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Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in
the late 1980s and their existence is established by the following theorem.

Theorem 1. If (un) is a sequence in L2(Rd;Cr) such that un −⇀ 0, then
there exist a subsequence (un′) and an r × r Hermitian complex matrix Radon
measure µ on Rd × Sd−1 such that for any ϕ1, ϕ2 ∈ C0(Rd) and ψ ∈ C(Sd−1)
one has:

lim
n′

∫
Rd

(ϕ1un′)⊗Aψ(ϕ2un′) dx = 〈µ, (ϕ1ϕ2)� ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ2(x)ψ(ξ) dµ(x, ξ) ,

where F(Aψv)(ξ) = ψ( ξ
|ξ| )Fv(ξ).
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Parabolic projections

Pd . . . a rotational ellipsoid in R1+d defined by τ2 + |ξ|2
2

= 1

p . . . a projection to the manifold Pd, along projection curves (parabolas)

ϕν(s) = (s2τ0, sξ0) , s > 0 , ν = (τ0, ξ0) ∈ Pd ,

given by

p(τ, ξ) =

(
τ

κ2(τ, ξ)
,

ξ

κ(τ, ξ)

)
,

where κ2(τ, ξ) := |ξ/2|2 +
√
|ξ/2|4 + τ2.

κ takes a constant values s ∈ R+ on each ellipsoid τ2 + |sξ|2/2 = s4

Specifically, Pd can alternatively be characterised with κ(τ, ξ) = 1.
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Parabolic H-measures

Theorem 2. If (un) is a sequence in L2(R1+d;Cr) such that un −⇀ 0, then
there exist a subsequence (un′) and an r × r Hermitian matrix Radon measure
µ on R1+d×Pd such that for any ϕ1, ϕ2 ∈ C0(R1+d) and ψ ∈ C(Pd) one has:

lim
n′

∫
R1+d

F(ϕ1un′)⊗F(ϕ2un′)(ψ ◦ p) dη = 〈µ, (ϕ1ϕ2)� ψ〉

=

∫
R1+d×Pd

ϕ1(y)ϕ2(y)ψ(η) dµ(y,η) ,

where we use notation y = (t,x) and η = (τ, ξ).
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Hörmander classes

For m ∈ R, ρ ∈ 〈0, 1] and δ ∈ [0, 1〉, the Hörmander symbol class Smρ,δ is
defined as the set:{

a(x, ξ) ∈ C∞(Rd ×Rd) :

(∀α,β ∈ Nd
0)(∃Cα,β > 0)

∣∣∂β∂αa
∣∣ 6 Cα,βk

m−ρ|α|+δ|β|
}
,

where k(ξ) :=
√

1 + 4π2|ξ|2 and ∂β∂
αa := ∂β

x ∂
α
ξ a.

To each a ∈ Smρ,δ one can assign an operator A defined for ϕ ∈ S as

Aϕ(x) =

∫
Rd

e2πix·ξa(x, ξ)ϕ̂(ξ)dξ,

where Aϕ is again a function from Schwartz space S. We write a = σ(A) and
A = Op(a).

ρ > δ . . . a continuous operator from Hs(Rd) to Hs−m(Rd)
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Anisotropic generalisation

For γ ∈ 〈0, 1]d such that γmax = max{γ1, . . . , γd} = 1 we introduce
anisotropic classes of symbols:

Smγ =
{
a(x, ξ) ∈ C∞(Rd ×Rd) :

(∀α,β ∈ Nd
0)(∃Cα,β > 0)

∣∣∂β∂αa
∣∣ 6 Cα,βk

m−
∑d
i=1

αi
γi

γ

}
,

where kγ(ξ) := 1 +
∑d
i=1(2π|ξi|)γi .
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Inclusions to classical spaces

We can prove that

k2(ξ) 6 (1 + d)kγ(ξ)
2

γmin ,

where γmin = min{γ1, . . . , γd}, and also

kγ(ξ) 6 (1 + d)
√
d k(ξ) .

From the above inequalities we easily obtain

Smγ ⊆
{

Smγmin,0 , m ≥ 0
Smγmin
γmin,0

, m < 0
,

which means that we are able to apply many results from classical
pseudodifferential calculus also to anisotropic classes of symbols and operators.
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Parabolic classes of symbols

As a special case we have the following parabolic classes of symbols

Smp = {a(y,η) ∈ C∞(R1+d ×R1+d)

: (∀α,β ∈ N1+d
0 )(∃Cα,β > 0)

∣∣∂β∂αa
∣∣ 6 Cα,βk

m−2α0−|α′|
p

}
,

where kp(η) = kp(τ, ξ) := 1 + (2π|τ |)
1
2 +

∑d
i=1 2π|ξi|, and α = (α0,α

′).

Inclusion to classical spaces now reads

Smp ⊆

{
Sm1

2
,0
, m ≥ 0

S
m
2
1
2
,0
, m < 0

.
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Parabolic homogeneous functions

pm ∈ C∞(R1+d ×R1+d \ {0}) is a parabolic homogeneous function with
respect to η of order m if

pm(y, ε2τ, εξ) = εmpm(y, τ, ξ), ε > 0.

For such functions we have the following lemma.

Lemma 1. Let pm(y,η) be an arbitrary parabolic homogeneous function with
respect to η of order m, which, as well as all its partial derivatives, is uniformly
bounded in y for η inside a compact set, and let χ(η) ∈ C∞(R1+d) equals to
0 around the origin and equals to 1 outside the ball K[0, 1]. Then pmχ belongs
to Smp .
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Basic properties

By direct calculation we have

a ∈ Smp , b ∈ Snp =⇒ ab ∈ Sm+n
p ,

and

a ∈ Smp =⇒ ∂ξia ∈ Sm−1
p , ∂τa ∈ Sm−2

p , ∂xia ∈ Smp , ∂ta ∈ Smp .

Class of operators assigned to symbols from Smp we denote by Σmp .
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Continuity results

As for nonnegative m the class Smp is embedded into Sm1
2
,0

, according to

classical theory A can be considered as a continuous operator from Hs(R1+d)
to Hs−m(R1+d).

Actually, we prove a better result

Lemma 2. An operator A ∈ Σmp is a continuous operator from H
s
2
, s(R1+d)

into H
s−m

2
, s−m(R1+d).
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Polyhomogeneous parabolic symbols

Now we define classes of polyhomogeneous parabolic symbols, and
corresponding operators:

Ψm
p = {P ∈ Σmp : σ(P )(y,η) = pm(y,η)χ(η) + pm−1(y,η)} ,

where pm ∈ C∞(R1+d ×R1+d \ {0}) is a parabolic homogeneous function
with respect to η of order m, while χ ∈ C∞(R1+d) equals to 0 around the
origin and equals to 1 outside K[0, 1], and pm−1 ∈ Sm−1

p (R1+d).

By σm(P ) := pm we denote the principal symbol of the operator P ∈ Ψm
p .

When we use matrix-valued symbols with values in Mr×r(C) we write Ψm
p, r

instead of Ψm
p and Smp, r instead of Smp .

We also write Ψm, c
p, r for symbols compactly supported in y, and similarly for the

class Σm, cp, r .

It follows from the definition that σm(P )χ ∈ Smp for P ∈ Ψm
p .
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Asymptotic expansions

Lemma 3. If A∗ denotes the adjoint operator to A ∈ Σmp, r, and B ∈ Σnp, r,
then

a) σ(A∗)− σ(A)∗ − 1
2πi

d∑
j=1

∂2σ(A)∗

∂xj∂ξj
∈ Sm−2

p, r ,

b) σ(AB)− σ(A)σ(B)− 1
2πi

d∑
j=1

∂σ(A)
∂ξj

∂σ(B)
∂xj

∈ Sm+n−2
p, r .

Thus, if σ(A) commutes with σ(B), then [A,B] := AB −BA ∈ Σm+n−1
p, r with

symbol 1/(2πi){σ(A), σ(B)}x, ξ (up to the symbol of lower order), where

{σ(A), σ(B)}x, ξ =
d∑
j=1

∂σ(A)

∂ξj

∂σ(B)

∂xj
−

d∑
j=1

∂σ(A)

∂xj

∂σ(B)

∂ξj

is the Poisson bracket of σ(A) and σ(B) in variables x and ξ.
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Further consequences

Corollary. If A ∈ Σmp, r and B ∈ Σnp, r, then
a) σ(A∗)− σ(A)∗ ∈ Sm−1

p, r ,
b) σ(AB)− σ(A)σ(B) ∈ Sm+n−1

p, r .

Lemma 4. If A ∈ Ψm
p, r and B ∈ Ψn

p, r, then

a) A∗ ∈ Ψm
p, r and σm(A∗) = σm(A)

t
=: σm(A)∗ ,

b) AB ∈ Ψm+n
p, r and σm+n(AB) = σm(A)σn(B).
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Extended definition of parabolic H-measures

Definition of parabolic H-measures given in Theorem 2 can be extended to
operators from Ψ0, c

p, r.

Lemma 5. If (un) is a sequence in L2(R1+d;Cr) such that un −⇀ 0, then
there exist a subsequence (un′) and an r × r Hermitian matrix Radon measure
µ on R1+d × Pd such that for any A ∈ Ψ0, c

p, r one has:

lim
n′

∫
R1+d

Aun′ · un′ dy =: lim
n′
〈Aun′ , un′〉 = 〈µ, σ0(A)〉

:=

r∑
i,j=1

∫
R1+d×Pd

σ0(A)ij dµij(y,η) .
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Localisation principle

Theorem 3. (localisation principle) Let (un) be a sequence in L2(R1+d;Cr)

such that un −⇀ 0, and let Run −→ 0 strongly in H
−m

2
,−m

loc (R1+d;Cr) for
some R ∈ Ψm

p, r. Then, for the associated parabolic H-measure µ, it holds

σm(R)µ> = 0 .
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Propagation principle

Theorem 4. (propagation principle) Let (un) be a sequence in L2(R1+d;Cr)

such that un −⇀ 0, and let Run −→ 0 strongly in H
−m+1

2
,−m+1

loc (R1+d;Cr)
for some R ∈ Ψm

p, r, such that σm(R) is self-adjoint and the lower order symbol
of R defines an element in Ψm−1

p, r with principal symbol σm−1(R).
Then, for the associated parabolic H-measure µ and for any
a ∈ C∞c (R1+d × Pd), it holds

〈µ, {σm(R), a}x, ξ +
[
2πi
(

(σm−1(R))∗ − σm−1(R)
)

+

d∑
j=1

∂2σm(R)

∂xj∂ξj
+

m− 1

2(1 + τ2)
ξ · ∇xσ

m(R)
]
a〉 = 0 .

If σm(R) is anti-self-adjoint we can still apply this theorem, by simply using iR
instead of R.
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Application to the Schrödinger equation

We consider a sequence of initial value problems{
i∂tun + div (A∇un) = fn

un(0, ·) = u0
n ,

where u0
n −⇀ 0 in H1(Rd), while fn −⇀ 0 in W (0, T ; L2(Rd),H−1(Rd)),

where
‖f‖2W = ‖f‖2L2([0,T ];L2(Rd)) + ‖∂tf‖2L2([0,T ];H−1(Rd)) .

We also take A ∈ C∞(R+ ×Rd; Md×d(R)) ∩ L∞(R+ ×Rd; Md×d(R)) to be
a symmetric matrix field such that Av · v > α|v|2 (a.e.) for an α > 0.
Furthermore, we suppose that all partial derivatives ∂α

√
A belong to

Cb(R
+ ×Rd; Md×d(R)).
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Theorem 5. Under the above assumptions and additional assumption than
fn −→ 0 strongly in L2(R1+d) an H-measure µ̃ associated with the sequence

(vn0 , v
n
1 ) = (Pun,

√
A∇un) ,

where σ(P ) = iκ(τ, ξ)χ(τ, ξ), satisfies (for every a ∈ C∞c (R1+d × Pd))

〈µ̃, B̃〉 = 0 ,

where

B̃ =

[
b00 (bj)

>

(bj) B

]
with b00 =

2πτ∇xa ·∇ξκ

κ2
, bj = 2π(

∑
k,l ξl∂kãjl∂ξka−

∑
k ãjk∂xka) and

B = (∇xa · ∇ξκ)I + 2a(∇ξκ · ∇x

√
A)A−1/2 .

Here ãij are elements of
√
A. Moreover, we have〈 ν̃

|q|2 ,∇xa ·
(

(τ + 2πAξ · ξ)∇ξκ− 4πκAξ
)

+ 4π
(

((κ∇ξa+ a∇ξκ) · ∇x

√
A)ξ ·

√
Aξ
)〉

= 0 ,

where ν̃ = trµ̃ and q = (iκ, 2πi
√
A ξ).
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Remark. We would like to express the claim of Theorem 5 in terms of the
main symbol of Schrödinger equation

Q(t,x; τ, ξ) := 2πτ + (2π)2A(t,x)ξ · ξ ,

hoping that we can get results similar to those obtained in [AL]. However, we
know how to do this only in a special case when

√
A and its derivatives

commute (p ∈ 1..d):

√
A · ∂xp

√
A = ∂xp

√
A ·
√
A .

In that case we have

∇xA = 2
√
A · ∇x

√
A = 2∇x

√
A ·
√
A ,

and the claim of Theorem 5 can now be rewritten as〈 ν̃

|q|2 , κ{a,Q}x, ξ + (Q∇xa+ a∇xQ) · ∇ξκ
〉

= 0 .
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Application to the vibrating plate equation

We consider a sequence of initial value problems
∂t(ρ∂tun) + div div (M∇∇un) = fn

un(0, ·) = u0
n

∂tun(0, ·) = u1
n ,

where u0
n −⇀ 0 in H2(Rd), u1

n −⇀ 0 in L2(Rd) and fn −⇀ 0 in
L2(R+ ×Rd).

We take ρ ∈ C∞(R+; L∞(Rd)) ∩ C∞(R+ ×Rd) such that ρ > ρ0, where
ρ0 ∈ R+ is a given constant, and M ∈ C∞(R+ ×Rd;L(Md×d)) to be a real
symmetric tensor field of order four such that MA · A > αA · A for given
α > 0 and every A ∈ Md×d, with the following symmetries:
Mklij = Mijkl = Mjikl = Mijlk.
√
M is well-defined and satisfies the same properties.

Furthermore, we suppose
M, ∂tM,

√
M, ∂t

√
M, ∇∇

√
M ∈ Cb(R

+ ×Rd;L(Md×d)).
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Theorem 6. Under the above assumptions an H-measure µ̃ associated with
the sequence

(vn0 , v
n
1 ) = (Pun,

√
M∇∇un) ,

where σ(P ) = 2πτ , satisfies (for every a ∈ C∞c (R1+d × Pd))

〈µ̃,N〉 = 0 ,

where

N =

[
N00 (Ñij)

>

(Ñij) 0

]
with N00 = ( a

2(1+τ2)
ξ −∇ξa) · τ∇xρ

2π
and

Ñij = 2
∑
k,l

ξkm̃ijkl∂xla+
∑
k,l,p

ξkξl∂xpm̃ijkl(
a

2(1 + τ2)
ξp − ∂ξpa) .

Here (Ñij) is the vector column indexed by i, j, while
√
M = (m̃ijkl).

Moreover, we have〈 ν̃

|q|2 , τ
3(

a

2(1 + τ2)
ξ −∇ξa) · ∇xρ− 8π2τ

√
M (ξ ⊗ ξ) ·

(
2
√
M (∇xā⊗ ξ)

+ (
ā

2(1 + τ2)
ξ −∇ξā) · ∇x

√
M(ξ ⊗ ξ)

)〉
= 0 ,

where ν̃ = trµ̃ and q = (2πτ,−4π2
√
M ξ ⊗ ξ).
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Remark. We would like to express the claim of Theorem 7 in terms of the
main symbol of vibrating plate equation

Q(t,x; τ, ξ) := −(2πτ)2ρ+ (2π)4M(t,x)(ξ ⊗ ξ) · (ξ ⊗ ξ) ,

hoping again to get a result similar to one obtained in [AL]. However, we know
how to do this only in a special case when

√
M and its derivatives commute

(p ∈ 1..d): √
M · ∂xp

√
M = ∂xp

√
M ·
√
M .

In that case we have

∇xM = 2
√
M · ∇x

√
M = 2∇x

√
M ·
√
M ,

and the claim of Theorem 7 can now be rewritten as〈 τ ν̃
|q|2 , {a,Q}x, ξ −

a

2(1 + τ2)
ξ · ∇xQ

〉
= 0 .
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