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Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in
the late 1980s and their existence is established by the following theorem.

Theorem 1. If (u,) is a sequence in L?(R%; C") such that u,, — 0, then
there exist a subsequence (u,+) and an r X r Hermitian complex matrix Radon
measure pu on R® x S~ such that for any o1, p2 € Co(R?) and o € C(S4™1)
one has:



Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in
the late 1980s and their existence is established by the following theorem.

Theorem 1. If (u,) is a sequence in L?(R%; C") such that u,, — 0, then
there exist a subsequence (u,+) and an r X r Hermitian complex matrix Radon
measure pu on R® x S~ such that for any o1, p2 € Co(R?) and o € C(S4™1)
one has:

lim | (prun) ® Ay (p2un) dx = (. (p192) K 9)
n R

_ / 1(x) @2 (X)P(€) dpa(x, €),
Rdxsd—1

where F(Ayv)(€) = 1/1(%)]:”(5)- ]



Parabolic projections

P? ... a rotational ellipsoid in R'*¢ defined by 72 + % =1
p. .. a projection to the manifold P¢, along projection curves (parabolas)

wu(s) = (327—0, s&), s>0, v=/(r,&)E€ p?,
given by
_ T 3
p(1,8) = <"92(T’§), M) )
where £%(7,€) = [€/2]" + /]€/2]* + 72.



Parabolic projections

P? ... a rotational ellipsoid in R'*¢ defined by 72 + % =1
p. .. a projection to the manifold P¢, along projection curves (parabolas)

wu(s) = (327'0, s&), s>0, v=/(r,&)E€ p?,

given by

S O S
p(Tvg) - <KJ2(T, 5)7 Ii(T, E)) ’
where k*(7, &) == [€/2> + /]€/2[* + T2.

k takes a constant values s € R on each ellipsoid 72 + |s¢|?/2 = s*

Specifically, P? can alternatively be characterised with k(T,€) =1.



Parabolic H-measures

Theorem 2. If (u,) is a sequence in L2(R'™%; C") such that u, — 0, then
there exist a subsequence (u,+) and an r X v Hermitian matrix Radon measure
p on RY x P? such that for any @1, 2 € Co(R'™) and 1 € C(P%) one has:

lim F(prun) ® F(w2un ) (Y op)dn = (i, (p192) K )

n' JRri+d

- /R e ¥)e ) m) dualy.m)

where we use notation'y = (t,x) and n = (7,§).



Hormander classes

Form € R, p € (0,1] and 6 € [0,1), the Hormander symbol class S5 is
defined as the set:

{a(x,g) € C°(R* x RY) :

(Yo, B ENE)(BCap >0) [9s0%| < Ca,ﬁkmfﬂ'a'“‘ﬂ‘} :

where k(§) := /1 + 472[€]2 and 90%a := 020 a.
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Form € R, p € (0,1] and 6 € [0,1), the Hormander symbol class S5 is
defined as the set:

{a(x,g) € C°(R* x RY) :
(Vo, B € N§)(3Cap > 0) [050%a| < Cagh™ 7101}
where k(§) := /1 + 472[€]2 and 90%a := 020 a.
To each a € S} one can assign an operator A defined for p € S as

A = [ Calx )3(€)de.

where Ay is again a function from Schwartz space S. We write a = o(A) and

A = Op(a).



Hormander classes

Form € R, p € (0,1] and 6 € [0,1), the Hormander symbol class S5 is
defined as the set:

{a(x,g) € C°(R* x RY) :
(Yo, B ENE)(BCap >0) [9s0%| < Ca,ﬁkmfﬂ'“'“‘ﬁ‘} :

where k(§) := /1 + 472[€]2 and 90%a := 020 a.

To each a € S} one can assign an operator A defined for p € S as

A = [ Calx )3(€)de.

where Ay is again a function from Schwartz space S. We write a = o(A) and

A = Op(a).

p > 38...a continuous operator from H*(R?) to H* ™™ (R?)



Anisotropic generalisation

For ~v € (0,1]% such that ymax = max{7y1,...,74} = 1 we introduce
anisotropic classes of symbols:

S = {a(x, ) e C°(R* x RY) :
d - m-y¢ 2t
(Va,B € NH(ICap >0) [9p0%a| < Capky i }

where k(&) := 14+ 30 (27]&]) .



Inclusions to classical spaces

We can prove that
2
K*(€) < (1+ d)key(€) Tmin

where Ymin = min{vy1,...,v4}, and also

kv (8) < (1+ d)VAE(E) .



Inclusions to classical spaces

We can prove that
2
K*(€) < (1+ d)key(€) Tmin

where Ymin = min{vy1,...,v4}, and also

kv (8) < (1+ d)VAE(E) .

From the above inequalities we easily obtain

MYmin )
S’Ylninvo ;, m<0

g™ C { S’Tvy:nimO’ m 20

which means that we are able to apply many results from classical
pseudodifferential calculus also to anisotropic classes of symbols and operators.



Parabolic classes of symbols

As a special case we have the following parabolic classes of symbols
Sy ={a(y,n) € C* (R x R'™)
(Y, BEN)(BCap >0) [990%a| < Caphy >0},

where k(1) = kp(7,€) := 1 + (2n|7)) + 20, 2nle;

, and a = (ap, a’).



Parabolic classes of symbols

As a special case we have the following parabolic classes of symbols
Sy ={a(y,n) € C* (R x R'™)
(Y, BEN)(BCap >0) [990%a| < Caphy >0},

where k(1) = kp(7,€) := 1 + (2n|7)) + 20, 2nle;

Inclusion to classical spaces now reads

Ty, m>0
Sy €4 2

, and a = (ap, a’).

S?,o’ m<0’



Parabolic homogeneous functions

p™ € C°(R'T x R4\ {0}) is a parabolic homogeneous function with
respect to 1 of order m if

P (y, e’ e€) =Mp" (v, . €), £ >0.
For such functions we have the following lemma.

Lemma 1. Let p™(y,n) be an arbitrary parabolic homogeneous function with
respect to 1) of order m, which, as well as all its partial derivatives, is uniformly
bounded in'y for ) inside a compact set, and let x(n) € C>(R'*?) equals to
0 around the origin and equals to 1 outside the ball K[0,1]. Then p™x belongs

to Sy". ]
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Basic properties

By direct calculation we have
a€Sy,beSy =>abe Syt
and

a €8Sy = 0g,ac Sy !, 0rae Sy 2 ds,a€ S, Dra €8]

Class of operators assigned to symbols from S;* we denote by X7

11



Continuity results

As for nonnegative m the class S;" is embedded into ST' |, according to
3

classical theory A can be considered as a continuous operator from H*(R'*¢)
to H*~™(RMY).
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Continuity results

As for nonnegative m the class S;" is embedded into ST' |, according to
3

classical theory A can be considered as a continuous operator from H*(R'*¢)
to Hsfm(letd).

Actually, we prove a better result

Lemma 2. An operator A € X" is a continuous operator from H3*(R!*%)
s—m

intoH 2 *~™(R'T9),
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Polyhomogeneous parabolic symbols

Now we define classes of polyhomogeneous parabolic symbols, and
corresponding operators:

Uy ={Pexy:a(P)y,n)=p"(y,n)x(n)+p" (y,n)},

where p™ € C° (R x R*4\ {0}) is a parabolic homogeneous function
with respect to 7 of order m, while y € C*°(R**?) equals to 0 around the
origin and equals to 1 outside K[0,1], and p™ ' € SP" 1 (R'™).
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Polyhomogeneous parabolic symbols

Now we define classes of polyhomogeneous parabolic symbols, and
corresponding operators:

Uy ={P ey o(P)(y,m) =p"(y,mxm) +p" " (y,m)},
where p™ € C° (R x R*4\ {0}) is a parabolic homogeneous function
with respect to 7 of order m, while y € C*°(R**?) equals to 0 around the
origin and equals to 1 outside K[0,1], and p™ ' € SP" 1 (R'™).

By o™ (P) := p™ we denote the principal symbol of the operator P € W},

When we use matrix-valued symbols with values in M, (C) we write U},
instead of ;' and S}’ instead of S}".

We also write W",° for symbols compactly supported in y, and similarly for the
class 3755

It follows from the definition that o™ (P)x € S;* for P € U}
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Asymptotic expansions

Lemma 3. /f A" denotes the adjoint operator to A € ¥} ,., and B € ¥} .,
then ,
a) O'(A*) _ O'(A)* _ ﬁ Z 820'(A) Sm 2

A 0z ;0§ p, T
b) 7(AB) = 0(A)o(B) - 3 Z 254 26(B) ¢ g2,

Thus, if 0(A) commutes Wlth o(B), then [A,B] :== AB — BA € £7'1"" with
symbol 1/(2mi){c(A),o(B)}x,¢ (up to the symbol of lower order), where

o(B)
5171' 85]

H'Mg

{o(4) }xg—z el

is the Poisson bracket of o(A) and o(B) in variables x and €.
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Further consequences

Corollary. If A€ X}, and B€ X
a) o(A*) —o(A)* € STt

p, T 7

b) o(AB) — o(A)o(B) € SPimt .

n
p, T

then

15



Further consequences

Corollary. If A€ X', and B € X} ., then
a) o(A*) —o(A)* e Spit,

b) o(AB) — o(A)o(B) € SPimt .

Lemma 4. If Ac V', and B € ¥} ., then
a) A" e O

™ and o™(A%) = o™ (A) = o™ (A)*

b) AB € U™ and 6™ " (AB) = o™ (A)o™(B).

’
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Extended definition of parabolic H-measures

Definition of parabolic H-measures given in Theorem 2 can be extended to
operators from Wy ¢.

Lemma 5. If (u,) is a sequence in L2(R**%; C") such that u, — 0, then

there exist a subsequence (u,+) and an r X r Hermitian matrix Radon measure

w on R x P4 such that for any A € \Ilg;i one has:

lim Auyy - Uy dy =: im{Au,/, u,) = (s, UO(A»
n' JRi+d n'
= Z / 0% (A)ij dpij (y,m) -
ij=1/RI+dxpd
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Localisation principle

Theorem 3. (localisation principle) Let (u,) be a sequence in L*(R'*¢; C")
such that u, — 0, and let Ru,, — 0 strongly in H_2"~"(R'T¢,C") for

loc

some R € W,",.. Then, for the associated parabolic H-measure p, it holds

o™ (R =0.

17



Propagation principle

Theorem 4. (propagation principle) Let (u,,) be a sequence in L?(R!T¢; C")

—m+1
such that u,, — 0, and let Ru,, — 0 strongly in HIOCTJr’_mH(RHd; Cn)
for some R € ¥}, such that o™ (R) is self-adjoint and the lower order symbol
of R defines an element in W;’f;l with principal symbol ™~ (R).
Then, for the associated parabolic H-measure p and for any
a € C (R x PY), it holds
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Propagation principle

Theorem 4. (propagation principle) Let (u,) be a sequence in L2(R'*4;, C")

such that u, — 0, and let Ru, — 0 strongly in H, 2 erl(Rler; Cn)
for some R € ¥}, such that o™ (R) is self-adjoint and the lower order symbol
of R defines an element in W;’f;l with principal symbol ™~ (R).

Then, for the associated parabolic H-measure p and for any

a € C (R x PY), it holds

—m+

(1, {0 (B), abx,¢ + [2mi (07 (R))" = 0" (R))

0%o™( m—
+Z 8%8@ (1—5-7'2)‘5 Vo™ (R)]a>=0.

Ifc™(R) is ant:—self—adjomt we can still apply this theorem, by simply using iR

instead of R. .
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Application to the Schrodinger equation

We consider a sequence of initial value problems

10iun + div (AVuy) = fn
un(0,-) = ul,

where u2 — 0 in H*(R?), while f,, — 0 in W(0, T; L*(R%), H"}(R%)),

where

2 2 2
I £l = HfHL2([o,T];L2(Rd)) + HatfHL"’([O,T];H’l(Rd)) :

19



Application to the Schrodinger equation

We consider a sequence of initial value problems

10ty + div (AVuy,) = fr
U"(O7 ) = u?l )

where u2 — 0 in H*(R?), while f,, — 0 in W(0, T; L*(R%), H"}(R%)),
where

2 2 2
I £l = HfHL2([0,T];L2(Rd)) + HatfHL"’([O,T];H’l(Rd)) :

We also take A € C®(RT x R% Mgxa(R)) NL=®(RT x R% Mgxa(R)) to be
a symmetric matrix field such that Av - v > alv|? (a.e.) for an a > 0.
Furthermore, we suppose that all partial derivatives /A belong to

Cp(RT x R%:; Myxa(R)).

19



Theorem 5. Under the above assumptions and additional assumption than
fn — 0 strongly in LQ(RHd) an H-measure fi associated with the sequence

(USL,V?) = (P’LLTL,\/KV’LL”),

where o(P) = ik(1,€)x(7, &), satisfies (for every a € C° (R x P?))

(,B) =0,
where .
B~ [fb?) B }

with bog = mvz#, bj = QW(Zkalakdﬂagka — Zk djkazka) and
B = (Vxa - Ver)I + 2a(Ver - VxVA)ATY2,

Here a;; are elements of v/ A. Moreover, we have

<#, Vxa - ((7’ +2mAE - €)Vek — 47TK,A£)
+ 477(((/@V5a +aVek) - VxVA)E - \/K€)> =0,

where 7 = trji and q = (i, 2miv/A €).

20



Remark. We would like to express the claim of Theorem 5 in terms of the
main symbol of Schrédinger equation

Qlt,x;7,&) =217 + (27r)2A(157 x)€- &,

hoping that we can get results similar to those obtained in [AL]. However, we
know how to do this only in a special case when v/ A and its derivatives
commute (p € 1..d):

VA - 0,,VA =08,,VA - VA.
In that case we have
V<A =2VA - V,.VA =2V,VA - VA,
and the claim of Theorem 5 can now be rewritten as
1

(g 10 @) e +(QVxa +aVxQ) - Ver) = 0.

21



Application to the vibrating plate equation

We consider a sequence of initial value problems

O (pOrun) + divdiv(MVVu,) = f,
u’ﬂ(oa ) = u%
atun (07 ) - u”}L )
where u2 — 0 in H*(R?), s — 0in L>(R%) and f, — 0 in

L}(R* x RY).

22



Application to the vibrating plate equation

We consider a sequence of initial value problems

O (pOrun) + divdiv(MVVu,) = f,
Un(O, ) = u%
8tu"(07 ) = uvlm 5

where u2 — 0 in H*(R?), s — 0in L>(R%) and f, — 0 in

L2(R* x RY).

We take p € C*°(RT;L=°(R%)) N C=(R* x R%) such that p > po, where
po € RT is a given constant, and M € C*(R" x R% £(Maxa)) to be a real
symmetric tensor field of order four such that MA - A > oA - A for given

a > 0 and every A € Mgxq, with the following symmetries:
Myrij = Mijri = Mjigi = Mijig.

VM is well-defined and satisfies the same properties.

Furthermore, we suppose
M, &:M, VM, 9:vM, VVVM € Cp(R* x R%; L(Maxa)).

22



Theorem 6. Under the above assumptions an H-measure fi associated with
the sequence

(vy,v1) = (Pun, VM VVuy,),
where o(P) = 27, satisfies (for every a € C° (R x P%))

(1, N) =0,

where

with Nog = ( 1+7_2 ﬁ V§a) TVXP and

N;j = Qkam”kz&la + Z E1€10x, Mgl (

k,l,p

a
m&) - aspa) .

Here (N;) is the vector column indexed by i,j, while /M = (1fiji1).
Moreover, we have

€ —Vea) Vip— 8T 7VM (£ ® E) - (2VM (Vya ® &)

<L 3 a
lq|?’ 2(1+72)

+ £ - Vea) VxVM(E®§))) =0,

2(1 +72)
where i = trfi and q = (277, —4m*VME Q £).



Remark. We would like to express the claim of Theorem 7 in terms of the
main symbol of vibrating plate equation

Qt,x;7,€) == —(2r7)’p+ (2m)'M(t,x) (@ €) - (E®E),

hoping again to get a result similar to one obtained in [AL]. However, we know
how to do this only in a special case when VM and its derivatives commute

(p e l.d):
VM - 9, VM = 9,,VM - VM.

In that case we have
M=2vVM: -VxVM =2VxVM - VM,

and the claim of Theorem 7 can now be rewritten as

(o 40.Qbee — goom € V@) =0
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