \boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

where $\mathcal{F}\left(\mathcal{A}_{\psi} v\right)(\boldsymbol{\xi})=\psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \mathcal{F} v(\boldsymbol{\xi})$.

Parabolic projections

$\mathrm{P}^{d} \ldots$ a rotational ellipsoid in \mathbf{R}^{1+d} defined by $\tau^{2}+\frac{|\xi|^{2}}{2}=1$
$p \ldots$ a projection to the manifold P^{d}, along projection curves (parabolas)

$$
\varphi_{\boldsymbol{\nu}}(s)=\left(s^{2} \tau_{0}, s \boldsymbol{\xi}_{0}\right), \quad s>0, \quad \boldsymbol{\nu}=\left(\tau_{0}, \boldsymbol{\xi}_{0}\right) \in \mathrm{P}^{d}
$$

given by

$$
p(\tau, \boldsymbol{\xi})=\left(\frac{\tau}{\kappa^{2}(\tau, \boldsymbol{\xi})}, \frac{\boldsymbol{\xi}}{\kappa(\tau, \boldsymbol{\xi})}\right)
$$

where $\kappa^{2}(\tau, \boldsymbol{\xi}):=|\boldsymbol{\xi} / 2|^{2}+\sqrt{|\boldsymbol{\xi} / 2|^{4}+\tau^{2}}$.

Parabolic projections

$\mathrm{P}^{d} \ldots$ a rotational ellipsoid in \mathbf{R}^{1+d} defined by $\tau^{2}+\frac{|\boldsymbol{\xi}|^{2}}{2}=1$
$p \ldots$ a projection to the manifold P^{d}, along projection curves (parabolas)

$$
\varphi_{\boldsymbol{\nu}}(s)=\left(s^{2} \tau_{0}, s \boldsymbol{\xi}_{0}\right), \quad s>0, \quad \boldsymbol{\nu}=\left(\tau_{0}, \boldsymbol{\xi}_{0}\right) \in \mathrm{P}^{d}
$$

given by

$$
p(\tau, \boldsymbol{\xi})=\left(\frac{\tau}{\kappa^{2}(\tau, \boldsymbol{\xi})}, \frac{\boldsymbol{\xi}}{\kappa(\tau, \boldsymbol{\xi})}\right)
$$

where $\kappa^{2}(\tau, \boldsymbol{\xi}):=|\boldsymbol{\xi} / 2|^{2}+\sqrt{|\boldsymbol{\xi} / 2|^{4}+\tau^{2}}$.
κ takes a constant values $s \in \mathbf{R}^{+}$on each ellipsoid $\tau^{2}+|s \boldsymbol{\xi}|^{2} / 2=s^{4}$
Specifically, P^{d} can alternatively be characterised with $\kappa(\tau, \boldsymbol{\xi})=1$.

Parabolic H-measures

Theorem 2. If $\left(\mathrm{u}_{n}\right)$ is a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$ such that $\mathrm{u}_{n} \longrightarrow 0$, then there exist a subsequence ($\mathrm{u}_{n^{\prime}}$) and an $r \times r$ Hermitian matrix Radon measure $\boldsymbol{\mu}$ on $\mathbf{R}^{1+d} \times \mathrm{P}^{d}$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{1+d}\right)$ and $\psi \in \mathrm{C}\left(\mathrm{P}^{d}\right)$ one has:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{1+d}} \mathcal{F}\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right) \otimes \mathcal{F}\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right)(\psi \circ p) d \boldsymbol{\eta} & =\left\langle\boldsymbol{\mu},\left(\varphi_{1} \overline{\varphi_{2}}\right) \boxtimes \psi\right\rangle \\
& =\int_{\mathbf{R}^{1+d} \times \mathbf{P}^{d}} \varphi_{1}(\mathbf{y}) \overline{\varphi_{2}(\mathbf{y})} \psi(\boldsymbol{\eta}) d \boldsymbol{\mu}(\mathbf{y}, \boldsymbol{\eta}),
\end{aligned}
$$

where we use notation $\mathbf{y}=(t, \mathbf{x})$ and $\boldsymbol{\eta}=(\tau, \boldsymbol{\xi})$.

Hörmander classes

For $m \in \mathbf{R}, \rho \in\langle 0,1]$ and $\delta \in[0,1\rangle$, the Hörmander symbol class $\mathrm{S}_{\rho, \delta}^{m}$ is defined as the set:

$$
\begin{aligned}
& \left\{a(\mathbf{x}, \boldsymbol{\xi}) \in \mathrm{C}^{\infty}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right):\right. \\
& \left.\quad\left(\forall \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_{0}^{d}\right)\left(\exists C_{\boldsymbol{\alpha}, \boldsymbol{\beta}}>0\right) \quad\left|\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a\right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k^{m-\rho|\boldsymbol{\alpha}|+\delta|\boldsymbol{\beta}|}\right\},
\end{aligned}
$$

where $k(\boldsymbol{\xi}):=\sqrt{1+4 \pi^{2}|\boldsymbol{\xi}|^{2}}$ and $\partial_{\boldsymbol{\beta}} \partial^{\alpha} a:=\partial_{\mathbf{x}}^{\boldsymbol{\beta}} \partial_{\boldsymbol{\xi}}^{\alpha} a$.

Hörmander classes

For $m \in \mathbf{R}, \rho \in\langle 0,1]$ and $\delta \in[0,1\rangle$, the Hörmander symbol class $\mathrm{S}_{\rho, \delta}^{m}$ is defined as the set:

$$
\begin{aligned}
& \left\{a(\mathbf{x}, \boldsymbol{\xi}) \in \mathrm{C}^{\infty}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right):\right. \\
& \left.\quad\left(\forall \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_{0}^{d}\right)\left(\exists C_{\boldsymbol{\alpha}, \boldsymbol{\beta}}>0\right) \quad\left|\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a\right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k^{m-\rho|\boldsymbol{\alpha}|+\delta|\boldsymbol{\beta}|}\right\}
\end{aligned}
$$

where $k(\boldsymbol{\xi}):=\sqrt{1+4 \pi^{2}|\boldsymbol{\xi}|^{2}}$ and $\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a:=\partial_{\mathbf{x}}^{\boldsymbol{\beta}} \partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} a$.
To each $a \in \mathrm{~S}_{\rho, \delta}^{m}$ one can assign an operator A defined for $\varphi \in \mathcal{S}$ as

$$
A \varphi(\mathbf{x})=\int_{\mathbf{R}^{d}} e^{2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}} a(\mathbf{x}, \boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) d \boldsymbol{\xi}
$$

where $A \varphi$ is again a function from Schwartz space \mathcal{S}. We write $a=\sigma(A)$ and $A=\operatorname{Op}(a)$.

Hörmander classes

For $m \in \mathbf{R}, \rho \in\langle 0,1]$ and $\delta \in[0,1\rangle$, the Hörmander symbol class $\mathrm{S}_{\rho, \delta}^{m}$ is defined as the set:

$$
\begin{aligned}
& \left\{a(\mathbf{x}, \boldsymbol{\xi}) \in \mathrm{C}^{\infty}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right):\right. \\
& \left.\quad\left(\forall \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_{0}^{d}\right)\left(\exists C_{\boldsymbol{\alpha}, \boldsymbol{\beta}}>0\right) \quad\left|\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a\right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k^{m-\rho|\boldsymbol{\alpha}|+\delta|\boldsymbol{\beta}|}\right\}
\end{aligned}
$$

where $k(\boldsymbol{\xi}):=\sqrt{1+4 \pi^{2}|\boldsymbol{\xi}|^{2}}$ and $\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a:=\partial_{\mathbf{x}}^{\boldsymbol{\beta}} \partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} a$.
To each $a \in \mathrm{~S}_{\rho, \delta}^{m}$ one can assign an operator A defined for $\varphi \in \mathcal{S}$ as

$$
A \varphi(\mathbf{x})=\int_{\mathbf{R}^{d}} e^{2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}} a(\mathbf{x}, \boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) d \boldsymbol{\xi}
$$

where $A \varphi$ is again a function from Schwartz space \mathcal{S}. We write $a=\sigma(A)$ and $A=\operatorname{Op}(a)$.
$\rho \geqslant \delta \ldots$ a continuous operator from $\mathrm{H}^{s}\left(\mathbf{R}^{d}\right)$ to $\mathrm{H}^{s-m}\left(\mathbf{R}^{d}\right)$

Anisotropic generalisation

For $\gamma \in\langle 0,1]^{d}$ such that $\gamma_{\text {max }}=\max \left\{\gamma_{1}, \ldots, \gamma_{d}\right\}=1$ we introduce anisotropic classes of symbols:

$$
\begin{aligned}
\mathrm{S}^{m \boldsymbol{\gamma}}=\{a(\mathbf{x}, \boldsymbol{\xi}) & \in \mathrm{C}^{\infty}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right): \\
& \left.\left(\forall \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_{0}^{d}\right)\left(\exists C_{\boldsymbol{\alpha}, \boldsymbol{\beta}}>0\right) \quad\left|\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a\right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k_{\boldsymbol{\gamma}}^{m-\sum_{i=1}^{d} \frac{\alpha_{i}}{\gamma_{i}}}\right\},
\end{aligned}
$$

where $k_{\gamma}(\boldsymbol{\xi}):=1+\sum_{i=1}^{d}\left(2 \pi\left|\xi_{i}\right|\right)^{\gamma_{i}}$.

Inclusions to classical spaces

We can prove that

$$
k^{2}(\boldsymbol{\xi}) \leqslant(1+d) k_{\gamma}(\boldsymbol{\xi})^{\frac{2}{\gamma_{\min }}},
$$

where $\gamma_{\text {min }}=\min \left\{\gamma_{1}, \ldots, \gamma_{d}\right\}$, and also

$$
k_{\gamma}(\boldsymbol{\xi}) \leqslant(1+d) \sqrt{d} k(\boldsymbol{\xi}) .
$$

Inclusions to classical spaces

We can prove that

$$
k^{2}(\boldsymbol{\xi}) \leqslant(1+d) k_{\boldsymbol{\gamma}}(\boldsymbol{\xi})^{\frac{2}{\gamma_{\min }}}
$$

where $\gamma_{\text {min }}=\min \left\{\gamma_{1}, \ldots, \gamma_{d}\right\}$, and also

$$
k_{\gamma}(\boldsymbol{\xi}) \leqslant(1+d) \sqrt{d} k(\boldsymbol{\xi}) .
$$

From the above inequalities we easily obtain

$$
\mathrm{S}^{m \gamma} \subseteq \begin{cases}\mathrm{~S}_{\gamma_{\min }, 0}^{m}, & m \geq 0 \\ \mathrm{~S}_{\gamma_{\min }, 0}^{m}, & m<0\end{cases}
$$

which means that we are able to apply many results from classical pseudodifferential calculus also to anisotropic classes of symbols and operators.

Parabolic classes of symbols

As a special case we have the following parabolic classes of symbols

$$
\begin{aligned}
\mathrm{S}_{p}^{m} & =\left\{a(\mathbf{y}, \boldsymbol{\eta}) \in \mathrm{C}^{\infty}\left(\mathbf{R}^{1+d} \times \mathbf{R}^{1+d}\right)\right. \\
& \left.:\left(\forall \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_{0}^{1+d}\right)\left(\exists C_{\boldsymbol{\alpha}, \boldsymbol{\beta}}>0\right) \quad\left|\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a\right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k_{p}^{m-2 \boldsymbol{\alpha}_{0}-\left|\alpha^{\prime}\right|}\right\},
\end{aligned}
$$

where $k_{p}(\boldsymbol{\eta})=k_{p}(\tau, \boldsymbol{\xi}):=1+(2 \pi|\tau|)^{\frac{1}{2}}+\sum_{i=1}^{d} 2 \pi\left|\xi_{i}\right|$, and $\boldsymbol{\alpha}=\left(\alpha_{0}, \boldsymbol{\alpha}^{\prime}\right)$.

Parabolic classes of symbols

As a special case we have the following parabolic classes of symbols

$$
\begin{aligned}
\mathrm{S}_{p}^{m} & =\left\{a(\mathbf{y}, \boldsymbol{\eta}) \in \mathrm{C}^{\infty}\left(\mathbf{R}^{1+d} \times \mathbf{R}^{1+d}\right)\right. \\
& \left.:\left(\forall \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_{0}^{1+d}\right)\left(\exists C_{\boldsymbol{\alpha}, \boldsymbol{\beta}}>0\right) \quad\left|\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a\right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k_{p}^{m-2 \boldsymbol{\alpha}_{0}-\left|\alpha^{\prime}\right|}\right\},
\end{aligned}
$$

where $k_{p}(\boldsymbol{\eta})=k_{p}(\tau, \boldsymbol{\xi}):=1+(2 \pi|\tau|)^{\frac{1}{2}}+\sum_{i=1}^{d} 2 \pi\left|\xi_{i}\right|$, and $\boldsymbol{\alpha}=\left(\alpha_{0}, \boldsymbol{\alpha}^{\prime}\right)$.
Inclusion to classical spaces now reads

$$
\mathrm{S}_{p}^{m} \subseteq\left\{\begin{array}{ll}
\mathrm{S}_{\frac{1}{2,0}}^{m}, & m \geq 0 \\
\mathrm{~S}_{\frac{1}{2}, 0}^{2}, & m<0
\end{array} .\right.
$$

Parabolic homogeneous functions

$p^{m} \in \mathrm{C}^{\infty}\left(\mathbf{R}^{1+d} \times \mathbf{R}^{1+d} \backslash\{\mathbf{0}\}\right)$ is a parabolic homogeneous function with respect to η of order m if

$$
p^{m}\left(\mathbf{y}, \varepsilon^{2} \tau, \varepsilon \boldsymbol{\xi}\right)=\varepsilon^{m} p^{m}(\mathbf{y}, \tau, \boldsymbol{\xi}), \quad \varepsilon>0 .
$$

For such functions we have the following lemma.
Lemma 1. Let $p^{m}(\mathbf{y}, \boldsymbol{\eta})$ be an arbitrary parabolic homogeneous function with respect to η of order m, which, as well as all its partial derivatives, is uniformly bounded in \mathbf{y} for $\boldsymbol{\eta}$ inside a compact set, and let $\chi(\boldsymbol{\eta}) \in \mathrm{C}^{\infty}\left(\mathbf{R}^{1+d}\right)$ equals to 0 around the origin and equals to 1 outside the ball $\mathrm{K}[0,1]$. Then $p^{m} \chi$ belongs to S_{p}^{m}.

Basic properties

By direct calculation we have

$$
a \in \mathrm{~S}_{p}^{m}, b \in \mathrm{~S}_{p}^{n} \Longrightarrow a b \in \mathrm{~S}_{p}^{m+n}
$$

and

$$
a \in \mathrm{~S}_{p}^{m} \Longrightarrow \partial_{\xi_{i}} a \in \mathrm{~S}_{p}^{m-1}, \partial_{\tau} a \in \mathrm{~S}_{p}^{m-2}, \partial_{x_{i}} a \in \mathrm{~S}_{p}^{m}, \partial_{t} a \in \mathrm{~S}_{p}^{m}
$$

Class of operators assigned to symbols from S_{p}^{m} we denote by Σ_{p}^{m}.

Continuity results

As for nonnegative m the class S_{p}^{m} is embedded into $\mathrm{S}_{\frac{1}{2}, 0}^{m}$, according to classical theory A can be considered as a continuous operator from $\mathrm{H}^{s}\left(\mathbf{R}^{1+d}\right)$ to $\mathrm{H}^{s-m}\left(\mathbf{R}^{1+d}\right)$.

Continuity results

As for nonnegative m the class S_{p}^{m} is embedded into $\mathrm{S}_{\frac{1}{2}, 0}^{m}$, according to classical theory A can be considered as a continuous operator from $\mathrm{H}^{s}\left(\mathbf{R}^{1+d}\right)$ to $\mathrm{H}^{s-m}\left(\mathbf{R}^{1+d}\right)$.

Actually, we prove a better result
Lemma 2. An operator $A \in \Sigma_{p}^{m}$ is a continuous operator from $H^{\frac{s}{2}, s}\left(\mathbf{R}^{1+d}\right)$ into $\mathrm{H}^{\frac{s-m}{2}, s-m}\left(\mathbf{R}^{1+d}\right)$.

Polyhomogeneous parabolic symbols

Now we define classes of polyhomogeneous parabolic symbols, and corresponding operators:

$$
\Psi_{p}^{m}=\left\{P \in \Sigma_{p}^{m}: \sigma(P)(\mathbf{y}, \boldsymbol{\eta})=p^{m}(\mathbf{y}, \boldsymbol{\eta}) \chi(\boldsymbol{\eta})+p^{m-1}(\mathbf{y}, \boldsymbol{\eta})\right\}
$$

where $p^{m} \in \mathrm{C}^{\infty}\left(\mathbf{R}^{1+d} \times \mathbf{R}^{1+d} \backslash\{\mathbf{0}\}\right)$ is a parabolic homogeneous function with respect to $\boldsymbol{\eta}$ of order m, while $\chi \in \mathrm{C}^{\infty}\left(\mathbf{R}^{1+d}\right)$ equals to 0 around the origin and equals to 1 outside $\mathrm{K}[0,1]$, and $p^{m-1} \in \mathrm{~S}_{p}^{m-1}\left(\mathbf{R}^{1+d}\right)$.

Polyhomogeneous parabolic symbols

Now we define classes of polyhomogeneous parabolic symbols, and corresponding operators:

$$
\Psi_{p}^{m}=\left\{P \in \Sigma_{p}^{m}: \sigma(P)(\mathbf{y}, \boldsymbol{\eta})=p^{m}(\mathbf{y}, \boldsymbol{\eta}) \chi(\boldsymbol{\eta})+p^{m-1}(\mathbf{y}, \boldsymbol{\eta})\right\}
$$

where $p^{m} \in \mathrm{C}^{\infty}\left(\mathbf{R}^{1+d} \times \mathbf{R}^{1+d} \backslash\{\mathbf{0}\}\right)$ is a parabolic homogeneous function with respect to $\boldsymbol{\eta}$ of order m, while $\chi \in \mathrm{C}^{\infty}\left(\mathbf{R}^{1+d}\right)$ equals to 0 around the origin and equals to 1 outside $\mathrm{K}[0,1]$, and $p^{m-1} \in \mathrm{~S}_{p}^{m-1}\left(\mathbf{R}^{1+d}\right)$.

By $\sigma^{m}(P):=p^{m}$ we denote the principal symbol of the operator $P \in \Psi_{p}^{m}$.
When we use matrix-valued symbols with values in $\mathrm{M}_{r \times r}(\mathbf{C})$ we write $\Psi_{p, r}^{m}$ instead of Ψ_{p}^{m} and $S_{p, r}^{m}$ instead of S_{p}^{m}.

We also write $\Psi_{p, r}^{m, c}$ for symbols compactly supported in \mathbf{y}, and similarly for the class $\Sigma_{p, r}^{m, c}$.

It follows from the definition that $\sigma^{m}(P) \chi \in \mathrm{S}_{p}^{m}$ for $P \in \Psi_{p}^{m}$.

Asymptotic expansions

Lemma 3. If A^{*} denotes the adjoint operator to $A \in \Sigma_{p, r}^{m}$, and $B \in \Sigma_{p, r}^{n}$, then
a) $\sigma\left(A^{*}\right)-\sigma(A)^{*}-\frac{1}{2 \pi i} \sum_{j=1}^{d} \frac{\partial^{2} \sigma(A)^{*}}{\partial x_{j} \partial \xi_{j}} \in \mathrm{~S}_{p, r}^{m-2}$,
b) $\sigma(A B)-\sigma(A) \sigma(B)-\frac{1}{2 \pi i} \sum_{j=1}^{d} \frac{\partial \sigma(A)}{\partial \xi_{j}} \frac{\partial \sigma(B)}{\partial x_{j}} \in \mathrm{~S}_{p, r}^{m+n-2}$.

Thus, if $\sigma(A)$ commutes with $\sigma(B)$, then $[A, B]:=A B-B A \in \Sigma_{p, r}^{m+n-1}$ with symbol $1 /(2 \pi i)\{\sigma(A), \sigma(B)\}_{\mathrm{x}, \boldsymbol{\xi}}$ (up to the symbol of lower order), where

$$
\{\sigma(A), \sigma(B)\}_{\mathbf{x}, \boldsymbol{\xi}}=\sum_{j=1}^{d} \frac{\partial \sigma(A)}{\partial \xi_{j}} \frac{\partial \sigma(B)}{\partial x_{j}}-\sum_{j=1}^{d} \frac{\partial \sigma(A)}{\partial x_{j}} \frac{\partial \sigma(B)}{\partial \xi_{j}}
$$

is the Poisson bracket of $\sigma(A)$ and $\sigma(B)$ in variables x and ξ.

Further consequences

Corollary. If $A \in \Sigma_{p, r}^{m}$ and $B \in \Sigma_{p, r}^{n}$, then
a) $\sigma\left(A^{*}\right)-\sigma(A)^{*} \in \mathrm{~S}_{p, r}^{m-1}$,
b) $\sigma(A B)-\sigma(A) \sigma(B) \in \mathrm{S}_{p, r}^{m+n-1}$.

Further consequences

Corollary. If $A \in \Sigma_{p, r}^{m}$ and $B \in \Sigma_{p, r}^{n}$, then
a) $\sigma\left(A^{*}\right)-\sigma(A)^{*} \in \mathrm{~S}_{p, r}^{m-1}$,
b) $\sigma(A B)-\sigma(A) \sigma(B) \in \mathrm{S}_{p, r}^{m+n-1}$.

Lemma 4. If $A \in \Psi_{p, r}^{m}$ and $B \in \Psi_{p, r}^{n}$, then
a) $A^{*} \in \Psi_{p, r}^{m}$ and $\sigma^{m}\left(A^{*}\right)={\overline{\sigma^{m}(A)}}^{t}=: \sigma^{m}(A)^{*}$,
b) $A B \in \Psi_{p, r}^{m+n}$ and $\sigma^{m+n}(A B)=\sigma^{m}(A) \sigma^{n}(B)$.

Extended definition of parabolic H-measures

Definition of parabolic H-measures given in Theorem 2 can be extended to operators from $\Psi_{p, r}^{0, c}$.
Lemma 5. If $\left(\mathbf{u}_{n}\right)$ is a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$ such that $\mathrm{u}_{n} \longrightarrow 0$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and an $r \times r$ Hermitian matrix Radon measure $\boldsymbol{\mu}$ on $\mathbf{R}^{1+d} \times \mathrm{P}^{d}$ such that for any $A \in \Psi_{p, r}^{0, c}$ one has:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{1+d}} A \mathbf{u}_{n^{\prime}} \cdot \mathbf{u}_{n^{\prime}} d \mathbf{y} & =: \lim _{n^{\prime}}\left\langle A \mathbf{u}_{n^{\prime}}, \mathbf{u}_{n^{\prime}}\right\rangle=\left\langle\boldsymbol{\mu}, \sigma^{0}(A)\right\rangle \\
& :=\sum_{i, j=1}^{r} \int_{\mathbf{R}^{1+d} \times \mathrm{P}^{d}} \sigma^{0}(A)_{i j} d \mu_{i j}(\mathbf{y}, \boldsymbol{\eta})
\end{aligned}
$$

Localisation principle

Theorem 3. (localisation principle) Let (u_{n}) be a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$ such that $\mathrm{u}_{n} \longrightarrow 0$, and let $R \mathrm{u}_{n} \longrightarrow 0$ strongly in $\mathrm{H}_{\text {loc }}^{-\frac{m}{2},-m}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$ for some $R \in \Psi_{p, r}^{m}$. Then, for the associated parabolic H -measure $\boldsymbol{\mu}$, it holds

$$
\sigma^{m}(R) \boldsymbol{\mu}^{\top}=\mathbf{0}
$$

Propagation principle

Theorem 4. (propagation principle) Let $\left(\mathrm{u}_{n}\right)$ be a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$ such that $\mathbf{u}_{n} \longrightarrow 0$, and let $R \mathbf{u}_{n} \longrightarrow 0$ strongly in $\mathrm{H}_{\mathrm{loc}} \frac{-m+1}{2},-m+1\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$ for some $R \in \Psi_{p, r}^{m}$, such that $\sigma^{m}(R)$ is self-adjoint and the lower order symbol of R defines an element in $\Psi_{p, r}^{m-1}$ with principal symbol $\sigma^{m-1}(R)$.
Then, for the associated parabolic H-measure μ and for any $a \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{1+d} \times \mathrm{P}^{d}\right)$, it holds

Propagation principle

Theorem 4. (propagation principle) Let $\left(\mathrm{u}_{n}\right)$ be a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$ such that $\mathrm{u}_{n} \longrightarrow 0$, and let $R \mathrm{u}_{n} \longrightarrow 0$ strongly in $\mathrm{H}_{\mathrm{loc}} \frac{-m+1}{}{ }^{-m+1}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$ for some $R \in \Psi_{p, r}^{m}$, such that $\sigma^{m}(R)$ is self-adjoint and the lower order symbol of R defines an element in $\Psi_{p, r}^{m-1}$ with principal symbol $\sigma^{m-1}(R)$.
Then, for the associated parabolic H -measure $\boldsymbol{\mu}$ and for any $a \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{1+d} \times \mathrm{P}^{d}\right)$, it holds

$$
\begin{aligned}
& \left\langle\boldsymbol{\mu},\left\{\sigma^{m}(R), a\right\}_{\mathbf{x}, \boldsymbol{\xi}}+\left[2 \pi i\left(\left(\sigma^{m-1}(R)\right)^{*}-\sigma^{m-1}(R)\right)\right.\right. \\
& \left.\left.\quad+\sum_{j=1}^{d} \frac{\partial^{2} \sigma^{m}(R)}{\partial x_{j} \partial \xi_{j}}+\frac{m-1}{2\left(1+\tau^{2}\right)} \boldsymbol{\xi} \cdot \nabla_{\mathbf{x}} \sigma^{m}(R)\right] a\right\rangle=0 .
\end{aligned}
$$

If $\sigma^{m}(R)$ is anti-self-adjoint we can still apply this theorem, by simply using $i R$ instead of R.

Application to the Schrödinger equation

We consider a sequence of initial value problems

$$
\left\{\begin{array}{c}
i \partial_{t} u_{n}+\operatorname{div}\left(\mathbf{A} \nabla u_{n}\right)=f_{n} \\
u_{n}(0, \cdot)=u_{n}^{0}
\end{array}\right.
$$

where $u_{n}^{0} \longrightarrow 0$ in $\mathrm{H}^{1}\left(\mathbf{R}^{d}\right)$, while $f_{n} \longrightarrow 0$ in $W\left(0, T ; \mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \mathrm{H}^{-1}\left(\mathbf{R}^{d}\right)\right)$, where

$$
\|f\|_{W}^{2}=\|f\|_{\mathrm{L}^{2}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)}^{2}+\left\|\partial_{t} f\right\|_{\mathrm{L}^{2}\left([0, T] ; \mathrm{H}^{-1}\left(\mathbf{R}^{d}\right)\right)}^{2} .
$$

Application to the Schrödinger equation

We consider a sequence of initial value problems

$$
\left\{\begin{array}{c}
i \partial_{t} u_{n}+\operatorname{div}\left(\mathbf{A} \nabla u_{n}\right)=f_{n} \\
u_{n}(0, \cdot)=u_{n}^{0}
\end{array}\right.
$$

where $u_{n}^{0} \longrightarrow 0$ in $\mathrm{H}^{1}\left(\mathbf{R}^{d}\right)$, while $f_{n} \longrightarrow 0$ in $W\left(0, T ; \mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \mathrm{H}^{-1}\left(\mathbf{R}^{d}\right)\right)$, where

$$
\|f\|_{W}^{2}=\|f\|_{\mathrm{L}^{2}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)}^{2}+\left\|\partial_{t} f\right\|_{\mathrm{L}^{2}\left([0, T] ; \mathrm{H}^{-1}\left(\mathbf{R}^{d}\right)\right)}^{2}
$$

We also take $\mathbf{A} \in \mathrm{C}^{\infty}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} ; \mathrm{M}_{d \times d}(\mathbf{R})\right) \cap \mathrm{L}^{\infty}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} ; \mathrm{M}_{d \times d}(\mathbf{R})\right)$ to be a symmetric matrix field such that $\mathbf{A} v \cdot v \geqslant \alpha|v|^{2}$ (a.e.) for an $\alpha>0$. Furthermore, we suppose that all partial derivatives $\partial^{\alpha} \sqrt{\mathbf{A}}$ belong to $\mathrm{C}_{b}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} ; \mathrm{M}_{d \times d}(\mathbf{R})\right)$.

Theorem 5. Under the above assumptions and additional assumption than $f_{n} \longrightarrow 0$ strongly in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d}\right)$ an H-measure $\tilde{\mu}$ associated with the sequence

$$
\left(v_{0}^{n}, \mathrm{v}_{1}^{n}\right)=\left(P u_{n}, \sqrt{\mathbf{A}} \nabla u_{n}\right),
$$

where $\sigma(P)=i \kappa(\tau, \boldsymbol{\xi}) \chi(\tau, \boldsymbol{\xi})$, satisfies (for every $a \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{1+d} \times \mathrm{P}^{d}\right)$)

$$
\langle\tilde{\boldsymbol{\mu}}, \tilde{\mathbf{B}}\rangle=0
$$

where

$$
\tilde{\mathbf{B}}=\left[\begin{array}{cc}
b_{00} & \left(b_{j}\right)^{\top} \\
\left(b_{j}\right) & \mathbf{B}
\end{array}\right]
$$

with $b_{00}=\frac{2 \pi \tau \nabla_{\mathbf{x}} a \cdot \nabla_{\boldsymbol{\xi}^{\kappa}}}{\kappa^{2}}, b_{j}=2 \pi\left(\sum_{k, l} \xi_{l} \partial_{k} \tilde{a}_{j l} \partial_{\xi_{k}} a-\sum_{k} \tilde{a}_{j k} \partial_{x_{k}} a\right)$ and

$$
\mathbf{B}=\left(\nabla_{\mathbf{x}} a \cdot \nabla_{\boldsymbol{\xi}} \kappa\right) \mathbf{I}+2 a\left(\nabla_{\boldsymbol{\xi}} \kappa \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{A}}\right) \mathbf{A}^{-1 / 2}
$$

Here $\tilde{a}_{i j}$ are elements of $\sqrt{\mathbf{A}}$. Moreover, we have

$$
\begin{aligned}
\left\langle\frac{\tilde{\nu}}{|\mathfrak{q}|^{2}}, \nabla_{\mathbf{x}} a \cdot\right. & \left((\tau+2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi}) \nabla_{\boldsymbol{\xi}} \kappa-4 \pi \kappa \mathbf{A} \boldsymbol{\xi}\right) \\
& \left.+4 \pi\left(\left(\left(\kappa \nabla_{\boldsymbol{\xi}} a+a \nabla_{\boldsymbol{\xi}} \kappa\right) \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{A}}\right) \boldsymbol{\xi} \cdot \sqrt{\mathbf{A} \boldsymbol{\xi}}\right)\right\rangle=0
\end{aligned}
$$

where $\tilde{\nu}=\operatorname{tr} \tilde{\boldsymbol{\mu}}$ and $\mathrm{q}=(i \kappa, 2 \pi i \sqrt{\mathbf{A}} \xi)$.

Remark. We would like to express the claim of Theorem 5 in terms of the main symbol of Schrödinger equation

$$
Q(t, \mathbf{x} ; \tau, \boldsymbol{\xi}):=2 \pi \tau+(2 \pi)^{2} \mathbf{A}(t, \mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi}
$$

hoping that we can get results similar to those obtained in [AL]. However, we know how to do this only in a special case when $\sqrt{\mathbf{A}}$ and its derivatives commute ($p \in 1$..d):

$$
\sqrt{\mathbf{A}} \cdot \partial_{x_{p}} \sqrt{\mathbf{A}}=\partial_{x_{p}} \sqrt{\mathbf{A}} \cdot \sqrt{\mathbf{A}}
$$

In that case we have

$$
\nabla_{\mathbf{x}} \mathbf{A}=2 \sqrt{\mathbf{A}} \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{A}}=2 \nabla_{\mathbf{x}} \sqrt{\mathbf{A}} \cdot \sqrt{\mathbf{A}}
$$

and the claim of Theorem 5 can now be rewritten as

$$
\left\langle\frac{\tilde{\nu}}{|\mathbf{q}|^{2}}, \kappa\{a, Q\}_{\mathbf{x}, \boldsymbol{\xi}}+\left(Q \nabla_{\mathbf{x}} a+a \nabla_{\mathbf{x}} Q\right) \cdot \nabla_{\boldsymbol{\xi}} \kappa\right\rangle=0
$$

Application to the vibrating plate equation

We consider a sequence of initial value problems

$$
\left\{\begin{array}{cl}
\partial_{t}\left(\rho \partial_{t} u_{n}\right)+\operatorname{div} \operatorname{div}\left(\mathbf{M} \nabla \nabla u_{n}\right) & =f_{n} \\
u_{n}(0, \cdot) & =u_{n}^{0} \\
\partial_{t} u_{n}(0, \cdot) & =u_{n}^{1}
\end{array}\right.
$$

where $u_{n}^{0} \longrightarrow 0$ in $\mathrm{H}^{2}\left(\mathbf{R}^{d}\right), u_{n}^{1} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $f_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$.

Application to the vibrating plate equation

We consider a sequence of initial value problems

$$
\left\{\begin{array}{cl}
\partial_{t}\left(\rho \partial_{t} u_{n}\right)+\operatorname{div} \operatorname{div}\left(\mathbf{M} \nabla \nabla u_{n}\right) & =f_{n} \\
u_{n}(0, \cdot) & =u_{n}^{0} \\
\partial_{t} u_{n}(0, \cdot) & =u_{n}^{1}
\end{array}\right.
$$

where $u_{n}^{0} \longrightarrow 0$ in $\mathrm{H}^{2}\left(\mathbf{R}^{d}\right), u_{n}^{1} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $f_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$.

We take $\rho \in \mathrm{C}^{\infty}\left(\mathbf{R}^{+} ; \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)\right) \cap \mathrm{C}^{\infty}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$ such that $\rho \geqslant \rho_{0}$, where $\rho_{0} \in \mathbf{R}^{+}$is a given constant, and $\mathrm{M} \in \mathrm{C}^{\infty}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} ; \mathcal{L}\left(\mathrm{M}_{d \times d}\right)\right)$ to be a real symmetric tensor field of order four such that MA $\cdot \mathbf{A} \geqslant \alpha \mathbf{A} \cdot \mathbf{A}$ for given $\alpha>0$ and every $\mathbf{A} \in \mathrm{M}_{d \times d}$, with the following symmetries:
$M_{k l i j}=M_{i j k l}=M_{j i k l}=M_{i j l k}$.
$\sqrt{\mathrm{M}}$ is well-defined and satisfies the same properties.
Furthermore, we suppose $\mathbf{M}, \partial_{t} \mathbf{M}, \sqrt{\mathbf{M}}, \partial_{t} \sqrt{\mathbf{M}}, \nabla \nabla \sqrt{\mathbf{M}} \in \mathrm{C}_{b}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} ; \mathcal{L}\left(\mathrm{M}_{d \times d}\right)\right)$.

Theorem 6. Under the above assumptions an H-measure $\tilde{\mu}$ associated with the sequence

$$
\left(v_{0}^{n}, \mathrm{v}_{1}^{n}\right)=\left(P u_{n}, \sqrt{\mathbf{M}} \nabla \nabla u_{n}\right)
$$

where $\sigma(P)=2 \pi \tau$, satisfies (for every $a \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{1+d} \times \mathrm{P}^{d}\right)$)

$$
\langle\tilde{\boldsymbol{\mu}}, \mathbf{N}\rangle=0
$$

where

$$
\mathbf{N}=\left[\begin{array}{cc}
N_{00} & \left(\tilde{N}_{i j}\right)^{\top} \\
\left(\tilde{N}_{i j}\right) & \mathbf{0}
\end{array}\right]
$$

with $N_{00}=\left(\frac{a}{2\left(1+\tau^{2}\right)} \boldsymbol{\xi}-\nabla_{\boldsymbol{\xi}} a\right) \cdot \frac{\tau \nabla_{\boldsymbol{\propto}} \rho}{2 \pi}$ and

$$
\tilde{N}_{i j}=2 \sum_{k, l} \xi_{k} \tilde{m}_{i j k l} \partial_{x_{l}} a+\sum_{k, l, p} \xi_{k} \xi_{l} \partial_{x_{p}} \tilde{m}_{i j k l}\left(\frac{a}{2\left(1+\tau^{2}\right)} \xi_{p}-\partial_{\xi_{p}} a\right) .
$$

Here $\left(\tilde{N}_{i j}\right)$ is the vector column indexed by i, j, while $\sqrt{\mathbf{M}}=\left(\tilde{m}_{i j k l}\right)$. Moreover, we have

$$
\begin{gathered}
\left\langle\frac{\tilde{\nu}}{|\mathbf{q}|^{2}}, \tau^{3}\left(\frac{a}{2\left(1+\tau^{2}\right)} \boldsymbol{\xi}-\nabla_{\boldsymbol{\xi}} a\right) \cdot \nabla_{\mathbf{x}} \rho-8 \pi^{2} \tau \sqrt{\mathbf{M}}(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \cdot\left(2 \sqrt{\mathbf{M}}\left(\nabla_{\mathbf{x}} \bar{a} \otimes \boldsymbol{\xi}\right)\right.\right. \\
\left.\left.+\left(\frac{\bar{a}}{2\left(1+\tau^{2}\right)} \boldsymbol{\xi}-\nabla_{\boldsymbol{\xi}} \bar{a}\right) \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{M}}(\boldsymbol{\xi} \otimes \boldsymbol{\xi})\right)\right\rangle=0
\end{gathered}
$$

where $\tilde{\nu}=\operatorname{tr} \tilde{\boldsymbol{\mu}}$ and $\mathrm{q}=\left(2 \pi \tau,-4 \pi^{2} \sqrt{\mathbf{M}} \xi \otimes \xi\right)$.

Remark. We would like to express the claim of Theorem 7 in terms of the main symbol of vibrating plate equation

$$
Q(t, \mathbf{x} ; \tau, \boldsymbol{\xi}):=-(2 \pi \tau)^{2} \rho+(2 \pi)^{4} \mathbf{M}(t, \mathbf{x})(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \cdot(\boldsymbol{\xi} \otimes \boldsymbol{\xi})
$$

hoping again to get a result similar to one obtained in [AL]. However, we know how to do this only in a special case when $\sqrt{\mathbf{M}}$ and its derivatives commute $(p \in 1 . . d)$:

$$
\sqrt{\mathbf{M}} \cdot \partial_{x_{p}} \sqrt{\mathbf{M}}=\partial_{x_{p}} \sqrt{\mathbf{M}} \cdot \sqrt{\mathbf{M}}
$$

In that case we have

$$
\nabla_{\mathbf{x}} \mathbf{M}=2 \sqrt{\mathbf{M}} \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{M}}=2 \nabla_{\mathbf{x}} \sqrt{\mathbf{M}} \cdot \sqrt{\mathbf{M}}
$$

and the claim of Theorem 7 can now be rewritten as

$$
\left\langle\frac{\tau \tilde{\nu}}{|\mathbf{q}|^{2}},\{a, Q\}_{\mathbf{x}, \boldsymbol{\xi}}-\frac{a}{2\left(1+\tau^{2}\right)} \boldsymbol{\xi} \cdot \nabla_{\mathbf{x}} Q\right\rangle=0
$$

