Propagation principle for parabolic H-measures

Ivan Ivec and Martin Lazar

Novi Sad, October 26, 2017.

Applications of Generalized Functions in Harmonic Analysis, Mechanics, Stochastics and PDE

H-measures

Classical H-measures Parabolic H-measures

Anisotropic and parabolic classes of symbols and operators Definition Basic properties

General form of the propagation principle Results Applications

Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in the late 1980s and their existence is established by the following theorem.

Theorem 1. If (u_n) is a sequence in $L^2(\mathbf{R}^d; \mathbf{C}^r)$ such that $u_n \longrightarrow 0$, then there exist a subsequence $(u_{n'})$ and an $r \times r$ Hermitian complex matrix Radon measure μ on $\mathbf{R}^d \times S^{d-1}$ such that for any $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^d)$ and $\psi \in C(S^{d-1})$ one has:

Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in the late 1980s and their existence is established by the following theorem.

Theorem 1. If (u_n) is a sequence in $L^2(\mathbf{R}^d; \mathbf{C}^r)$ such that $u_n \longrightarrow 0$, then there exist a subsequence $(u_{n'})$ and an $r \times r$ Hermitian complex matrix Radon measure μ on $\mathbf{R}^d \times S^{d-1}$ such that for any $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^d)$ and $\psi \in C(S^{d-1})$ one has:

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^d} \left(\varphi_1 \mathbf{u}_{n'} \right) \otimes \mathcal{A}_{\psi}(\varphi_2 \mathbf{u}_{n'}) \, d\mathbf{x} &= \langle \boldsymbol{\mu}, (\varphi_1 \overline{\varphi_2}) \boxtimes \overline{\psi} \rangle \\ &= \int_{\mathbf{R}^d \times \mathrm{S}^{d-1}} \varphi_1(\mathbf{x}) \overline{\varphi_2(\mathbf{x})\psi(\boldsymbol{\xi})} \, d\boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi}) \,, \end{split}$$

where $\mathcal{F}(\mathcal{A}_{\psi}v)(\boldsymbol{\xi}) = \psi(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|})\mathcal{F}v(\boldsymbol{\xi}).$

Parabolic projections

 $P^d \dots$ a rotational ellipsoid in \mathbf{R}^{1+d} defined by $\tau^2 + \frac{|\boldsymbol{\xi}|^2}{2} = 1$ $p \dots$ a projection to the manifold P^d , along projection curves (parabolas)

$$\varphi_{\boldsymbol{\nu}}(s) = (s^2 \tau_0, s \boldsymbol{\xi}_0), \quad s > 0, \quad \boldsymbol{\nu} = (\tau_0, \, \boldsymbol{\xi}_0) \in \mathbf{P}^d,$$

given by

$$p(\tau, \boldsymbol{\xi}) = \left(\frac{\tau}{\kappa^2(\tau, \boldsymbol{\xi})}, \, \frac{\boldsymbol{\xi}}{\kappa(\tau, \boldsymbol{\xi})}\right),$$

where $\kappa^2(\tau, \xi) := |\xi/2|^2 + \sqrt{|\xi/2|^4 + \tau^2}.$

Parabolic projections

 $P^d \dots$ a rotational ellipsoid in \mathbf{R}^{1+d} defined by $\tau^2 + \frac{|\boldsymbol{\xi}|^2}{2} = 1$ $p \dots$ a projection to the manifold P^d , along projection curves (parabolas)

$$\varphi_{\boldsymbol{\nu}}(s) = (s^2 \tau_0, s \boldsymbol{\xi}_0), \quad s > 0, \quad \boldsymbol{\nu} = (\tau_0, \, \boldsymbol{\xi}_0) \in \mathbf{P}^d,$$

given by

$$p(au, \boldsymbol{\xi}) = \left(rac{ au}{\kappa^2(au, \boldsymbol{\xi})}, rac{oldsymbol{\xi}}{\kappa(au, oldsymbol{\xi})}
ight),$$

where $\kappa^2(\tau, \xi) := |\xi/2|^2 + \sqrt{|\xi/2|^4 + \tau^2}.$

 κ takes a constant values $s \in \mathbf{R}^+$ on each ellipsoid $\tau^2 + |s\boldsymbol{\xi}|^2/2 = s^4$ Specifically, \mathbf{P}^d can alternatively be characterised with $\kappa(\tau, \boldsymbol{\xi}) = 1$.

Parabolic H-measures

Theorem 2. If (u_n) is a sequence in $L^2(\mathbf{R}^{1+d}; \mathbf{C}^r)$ such that $u_n \longrightarrow 0$, then there exist a subsequence $(u_{n'})$ and an $r \times r$ Hermitian matrix Radon measure μ on $\mathbf{R}^{1+d} \times \mathbf{P}^d$ such that for any $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^{1+d})$ and $\psi \in C(\mathbf{P}^d)$ one has:

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^{1+d}} \mathcal{F}(\varphi_1 \mathbf{u}_{n'}) \otimes \mathcal{F}(\varphi_2 \mathbf{u}_{n'})(\psi \circ p) \, d\boldsymbol{\eta} &= \langle \boldsymbol{\mu}, (\varphi_1 \overline{\varphi_2}) \boxtimes \psi \rangle \\ &= \int_{\mathbf{R}^{1+d} \times \mathbf{P}^d} \varphi_1(\mathbf{y}) \overline{\varphi_2(\mathbf{y})} \psi(\boldsymbol{\eta}) \, d\boldsymbol{\mu}(\mathbf{y}, \boldsymbol{\eta}) \,, \end{split}$$

where we use notation $\mathbf{y} = (t, \mathbf{x})$ and $\boldsymbol{\eta} = (\tau, \boldsymbol{\xi})$.

Hörmander classes

For $m \in \mathbf{R}$, $\rho \in \langle 0, 1]$ and $\delta \in [0, 1 \rangle$, the Hörmander symbol class $S^m_{\rho, \delta}$ is defined as the set:

$$\left\{ a(\mathbf{x}, \boldsymbol{\xi}) \in \mathbf{C}^{\infty}(\mathbf{R}^{d} \times \mathbf{R}^{d}) : \\ (\forall \, \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_{0}^{d}) (\exists C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} > 0) \quad \left| \partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a \right| \leq C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k^{m-\rho|\boldsymbol{\alpha}|+\delta|\boldsymbol{\beta}|} \right\},$$

where $k(\boldsymbol{\xi}) := \sqrt{1 + 4\pi^2 |\boldsymbol{\xi}|^2}$ and $\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a := \partial^{\boldsymbol{\beta}}_{\mathbf{x}} \partial^{\boldsymbol{\alpha}}_{\boldsymbol{\xi}} a$.

Hörmander classes

For $m \in \mathbf{R}$, $\rho \in \langle 0, 1 \rangle$ and $\delta \in [0, 1\rangle$, the Hörmander symbol class $S^m_{\rho, \delta}$ is defined as the set:

$$\left\{ \begin{aligned} &a(\mathbf{x}, \boldsymbol{\xi}) \in \mathbf{C}^{\infty}(\mathbf{R}^{d} \times \mathbf{R}^{d}) : \\ & (\forall \, \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_{0}^{d}) (\exists C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} > 0) \quad \left| \partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a \right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k^{m-\rho|\boldsymbol{\alpha}|+\delta|\boldsymbol{\beta}|} \right\} \,, \end{aligned}$$

where $k(\boldsymbol{\xi}) := \sqrt{1 + 4\pi^2 |\boldsymbol{\xi}|^2}$ and $\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a := \partial^{\boldsymbol{\beta}}_{\mathbf{x}} \partial^{\boldsymbol{\alpha}}_{\boldsymbol{\xi}} a$.

To each $a \in \mathrm{S}^m_{
ho,\delta}$ one can assign an operator A defined for $arphi \in \mathcal{S}$ as

$$A\varphi(\mathbf{x}) = \int_{\mathbf{R}^d} e^{2\pi i \mathbf{x} \cdot \boldsymbol{\xi}} a(\mathbf{x}, \boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) d\boldsymbol{\xi},$$

where $A\varphi$ is again a function from Schwartz space S. We write $a = \sigma(A)$ and A = Op(a).

Hörmander classes

For $m \in \mathbf{R}$, $\rho \in \langle 0, 1 \rangle$ and $\delta \in [0, 1\rangle$, the Hörmander symbol class $S^m_{\rho, \delta}$ is defined as the set:

$$\left\{ \begin{aligned} &a(\mathbf{x}, \boldsymbol{\xi}) \in \mathbf{C}^{\infty}(\mathbf{R}^{d} \times \mathbf{R}^{d}) : \\ & (\forall \, \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_{0}^{d}) (\exists C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} > 0) \quad \left| \partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a \right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k^{m-\rho|\boldsymbol{\alpha}|+\delta|\boldsymbol{\beta}|} \right\} \,, \end{aligned}$$

where $k(\boldsymbol{\xi}) := \sqrt{1 + 4\pi^2 |\boldsymbol{\xi}|^2}$ and $\partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a := \partial^{\boldsymbol{\beta}}_{\mathbf{x}} \partial^{\boldsymbol{\alpha}}_{\boldsymbol{\xi}} a$.

To each $a \in \mathrm{S}^m_{
ho,\delta}$ one can assign an operator A defined for $arphi \in \mathcal{S}$ as

$$A\varphi(\mathbf{x}) = \int_{\mathbf{R}^d} e^{2\pi i \mathbf{x} \cdot \boldsymbol{\xi}} a(\mathbf{x}, \boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) d\boldsymbol{\xi},$$

where $A\varphi$ is again a function from Schwartz space S. We write $a = \sigma(A)$ and A = Op(a).

 $\rho \geqslant \delta \dots$ a continuous operator from $\mathrm{H}^s(\mathbf{R}^d)$ to $\mathrm{H}^{s-m}(\mathbf{R}^d)$

Anisotropic generalisation

For $\gamma \in \langle 0, 1]^d$ such that $\gamma_{\max} = \max\{\gamma_1, \ldots, \gamma_d\} = 1$ we introduce anisotropic classes of symbols:

$$\begin{split} \mathbf{S}^{m\boldsymbol{\gamma}} &= \left\{ a(\mathbf{x},\boldsymbol{\xi}) \in \mathbf{C}^{\infty}(\mathbf{R}^{d}\times\mathbf{R}^{d}): \\ & (\forall\,\boldsymbol{\alpha},\boldsymbol{\beta}\in\mathbf{N}_{0}^{d})(\exists\,C_{\boldsymbol{\alpha},\boldsymbol{\beta}}>0) \quad \left|\partial_{\boldsymbol{\beta}}\partial^{\boldsymbol{\alpha}}a\right| \leqslant C_{\boldsymbol{\alpha},\boldsymbol{\beta}}k_{\boldsymbol{\gamma}}^{m-\sum_{i=1}^{d}\frac{\alpha_{i}}{\gamma_{i}}} \right\}, \end{split}$$
 where $k_{\boldsymbol{\gamma}}(\boldsymbol{\xi}) := 1 + \sum_{i=1}^{d}(2\pi|\xi_{i}|)^{\gamma_{i}}.$

Inclusions to classical spaces

We can prove that

$$k^2(\boldsymbol{\xi}) \leqslant (1+d)k_{\boldsymbol{\gamma}}(\boldsymbol{\xi})^{\frac{2}{\gamma_{\min}}}$$
,

where $\gamma_{\min} = \min\{\gamma_1, \ldots, \gamma_d\}$, and also

 $k_{\gamma}(\boldsymbol{\xi}) \leqslant (1+d)\sqrt{d} \, k(\boldsymbol{\xi}) \, .$

Inclusions to classical spaces

We can prove that

$$k^2(\boldsymbol{\xi}) \leqslant (1+d)k_{\boldsymbol{\gamma}}(\boldsymbol{\xi})^{\frac{2}{\gamma_{\min}}},$$

where $\gamma_{\min} = \min\{\gamma_1, \ldots, \gamma_d\}$, and also

$$k_{\gamma}(\boldsymbol{\xi}) \leqslant (1+d)\sqrt{d} \, k(\boldsymbol{\xi}) \, .$$

From the above inequalities we easily obtain

$$\mathbf{S}^{m\boldsymbol{\gamma}} \subseteq \begin{cases} \mathbf{S}^m_{\gamma_{\min},0} \,, & m \ge 0\\ \mathbf{S}^{m\boldsymbol{\gamma}_{\min}}_{\gamma_{\min},0} \,, & m < 0 \end{cases},$$

which means that we are able to apply many results from classical pseudodifferential calculus also to anisotropic classes of symbols and operators.

Parabolic classes of symbols

As a special case we have the following parabolic classes of symbols

$$\begin{split} \mathbf{S}_p^m &= \left\{ a(\mathbf{y}, \boldsymbol{\eta}) \in \mathbf{C}^{\infty}(\mathbf{R}^{1+d} \times \mathbf{R}^{1+d}) \\ &: (\forall \, \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_0^{1+d}) (\exists \, C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} > 0) \quad \left| \partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a \right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k_p^{m-2\boldsymbol{\alpha}_0 - |\boldsymbol{\alpha}'|} \right\}, \end{split}$$

where $k_p(\boldsymbol{\eta}) = k_p(\tau, \boldsymbol{\xi}) := 1 + (2\pi |\tau|)^{\frac{1}{2}} + \sum_{i=1}^d 2\pi |\xi_i|$, and $\boldsymbol{\alpha} = (\alpha_0, \boldsymbol{\alpha}')$.

Parabolic classes of symbols

As a special case we have the following parabolic classes of symbols

$$\begin{split} \mathbf{S}_p^m &= \{ a(\mathbf{y}, \boldsymbol{\eta}) \in \mathbf{C}^{\infty}(\mathbf{R}^{1+d} \times \mathbf{R}^{1+d}) \\ &: (\forall \, \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbf{N}_0^{1+d}) (\exists \, C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} > 0) \quad \left| \partial_{\boldsymbol{\beta}} \partial^{\boldsymbol{\alpha}} a \right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} k_p^{m-2\boldsymbol{\alpha}_0 - |\boldsymbol{\alpha}'|} \Big\} \,, \end{split}$$
where $k_p(\boldsymbol{\eta}) = k_p(\tau, \boldsymbol{\xi}) := 1 + (2\pi |\tau|)^{\frac{1}{2}} + \sum_{i=1}^d 2\pi |\xi_i|$, and $\boldsymbol{\alpha} = (\alpha_0, \boldsymbol{\alpha}')$.

Inclusion to classical spaces now reads

$$\mathbf{S}_{p}^{m} \subseteq \begin{cases} \mathbf{S}_{\frac{1}{2},0}^{m}, & m \ge 0\\ \mathbf{S}_{\frac{1}{2},0}^{\frac{m}{2}}, & m < 0 \end{cases}$$

Parabolic homogeneous functions

 $p^m\in \mathrm{C}^\infty(\mathbf{R}^{1+d}\times \mathbf{R}^{1+d}\setminus\{\mathbf{0}\})$ is a parabolic homogeneous function with respect to η of order m if

$$p^m(\mathbf{y},\varepsilon^2\tau,\varepsilon\boldsymbol{\xi})=\varepsilon^m p^m(\mathbf{y},\tau,\boldsymbol{\xi}),\quad \varepsilon>0.$$

For such functions we have the following lemma.

Lemma 1. Let $p^m(\mathbf{y}, \boldsymbol{\eta})$ be an arbitrary parabolic homogeneous function with respect to $\boldsymbol{\eta}$ of order m, which, as well as all its partial derivatives, is uniformly bounded in \mathbf{y} for $\boldsymbol{\eta}$ inside a compact set, and let $\chi(\boldsymbol{\eta}) \in C^{\infty}(\mathbf{R}^{1+d})$ equals to 0 around the origin and equals to 1 outside the ball K[0,1]. Then $p^m\chi$ belongs to S_p^m .

By direct calculation we have

$$a \in \mathcal{S}_p^m, b \in \mathcal{S}_p^n \Longrightarrow ab \in \mathcal{S}_p^{m+n},$$

and

$$a \in \mathbf{S}_p^m \Longrightarrow \partial_{\xi_i} a \in \mathbf{S}_p^{m-1}, \, \partial_{\tau} a \in \mathbf{S}_p^{m-2}, \, \partial_{x_i} a \in \mathbf{S}_p^m, \, \partial_t a \in \mathbf{S}_p^m$$

Class of operators assigned to symbols from S_p^m we denote by Σ_p^m .

Continuity results

As for nonnegative *m* the class S_p^m is embedded into $S_{\frac{1}{2},0}^m$, according to classical theory *A* can be considered as a continuous operator from $H^s(\mathbf{R}^{1+d})$ to $H^{s-m}(\mathbf{R}^{1+d})$.

Continuity results

As for nonnegative m the class S_p^m is embedded into $S_{\frac{1}{2},0}^m$, according to classical theory A can be considered as a continuous operator from $H^s(\mathbf{R}^{1+d})$ to $H^{s-m}(\mathbf{R}^{1+d})$.

Actually, we prove a better result

Lemma 2. An operator $A \in \Sigma_p^m$ is a continuous operator from $\mathrm{H}^{\frac{s}{2},s}(\mathbf{R}^{1+d})$ into $\mathrm{H}^{\frac{s-m}{2},s-m}(\mathbf{R}^{1+d})$.

Polyhomogeneous parabolic symbols

Now we define classes of polyhomogeneous parabolic symbols, and corresponding operators:

$$\Psi_p^m = \left\{ P \in \Sigma_p^m : \sigma(P)(\mathbf{y}, \boldsymbol{\eta}) = p^m(\mathbf{y}, \boldsymbol{\eta}) \chi(\boldsymbol{\eta}) + p^{m-1}(\mathbf{y}, \boldsymbol{\eta}) \right\},\$$

where $p^m \in C^{\infty}(\mathbf{R}^{1+d} \times \mathbf{R}^{1+d} \setminus \{\mathbf{0}\})$ is a parabolic homogeneous function with respect to η of order m, while $\chi \in C^{\infty}(\mathbf{R}^{1+d})$ equals to 0 around the origin and equals to 1 outside K[0, 1], and $p^{m-1} \in S_p^{m-1}(\mathbf{R}^{1+d})$.

Polyhomogeneous parabolic symbols

Now we define classes of polyhomogeneous parabolic symbols, and corresponding operators:

$$\Psi_p^m = \left\{ P \in \Sigma_p^m : \sigma(P)(\mathbf{y}, \boldsymbol{\eta}) = p^m(\mathbf{y}, \boldsymbol{\eta}) \chi(\boldsymbol{\eta}) + p^{m-1}(\mathbf{y}, \boldsymbol{\eta}) \right\},\$$

where $p^m \in C^{\infty}(\mathbf{R}^{1+d} \times \mathbf{R}^{1+d} \setminus \{\mathbf{0}\})$ is a parabolic homogeneous function with respect to η of order m, while $\chi \in C^{\infty}(\mathbf{R}^{1+d})$ equals to 0 around the origin and equals to 1 outside K[0,1], and $p^{m-1} \in S_p^{m-1}(\mathbf{R}^{1+d})$.

By $\sigma^m(P) := p^m$ we denote the principal symbol of the operator $P \in \Psi_p^m$. When we use matrix-valued symbols with values in $M_{r \times r}(\mathbf{C})$ we write $\Psi_{p,r}^m$ instead of Ψ_p^m and $S_{p,r}^m$ instead of S_p^m .

We also write $\Psi_{p,r}^{m,c}$ for symbols compactly supported in y, and similarly for the class $\Sigma_{p,r}^{m,c}$.

It follows from the definition that $\sigma^m(P)\chi \in S_p^m$ for $P \in \Psi_p^m$.

Asymptotic expansions

Lemma 3. If A^* denotes the adjoint operator to $A \in \Sigma_{p, r}^m$, and $B \in \Sigma_{p, r}^n$, then

a)
$$\sigma(A^*) - \sigma(A)^* - \frac{1}{2\pi i} \sum_{j=1}^d \frac{\partial^2 \sigma(A)^*}{\partial x_j \partial \xi_j} \in \mathrm{S}_{p,r}^{m-2}$$
,

b) $\sigma(AB) - \sigma(A)\sigma(B) - \frac{1}{2\pi i} \sum_{j=1}^{d} \frac{\partial \sigma(A)}{\partial \xi_j} \frac{\partial \sigma(B)}{\partial x_j} \in \mathcal{S}_{p,r}^{m+n-2}$.

Thus, if $\sigma(A)$ commutes with $\sigma(B)$, then $[A, B] := AB - BA \in \Sigma_{p, r}^{m+n-1}$ with symbol $1/(2\pi i) \{\sigma(A), \sigma(B)\}_{\mathbf{x}, \boldsymbol{\xi}}$ (up to the symbol of lower order), where

$$\{\sigma(A), \sigma(B)\}_{\mathbf{x}, \boldsymbol{\xi}} = \sum_{j=1}^{d} \frac{\partial \sigma(A)}{\partial \xi_j} \frac{\partial \sigma(B)}{\partial x_j} - \sum_{j=1}^{d} \frac{\partial \sigma(A)}{\partial x_j} \frac{\partial \sigma(B)}{\partial \xi_j}$$

is the Poisson bracket of $\sigma(A)$ and $\sigma(B)$ in variables x and $\boldsymbol{\xi}$.

 $\begin{array}{l} \text{Corollary. If } A\in \Sigma_{p,\,r}^m \text{ and } B\in \Sigma_{p,\,r}^n, \text{ then}\\ \text{a) } \sigma(A^*)-\sigma(A)^*\in \mathrm{S}_{p,\,r}^{m-1},\\ \text{b) } \sigma(AB)-\sigma(A)\sigma(B)\in \mathrm{S}_{p,\,r}^{m+n-1}. \end{array}$

 $\begin{array}{l} \text{Corollary. If } A\in \Sigma_{p,\,r}^m \text{ and } B\in \Sigma_{p,\,r}^n, \text{ then}\\ \text{a) } \sigma(A^*)-\sigma(A)^*\in \mathrm{S}_{p,\,r}^{m-1},\\ \text{b) } \sigma(AB)-\sigma(A)\sigma(B)\in \mathrm{S}_{p,\,r}^{m+n-1}. \end{array}$

Lemma 4. If
$$A \in \Psi_{p,r}^m$$
 and $B \in \Psi_{p,r}^n$, then
a) $A^* \in \Psi_{p,r}^m$ and $\sigma^m(A^*) = \overline{\sigma^m(A)}^t =: \sigma^m(A)^*$,
b) $AB \in \Psi_{p,r}^{m+n}$ and $\sigma^{m+n}(AB) = \sigma^m(A)\sigma^n(B)$.

Extended definition of parabolic H-measures

Definition of parabolic H-measures given in Theorem 2 can be extended to operators from $\Psi^{0,c}_{p,r}$.

Lemma 5. If (u_n) is a sequence in $L^2(\mathbf{R}^{1+d}; \mathbf{C}^r)$ such that $u_n \longrightarrow 0$, then there exist a subsequence $(u_{n'})$ and an $r \times r$ Hermitian matrix Radon measure μ on $\mathbf{R}^{1+d} \times \mathbf{P}^d$ such that for any $A \in \Psi_{p,r}^{0,c}$ one has:

$$\lim_{n'} \int_{\mathbf{R}^{1+d}} A \mathbf{u}_{n'} \cdot \mathbf{u}_{n'} \, d\mathbf{y} =: \lim_{n'} \langle A \mathbf{u}_{n'}, \mathbf{u}_{n'} \rangle = \langle \boldsymbol{\mu}, \sigma^0(A) \rangle$$
$$:= \sum_{i,j=1}^r \int_{\mathbf{R}^{1+d} \times \mathbf{P}^d} \sigma^0(A)_{ij} \, d\mu_{ij}(\mathbf{y}, \boldsymbol{\eta})$$

Theorem 3. (localisation principle) Let (u_n) be a sequence in $L^2(\mathbf{R}^{1+d}; \mathbf{C}^r)$ such that $u_n \longrightarrow 0$, and let $Ru_n \longrightarrow 0$ strongly in $H^{-\frac{m}{2}, -m}_{\text{loc}}(\mathbf{R}^{1+d}; \mathbf{C}^r)$ for some $R \in \Psi^m_{p,r}$. Then, for the associated parabolic H-measure μ , it holds

$$\sigma^m(R)\boldsymbol{\mu}^{\top} = \mathbf{0}.$$

Propagation principle

Theorem 4. (propagation principle) Let (u_n) be a sequence in $L^2(\mathbf{R}^{1+d}; \mathbf{C}^r)$ such that $u_n \longrightarrow 0$, and let $Ru_n \longrightarrow 0$ strongly in $H^{\frac{-m+1}{2}, -m+1}_{loc}(\mathbf{R}^{1+d}; \mathbf{C}^r)$ for some $R \in \Psi^m_{p,r}$, such that $\sigma^m(R)$ is self-adjoint and the lower order symbol of R defines an element in $\Psi^{m-1}_{p,r}$ with principal symbol $\sigma^{m-1}(R)$. Then, for the associated parabolic H-measure μ and for any $a \in C^\infty_c(\mathbf{R}^{1+d} \times \mathbf{P}^d)$, it holds

Propagation principle

Theorem 4. (propagation principle) Let (u_n) be a sequence in $L^2(\mathbf{R}^{1+d}; \mathbf{C}^r)$ such that $u_n \longrightarrow 0$, and let $Ru_n \longrightarrow 0$ strongly in $H^{\frac{-m+1}{2}, -m+1}_{loc}(\mathbf{R}^{1+d}; \mathbf{C}^r)$ for some $R \in \Psi^m_{p,r}$, such that $\sigma^m(R)$ is self-adjoint and the lower order symbol of R defines an element in $\Psi^{m-1}_{p,r}$ with principal symbol $\sigma^{m-1}(R)$. Then, for the associated parabolic H-measure μ and for any $a \in C^\infty_c(\mathbf{R}^{1+d} \times \mathbf{P}^d)$, it holds

$$\langle \boldsymbol{\mu}, \{\sigma^m(R), a\}_{\mathbf{x}, \boldsymbol{\xi}} + \left[2\pi i \left((\sigma^{m-1}(R))^* - \sigma^{m-1}(R)\right) + \sum_{j=1}^d \frac{\partial^2 \sigma^m(R)}{\partial x_j \partial \xi_j} + \frac{m-1}{2(1+\tau^2)} \boldsymbol{\xi} \cdot \nabla_{\mathbf{x}} \sigma^m(R) \right] a \rangle = 0 \,.$$

If $\sigma^m(R)$ is anti-self-adjoint we can still apply this theorem, by simply using iR instead of R.

Application to the Schrödinger equation

We consider a sequence of initial value problems

$$\begin{cases} i\partial_t u_n + \operatorname{div}\left(\mathbf{A}\nabla u_n\right) = f_n\\ u_n(0,\cdot) = u_n^0, \end{cases}$$

where $u_n^0 \longrightarrow 0$ in $\mathrm{H}^1(\mathbf{R}^d)$, while $f_n \longrightarrow 0$ in $W(0,T; \mathrm{L}^2(\mathbf{R}^d), \mathrm{H}^{-1}(\mathbf{R}^d))$, where

$$\|f\|_{W}^{2} = \|f\|_{\mathrm{L}^{2}([0,T];\mathrm{L}^{2}(\mathbf{R}^{d}))}^{2} + \|\partial_{t}f\|_{\mathrm{L}^{2}([0,T];\mathrm{H}^{-1}(\mathbf{R}^{d}))}^{2}$$

Application to the Schrödinger equation

We consider a sequence of initial value problems

$$\begin{cases} i\partial_t u_n + \operatorname{div}\left(\mathbf{A}\nabla u_n\right) = f_n \\ u_n(0,\cdot) = u_n^0 \,, \end{cases}$$

where $u_n^0 \longrightarrow 0$ in $\mathrm{H}^1(\mathbf{R}^d)$, while $f_n \longrightarrow 0$ in $W(0,T;\mathrm{L}^2(\mathbf{R}^d),\mathrm{H}^{-1}(\mathbf{R}^d))$, where

$$\|f\|_{W}^{2} = \|f\|_{\mathrm{L}^{2}([0,T];\mathrm{L}^{2}(\mathbf{R}^{d}))}^{2} + \|\partial_{t}f\|_{\mathrm{L}^{2}([0,T];\mathrm{H}^{-1}(\mathbf{R}^{d}))}^{2}$$

We also take $\mathbf{A} \in C^{\infty}(\mathbf{R}^+ \times \mathbf{R}^d; M_{d \times d}(\mathbf{R})) \cap L^{\infty}(\mathbf{R}^+ \times \mathbf{R}^d; M_{d \times d}(\mathbf{R}))$ to be a symmetric matrix field such that $\mathbf{A}\mathbf{v} \cdot \mathbf{v} \ge \alpha |\mathbf{v}|^2$ (a.e.) for an $\alpha > 0$. Furthermore, we suppose that all partial derivatives $\partial^{\alpha} \sqrt{\mathbf{A}}$ belong to $C_b(\mathbf{R}^+ \times \mathbf{R}^d; M_{d \times d}(\mathbf{R}))$. **Theorem 5.** Under the above assumptions and additional assumption than $f_n \longrightarrow 0$ strongly in $L^2(\mathbf{R}^{1+d})$ an H-measure $\tilde{\mu}$ associated with the sequence

$$(v_0^n, \mathsf{v}_1^n) = (Pu_n, \sqrt{\mathbf{A}} \nabla u_n),$$

where $\sigma(P) = i\kappa(\tau, \boldsymbol{\xi})\chi(\tau, \boldsymbol{\xi})$, satisfies (for every $a \in C_c^{\infty}(\mathbf{R}^{1+d} \times \mathbf{P}^d)$) $\langle \tilde{\boldsymbol{\mu}}, \tilde{\mathbf{B}} \rangle = 0$.

where

$$\tilde{\mathbf{B}} = \begin{bmatrix} b_{00} & (b_j)^\top \\ (b_j) & \mathbf{B} \end{bmatrix}$$

with $b_{00} = \frac{2\pi\tau \nabla_{\mathbf{x}} a \cdot \nabla_{\boldsymbol{\xi}} \kappa}{\kappa^2}$, $b_j = 2\pi (\sum_{k,l} \xi_l \partial_k \tilde{a}_{jl} \partial_{\xi_k} a - \sum_k \tilde{a}_{jk} \partial_{x_k} a)$ and

$$\mathbf{B} = (\nabla_{\mathbf{x}} a \cdot \nabla_{\boldsymbol{\xi}} \kappa) \mathbf{I} + 2a(\nabla_{\boldsymbol{\xi}} \kappa \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{A}}) \mathbf{A}^{-1/2}$$

Here \tilde{a}_{ij} are elements of $\sqrt{\mathbf{A}}$. Moreover, we have

$$\begin{split} \left\langle \frac{\tilde{\nu}}{|\mathbf{q}|^2}, \nabla_{\mathbf{x}} a \cdot \left((\tau + 2\pi \mathbf{A}\boldsymbol{\xi} \cdot \boldsymbol{\xi}) \nabla_{\boldsymbol{\xi}} \kappa - 4\pi \kappa \mathbf{A}\boldsymbol{\xi} \right) \\ &+ 4\pi \Big(((\kappa \nabla_{\boldsymbol{\xi}} a + a \nabla_{\boldsymbol{\xi}} \kappa) \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{A}}) \boldsymbol{\xi} \cdot \sqrt{\mathbf{A}} \boldsymbol{\xi} \Big) \right\rangle = 0 \,, \end{split}$$

where $\tilde{\nu} = \operatorname{tr} \tilde{\mu}$ and $q = (i\kappa, 2\pi i \sqrt{\mathbf{A}} \xi)$.

Remark. We would like to express the claim of Theorem 5 in terms of the main symbol of Schrödinger equation

$$Q(t, \mathbf{x}; \tau, \boldsymbol{\xi}) := 2\pi\tau + (2\pi)^2 \mathbf{A}(t, \mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi},$$

hoping that we can get results similar to those obtained in [AL]. However, we know how to do this only in a special case when $\sqrt{\mathbf{A}}$ and its derivatives commute $(p \in 1..d)$:

$$\sqrt{\mathbf{A}} \cdot \partial_{x_p} \sqrt{\mathbf{A}} = \partial_{x_p} \sqrt{\mathbf{A}} \cdot \sqrt{\mathbf{A}} \,.$$

In that case we have

$$\nabla_{\mathbf{x}} \mathbf{A} = 2\sqrt{\mathbf{A}} \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{A}} = 2\nabla_{\mathbf{x}} \sqrt{\mathbf{A}} \cdot \sqrt{\mathbf{A}} \,,$$

and the claim of Theorem 5 can now be rewritten as

$$\left\langle \frac{\tilde{\nu}}{|\mathbf{q}|^2}, \kappa\{a,Q\}_{\mathbf{x},\,\boldsymbol{\xi}} + (Q\nabla_{\mathbf{x}}a + a\nabla_{\mathbf{x}}Q) \cdot \nabla_{\boldsymbol{\xi}}\kappa \right\rangle = 0\,.$$

Application to the vibrating plate equation

We consider a sequence of initial value problems

$$\begin{cases} \partial_t(\rho\partial_t u_n) + \operatorname{div}\operatorname{div}\left(\mathbf{M}\nabla\nabla u_n\right) &= f_n \\ u_n(0,\cdot) &= u_n^0 \\ \partial_t u_n(0,\cdot) &= u_n^1 \,, \end{cases}$$

where $u_n^0 \longrightarrow 0$ in $\mathrm{H}^2(\mathbf{R}^d)$, $u_n^1 \longrightarrow 0$ in $\mathrm{L}^2(\mathbf{R}^d)$ and $f_n \longrightarrow 0$ in $\mathrm{L}^2(\mathbf{R}^+ \times \mathbf{R}^d)$.

Application to the vibrating plate equation

We consider a sequence of initial value problems

$$\begin{cases} \partial_t(\rho\partial_t u_n) + \operatorname{div}\operatorname{div}\left(\mathbf{M}\nabla\nabla u_n\right) &= f_n \\ u_n(0,\cdot) &= u_n^0 \\ \partial_t u_n(0,\cdot) &= u_n^1 \,, \end{cases} \end{cases}$$

where $u_n^0 \longrightarrow 0$ in $\mathrm{H}^2(\mathbf{R}^d)$, $u_n^1 \longrightarrow 0$ in $\mathrm{L}^2(\mathbf{R}^d)$ and $f_n \longrightarrow 0$ in $\mathrm{L}^2(\mathbf{R}^+ \times \mathbf{R}^d)$.

We take $\rho \in C^{\infty}(\mathbf{R}^+; \mathbf{L}^{\infty}(\mathbf{R}^d)) \cap C^{\infty}(\mathbf{R}^+ \times \mathbf{R}^d)$ such that $\rho \ge \rho_0$, where $\rho_0 \in \mathbf{R}^+$ is a given constant, and $\mathbf{M} \in C^{\infty}(\mathbf{R}^+ \times \mathbf{R}^d; \mathcal{L}(M_{d \times d}))$ to be a real symmetric tensor field of order four such that $\mathbf{MA} \cdot \mathbf{A} \ge \alpha \mathbf{A} \cdot \mathbf{A}$ for given $\alpha > 0$ and every $\mathbf{A} \in M_{d \times d}$, with the following symmetries: $M_{klij} = M_{ijkl} = M_{jikl} = M_{ijlk}$.

 $\sqrt{\mathbf{M}}$ is well-defined and satisfies the same properties.

Furthermore, we suppose $\mathbf{M}, \partial_t \mathbf{M}, \sqrt{\mathbf{M}}, \partial_t \sqrt{\mathbf{M}}, \nabla \nabla \sqrt{\mathbf{M}} \in C_b(\mathbf{R}^+ \times \mathbf{R}^d; \mathcal{L}(M_{d \times d})).$

Theorem 6. Under the above assumptions an H-measure $\tilde{\mu}$ associated with the sequence

$$(v_0^n, \mathbf{v}_1^n) = (Pu_n, \sqrt{\mathbf{M}} \nabla \nabla u_n),$$

where $\sigma(P) = 2\pi\tau$, satisfies (for every $a \in C_c^{\infty}(\mathbf{R}^{1+d} \times P^d)$)

$$\langle \tilde{\boldsymbol{\mu}}, \mathbf{N} \rangle = 0,$$

where

$$\mathbf{N} = \begin{bmatrix} N_{00} & (\tilde{N}_{ij})^\top \\ (\tilde{N}_{ij}) & \mathbf{0} \end{bmatrix}$$

with $N_{00} = (\frac{a}{2(1+\tau^2)}\boldsymbol{\xi} - \nabla_{\boldsymbol{\xi}}a) \cdot \frac{\tau \nabla_{\mathbf{x}} \rho}{2\pi}$ and

$$\tilde{N}_{ij} = 2\sum_{k,l} \xi_k \tilde{m}_{ijkl} \partial_{x_l} a + \sum_{k,l,p} \xi_k \xi_l \partial_{x_p} \tilde{m}_{ijkl} \left(\frac{a}{2(1+\tau^2)} \xi_p - \partial_{\xi_p} a\right).$$

Here (\tilde{N}_{ij}) is the vector column indexed by i, j, while $\sqrt{\mathbf{M}} = (\tilde{m}_{ijkl})$. Moreover, we have

$$\begin{split} \left\langle \frac{\tilde{\nu}}{|\mathsf{q}|^2}, \tau^3(\frac{a}{2(1+\tau^2)}\boldsymbol{\xi} - \nabla_{\boldsymbol{\xi}} a) \cdot \nabla_{\mathbf{x}} \rho - 8\pi^2 \tau \sqrt{\mathbf{M}} \left(\boldsymbol{\xi} \otimes \boldsymbol{\xi}\right) \cdot \left(2\sqrt{\mathbf{M}} \left(\nabla_{\mathbf{x}} \bar{a} \otimes \boldsymbol{\xi}\right) \\ + \left(\frac{\bar{a}}{2(1+\tau^2)}\boldsymbol{\xi} - \nabla_{\boldsymbol{\xi}} \bar{a}\right) \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{M}} (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \right) \right\rangle &= 0 \,, \end{split}$$

where $ilde{
u}={
m tr} ilde{oldsymbol{\mu}}$ and ${\sf q}=(2\pi au,-4\pi^2\sqrt{{f M}}\,\xi\otimes\xi).$

Remark. We would like to express the claim of Theorem 7 in terms of the main symbol of vibrating plate equation

$$Q(t, \mathbf{x}; \tau, \boldsymbol{\xi}) := -(2\pi\tau)^2 \rho + (2\pi)^4 \mathbf{M}(t, \mathbf{x})(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \cdot (\boldsymbol{\xi} \otimes \boldsymbol{\xi})$$

hoping again to get a result similar to one obtained in [AL]. However, we know how to do this only in a special case when $\sqrt{\mathbf{M}}$ and its derivatives commute $(p \in 1..d)$:

$$\sqrt{\mathbf{M}} \cdot \partial_{x_p} \sqrt{\mathbf{M}} = \partial_{x_p} \sqrt{\mathbf{M}} \cdot \sqrt{\mathbf{M}}.$$

In that case we have

$$\nabla_{\mathbf{x}} \mathbf{M} = 2\sqrt{\mathbf{M}} \cdot \nabla_{\mathbf{x}} \sqrt{\mathbf{M}} = 2\nabla_{\mathbf{x}} \sqrt{\mathbf{M}} \cdot \sqrt{\mathbf{M}} \,,$$

and the claim of Theorem 7 can now be rewritten as

$$\left\langle \frac{\tau \tilde{\nu}}{|\mathbf{q}|^2}, \{a, Q\}_{\mathbf{x}, \boldsymbol{\xi}} - \frac{a}{2(1+\tau^2)} \boldsymbol{\xi} \cdot \nabla_{\mathbf{x}} Q \right\rangle = 0.$$