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Joint work with Marko Erceg and Martin Lazar



H-measures and variants without a characteristic scale
Classical H-measures
Parabolic H-measures and similar variants
H-distributions and variants

One-scale H-measures
Semiclassical measures
One-scale H-measures
Other variants

Localisation principle
Motivation
One-scale H-measures

2



What are H-measures?

Before 1990: Tools to describe passage from one scale to another in the models
of continuum mechanics included compactness by compensation, Young
measures, and defect measures.
The same tools were successful in passing to weak limits for sequences of
solutions to PDEs.

Luc Tartar (1989), and independently Patrick Gérard (1990), introduced
H-measures (microlocal defect measures), defined on the phase space (on
Fourier space besides the physical space).

Start from a sequence un −⇀ 0 in L2
loc(R

d), and ϕ ∈ Cc(R
d), and take the

Fourier transform:

dϕun(ξ) =

Z
Rd

e−2πix·ξ(ϕun)(x)dx .

As ϕun is supported on a fixed compact set K, so |dϕun(ξ)| 6 C.

Furthermore, un −⇀ 0, and from the definition dϕun(ξ) −→ 0 pointwise.
By the Lebesgue dominated convergence theorem on bounded sets, we getdϕun −→ 0 strong, i.e. strongly in L2

loc(R
d).

On the other hand, by the Plancherel theorem: ‖dϕun‖L2(Rd) = ‖ϕun‖L2(Rd).
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The limit is a measure

If ϕun does not converge to zero in L2(Rd), then neither does dϕun;
therefore some information must go to infinity.

Tartar wanted to investigate how this goes to infinity in various directions.

He took ψ ∈ C(Sd−1), and considered the limits of the integrals:

lim
n

Z
Rd

ψ(ξ/|ξ|)|dϕun|2dξ =

Z
Sd−1

ψ(ξ)dνϕ(ξ) .

Limit is a linear functional in ψ, thus an integral over the sphere of some
nonegativne Radon measure, which depends on ϕ.
(a bounded sequence of Radon measures has an accumulation point)
The crucial question was how does this limit depend on ϕ.
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Existence of H-measures

Theorem. If un ⇀ 0 in L2(Ω; Cr), then there exist a subsequence (un′) and
µH ∈Mb(Ω× Sd−1; Mr(C)) such that for every ϕ1, ϕ2 ∈ C0(Ω) and
ψ ∈ C(Sd−1)

lim
n′

Z
Rd

ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)ψ
“ ξ

|ξ|

”
dξ = 〈µH , ϕ1ϕ̄2 � ψ〉 .

Measure µH we call the H-measure corresponding to the (sub)sequence (un).

Above we use the notation

v · u :=
X

viūi , (v ⊗ u)a := (a · u)v ,while (f � g)(x, ξ) := f(x)g(ξ) .

Theorem.

un
L2
loc−−→ 0 ⇐⇒ µH = 0 .
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Example 1: Oscillation
Take a periodic function v ∈ L2(Rd/Zd), extend it to Rd, and write

v(x) =
X

k∈Zd
v̂ke

2πik·x .

Assume that v̂0 = 0, and define un(x) = v(nx) in L2
loc(R

d).

0 42

1

0,5

-0,5

-1

-4 -2
0

n=16                    

n=4                     

n=1                     

Associated H-measure

µH =
X

k∈Zd\{0}

|v̂k|2δ k
|k|

(ξ)λ(x) .
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Example 2: Concentration

For U ∈ L2(Rd) define

un(x) = n
d
2U (nx) .

0

4

4

3

2

2

1

-4
0

-2

n=16                    

n=4                     

n=1                     

Associated H-measure

µH =

Z
Rd
|Û(y)|2δ y

|y|
(ξ)δ0(x)dy .
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Parabolic H-measures — rough idea in comparison
Take a sequence un −⇀ 0 in L2(R2), and integrate |dϕun|2 along

rays and project onto S1

parabolas and project onto P1

τ

ξ1

T

T0

τ

ξ

T

T0

√
2

1

O

In R2 we have a compact curve (a surface in higher dimensions):

S1 . . . r2(τ, ξ) := τ2 + ξ2 = 1

P1 . . . ρ2(τ, ξ) := (ξ/2)2 +
p

(ξ/2)4 + τ2 = 1

and projection R2
∗ = R2 \ {0} onto the curve (surface):

p(τ, ξ) :=
“ τ

r(τ, ξ)
,

ξ

r(τ, ξ)

”

π(τ, ξ) :=
“ τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

”
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Analytic picture

Multiplication by b ∈ L∞(R2), a bounded operator Mb on L2(R2):
(Mbu)(x) := b(x)u(x) ,

norm equal to ‖b‖L∞(R2).

Fourier multiplier Pa, for a ∈ L∞(R2): dPau = aû.
The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1 or P1.
We extend it by the projections, p or π: if α is a function defined on a
compact surface, we take a := α ◦ p or a := α ◦ π, i.e.

a(τ, ξ) := α
“ τ

r(τ, ξ)
,

ξ

r(τ, ξ)

”

a(τ, ξ) := α
“ τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

”

The precise scaling is contained in the projections, not the surface.
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The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1 or P1.
We extend it by the projections, p or π:

if α is a function defined on a
compact surface, we take a := α ◦ p or a := α ◦ π, i.e.

a(τ, ξ) := α
“ τ

r(τ, ξ)
,

ξ

r(τ, ξ)

”

a(τ, ξ) := α
“ τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

”

The precise scaling is contained in the projections, not the surface.

9



Analytic picture

Multiplication by b ∈ L∞(R2), a bounded operator Mb on L2(R2):
(Mbu)(x) := b(x)u(x) , norm equal to ‖b‖L∞(R2).

Fourier multiplier Pa, for a ∈ L∞(R2): dPau = aû.
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(Mbu)(x) := b(x)u(x) , norm equal to ‖b‖L∞(R2).

Fourier multiplier Pa, for a ∈ L∞(R2): dPau = aû.
The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1 or P1.
We extend it by the projections, p or π: if α is a function defined on a
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Existence of parabolic H-measures

Theorem. If un −⇀ 0 in L2(Rd; Rr), then there exists its subsequence and a
complex matrix Radon measure µH

P

on

Rd × Sd−1

Rd × Pd−1

such that for any ϕ1, ϕ2 ∈ C0(Rd) and

ψ ∈ C(Sd−1)

ψ ∈ C(Pd−1)

one has

lim
n′

Z
Rd

ϕ̂1un′ ⊗ ϕ̂2un′(ψ ◦ p

π

) dξ = 〈µ, (ϕ1ϕ̄2)� ψ〉

=

Z
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµH(x, ξ)

=

Z
Rd×Pd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµP (x, ξ) .

Theorem.

un
L2
loc−−→ 0 ⇐⇒ µH = 0 .
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Example 1: Oscillation

Periodic function (take v̂0,0 = 0, as before):

v(t,x) =
X

(ω,k)∈Z1+d

v̂ω,k e
2πi(ωt+k·x) .

For α, β ∈ R+, a sequence of periodic functions with periods approaching zero:

un(t,x) := v(nαt, nβx) =
X

(ω,k)∈Z1+d

v̂ω,k e
2πi(nαωt+nβk·x) .

Their Fourier transforms are:

ûn(τ, ξ) =
X

(ω,k)∈Z1+d

v̂ω,k δnαω(τ)δnβk(ξ) .
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Example 1: Oscillation (cont.)

un(t,x) := v(nαt, nβx) =
X

(ω,k)∈Z1+d

v̂ω,k e
2πi(nαωt+nβk·x) .

(un) is a pure sequence, and its variant H-measure µP (t,x, τ, ξ) is

λ(t,x)

8>>>>>>>>>>>><>>>>>>>>>>>>:

X
(ω,k)∈Z1+d

ω 6=0

|v̂ω,k|2δ( ω|ω| ,0)(τ, ξ) +
X

k∈Zd
|v̂0,k|2δ(0, k

|k| )
(τ, ξ), α > 2β

X
(ω,k)∈Z1+d

k 6=0

|v̂ω,k|2δ(0, k
|k| )

(τ, ξ) +
X
ω∈Z

|v̂ω,0|2δ( ω|ω| ,0)(τ, ξ), α < 2β

X
(ω,k)∈Z1+d

|v̂ω,k|2δ„
ω

ρ2(ω,k)
, k
ρ(ω,k)

«(τ, ξ), α = 2β,
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Example 2: Concentration

For v ∈ L2(R1+d) and α, β ∈ R+

un(t,x) := nα+βdv(n2αt, n2βx),

bounded in L2(R1+d) with constant norm ‖un‖L2(R1+d) = ‖v‖L2(R1+d), and
weakly converges to zero.

(un) is pure, with variant H-measure 〈µP , φ� ψ〉 =

φ(0, 0)

8>>>>><>>>>>:

Z
R1+d

|v̂(σ,η)|2ψ(
σ

|σ| , 0)dσdη +

Z
Rd
|v̂(0,η)|2ψ(0,

η

|η| ) dη, α > 2βZ
R1+d

|v̂(σ,η)|2ψ(0,
η

|η| )dσdη +

Z
R

|v̂(σ, 0)|2ψ(
σ

|σ| , 0) dσ, α < 2βZ
R1+d

|v̂(σ,η)|2ψ
„

σ

ρ2(σ,η)
,

η

ρ(σ,η)

«
dσdη, α = 2β.
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Other variants

E. Yu. Panov (2009): ultraparabolic H-measures
I. Ivec, D. Mitrović (2011): for fractional scalar conservation laws
M. Lazar, D. Mitrović (2012): velocity averaging

H-measures can be tailored to the equations, following the above ideas (and
surmounting technical details, which do appear).
The objects are quadratic in nature, and are suited essentially to linear
problems.
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M. Lazar, D. Mitrović (2012): velocity averaging

H-measures can be tailored to the equations, following the above ideas (and
surmounting technical details, which do appear).
The objects are quadratic in nature, and are suited essentially to linear
problems.

14



H-distributions

Introduced by D. Mitrović and N.A. (2011)
The objects are no longer measures, but distributions (of finite order in ξ).

However, we are no longer limited to considering L2 sequences, but pairs of Lp

and Lp
′

sequences.
Applications to compactness by compensation by M. Mǐsur and D. Mitrović
(submitted), and velocity averaging by M. Lazar and D. Mitrović (2013).
Other dualities are also possible, like mixed-norm Lebesgue spaces by N.A. and
I. Ivec (submitted), and Sobolev spaces by J. Aleksić, S. Pilipović and I.
Vojnović.
Some were presented on the posters.
There is also independent work of F. Rindler on microlocal defect forms
(preprint on arXiv).
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Existence of H-distributions

ψ : Rd → C is a Fourier multiplier on Lp(Rd) if

F̄(ψF(θ)) ∈ Lp(Rd) , for θ ∈ S(Rd),

and
S(Rd) 3 θ 7→ F̄(ψF(θ)) ∈ Lp(Rd)

can be extended to a continuous mapping Aψ : Lp(Rd)→ Lp(Rd).

Theorem. If un −⇀ 0 in Lploc(R
d) and vn

∗−−⇀ v in Lqloc(R
d) for some

q > max{p′, 2}, then there exist subsequences (un′), (vn′) and
µD ∈ D′(Rd × Sd−1) of order not more than κ = [d/2] + 1 in ξ, such that for
every ϕ1, ϕ2 ∈ C∞c (Rd) and ψ ∈ Cκ(Sd−1) we have:

lim
n′

Z
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

Z
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µD, ϕ1ϕ2ψ〉 ,

where Aψ : Lp(Rd)→ Lp(Rd) is the multiplier with symbol ψ ∈ Cκ(Sd−1).

µD is the H-distribution corresponding to (a subsequence of) (un) and (vn).

Of course, for q ∈ 〈1,∞〉 the weak ∗ convergence coincides with the weak
convergence.
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Some remarks

The question of replacing L2 by Lp was already raised by Gérard (1991), as it
was important for nonlinear problems.

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µD is supported on Cl Ω× Sd−1.

In the Theorem we distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). If p > 2, p′ 6 2
so we can take q > 2; this covers the L2 case (including un = vn).
Thus we can take un, vn −⇀ 0 in L2

loc(R
d), resulting in a distribution µD of

order zero (a Radon measure, not necessary bounded), instead of a more
general distribution.
The real improvement in Theorem is for p < 2.

For applications, of interest is to extend the result to vector-valued functions.
For un ∈ Lp(Rd; Ck) and vn ∈ Lq(Rd; Cl), the result is a matrix valued
distribution µD = [µij ], i ∈ 1..k and j ∈ 1..l.

In contrast to H-measures, we cannot consider H-distributions corresponding to
the same sequence, but only to a pair of sequences, and the H-distribution
would correspond to a non-diagonal block for an H-measure.

17



Some remarks

The question of replacing L2 by Lp was already raised by Gérard (1991), as it
was important for nonlinear problems.

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µD is supported on Cl Ω× Sd−1.

In the Theorem we distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). If p > 2, p′ 6 2
so we can take q > 2; this covers the L2 case (including un = vn).
Thus we can take un, vn −⇀ 0 in L2

loc(R
d), resulting in a distribution µD of

order zero (a Radon measure, not necessary bounded), instead of a more
general distribution.
The real improvement in Theorem is for p < 2.

For applications, of interest is to extend the result to vector-valued functions.
For un ∈ Lp(Rd; Ck) and vn ∈ Lq(Rd; Cl), the result is a matrix valued
distribution µD = [µij ], i ∈ 1..k and j ∈ 1..l.

In contrast to H-measures, we cannot consider H-distributions corresponding to
the same sequence, but only to a pair of sequences, and the H-distribution
would correspond to a non-diagonal block for an H-measure.

17



Some remarks

The question of replacing L2 by Lp was already raised by Gérard (1991), as it
was important for nonlinear problems.

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µD is supported on Cl Ω× Sd−1.

In the Theorem we distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). If p > 2, p′ 6 2
so we can take q > 2; this covers the L2 case (including un = vn).
Thus we can take un, vn −⇀ 0 in L2

loc(R
d), resulting in a distribution µD of

order zero (a Radon measure, not necessary bounded), instead of a more
general distribution.
The real improvement in Theorem is for p < 2.

For applications, of interest is to extend the result to vector-valued functions.
For un ∈ Lp(Rd; Ck) and vn ∈ Lq(Rd; Cl), the result is a matrix valued
distribution µD = [µij ], i ∈ 1..k and j ∈ 1..l.

In contrast to H-measures, we cannot consider H-distributions corresponding to
the same sequence, but only to a pair of sequences, and the H-distribution
would correspond to a non-diagonal block for an H-measure.

17



Some remarks

The question of replacing L2 by Lp was already raised by Gérard (1991), as it
was important for nonlinear problems.

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µD is supported on Cl Ω× Sd−1.

In the Theorem we distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). If p > 2, p′ 6 2
so we can take q > 2; this covers the L2 case (including un = vn).
Thus we can take un, vn −⇀ 0 in L2

loc(R
d), resulting in a distribution µD of

order zero (a Radon measure, not necessary bounded), instead of a more
general distribution.
The real improvement in Theorem is for p < 2.

For applications, of interest is to extend the result to vector-valued functions.
For un ∈ Lp(Rd; Ck) and vn ∈ Lq(Rd; Cl), the result is a matrix valued
distribution µD = [µij ], i ∈ 1..k and j ∈ 1..l.

In contrast to H-measures, we cannot consider H-distributions corresponding to
the same sequence, but only to a pair of sequences, and the H-distribution
would correspond to a non-diagonal block for an H-measure.

17



H-measures and variants without a characteristic scale
Classical H-measures
Parabolic H-measures and similar variants
H-distributions and variants

One-scale H-measures
Semiclassical measures
One-scale H-measures
Other variants

Localisation principle
Motivation
One-scale H-measures
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One-scale H-measures

Introduced for problems involving a characteristic length, by Patrick Gérard
(1990).

Luc Tartar (1990) constructed a similar object on an example, but Gérard’s
construction was easier; later they jointly simplified it further.

Pierre-Louis Lions and Thierry Paul (1993) constructed the same objects by
using the Wigner transform, and renamed them as Wigner measures.

One-scale H-measures (Tartar, 2009) are variant H-measures which have the
advantages of both H-measures and semiclassical measures.
Further step would be to introduce multi-scale H-measures.

A sample problem: consider T > 0, Ω ⊆ Rd, U := 〈0, T 〉 × Ω, (un) in
H1

loc(U),

un
L2
loc(U)
−−−⇀ 0, A ∈W1,∞(U), fn

L2
loc(U)
−−−⇀ 0, and εn ↘ 0

∂tun − εndiv (A∇un) = fn .

What can we say about solutions on the limit n→∞?
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One-scale H-measures (Tartar, 2009) are variant H-measures which have the
advantages of both H-measures and semiclassical measures.
Further step would be to introduce multi-scale H-measures.

A sample problem: consider T > 0, Ω ⊆ Rd, U := 〈0, T 〉 × Ω, (un) in
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L2
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L2
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∂tun − εndiv (A∇un) = fn .

What can we say about solutions on the limit n→∞?
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Semiclassical measures

Theorem. If un ⇀ 0 in L2(Ω; Cr), εn ↘ 0, then there exist a subsequence
(un′) and µsc ∈Mb(Ω×Rd; Mr(C)) such that for every ϕ1, ϕ2 ∈ C0(Ω) and
ψ ∈ S(Rd)

lim
n′

Z
Rd

ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)ψ(εn′ξ) dξ = 〈µsc, ϕ1ϕ̄2 � ψ〉 .

Measure µsc we call the semiclassical measure with characteristic length εn
corresponding to the (sub)sequence (un).

(un) is (εn)-oscillatory if

(∀ϕ ∈ C∞c (Ω)) lim
R→∞

lim sup
n

Z
|ξ|> R

εn

|dϕun(ξ)|2 dξ = 0 .

Theorem.

un
L2
loc−→ 0 ⇐⇒ µsc = 0 & (un) is (εn)− oscillatory .
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Example 1a: Oscillation — one characteristic length

α > 0, k ∈ Zd \ {0}, εn ↘ 0:

un(x) := e2πin
αk·x L2

loc−−⇀ 0 .

µH = λ(x)� δ k
|k|

(ξ)

µsc = λ(x)�

8<: δ0(ξ), limn n
αεn = 0

δck(ξ), limn n
αεn = c ∈ 〈0,∞〉

0, limn n
αεn =∞

sin( 4
√
nπx)

sin(nπx)
sin(n2πx)

n = 2
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Example 1b: Oscillation — two characteristic lengths

0 < α < β, k, s ∈ Zd \ {0}, εn ↘ 0:

un(x) := e2πin
αk·x L2

loc−−⇀ 0 ,

vn(x) := e2πin
β s·x L2

loc−−⇀ 0 .

µH (µsc) is H-measure (semiclassical measure with characteristic length
εn ↘ 0) corresponding to un + vn.

µH = λ(x)�
“
δ k
|k|

+ δ s
|s|

”
(ξ)

µsc = λ(x)�

8>>><>>>:
2δ0(ξ), limn n

βεn = 0
(δcs + δ0)(ξ), limn n

βεn = c ∈ 〈0,∞〉
δ0(ξ), limn n

βεn =∞ & limn n
αεn = 0

δck, limn n
αεn = c ∈ 〈0,∞〉

0, limn n
αεn =∞

22
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Compatification of Rd \ {0}

Rd

Σ∞
Σ0

Σ0 := {0ξ0 : ξ0 ∈ Sd−1}

Σ∞ := {∞ξ0 : ξ0 ∈ Sd−1}

K0,∞(Rd) := (Rd \ {0}) ∪ Σ0 ∪ Σ∞

We have:
a) C0(Rd) ⊆ C(K0,∞(Rd)).
b) ψ ∈ C(Sd−1), ψ ◦ π ∈ C(K0,∞(Rd)), where π(ξ) = ξ/|ξ|.
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Existence and definition of one-scale H-measures
Theorem. If un ⇀ 0 in L2(Ω; Cr), εn ↘ 0, then there exist a subsequence
(un′) and µsc ∈Mb(Ω×Rd; Mr(C)) such that for every ϕ1, ϕ2 ∈ C0(Ω) and
ψ ∈ S(Rd)

lim
n′

Z
Rd

̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)ψ(εn′ξ) dξ = 〈µsc, ϕ1ϕ̄2 � ψ〉 .

Measure µsc we call the semiclassical measure with characteristic length εn
corresponding to the (sub)sequence (un).

Some properties:
Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ S(Rd), ψ̃ ∈ C(Sd−1).

a) 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 = 〈µsc, ϕ1ϕ̄2 � ψ〉 ,
b) 〈µK0,∞ , ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 .

Theorem.

a) µ∗K0,∞ = µK0,∞

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) µK0,∞(Ω× Σ∞) = 0 =⇒ (un) is (εn)− oscillatory

24
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Example 1a revisited

un(x) = e2πin
αk·x,

µH = λ(x)� δ k
|k|

(ξ)

µsc = λ(x)�

8<: δ0(ξ), limn n
αεn = 0

δck(ξ), limn n
αεn = c ∈ 〈0,∞〉

0, limn n
αεn =∞

µK0,∞ = λ(x)�

8><>:
δ

0
k
|k|

(ξ), limn n
αεn = 0

δck(ξ), limn n
αεn = c ∈ 〈0,∞〉

δ
∞

k
|k|

(ξ), limn n
αεn =∞
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Example 1b revisited

The corresponding measures of un + vn for:

un(x) = e2πin
αk·x , vn(x) = e2πin

β s·x ,

µH = λ(x)�
“
δ k
|k|

+ δ s
|s|

”
(ξ)

µsc = λ(x)�

8>>><>>>:
2δ0(ξ), limn n

βεn = 0
(δ0 + δcs)(ξ), limn n

βεn = c ∈ 〈0,∞〉
δ0(ξ), limn n

βεn =∞ & limn n
αεn = 0

δck, limn n
αεn = c ∈ 〈0,∞〉

0, limn n
αεn =∞

µK0,∞ = λ(x)�

8>>>>>>>><>>>>>>>>:

(δ
0

k
|k|

+ δ
0

s
|s|

)(ξ), limn n
βεn = 0

(δ
0

k
|k|

+ δcs)(ξ), limn n
βεn = c ∈ 〈0,∞〉

(δ
0

k
|k|

+ δ
∞

s
|s|

)(ξ), limn n
βεn =∞ & limn n

αεn = 0

(δck + δ
∞

s
|s|

)(ξ), limn n
αεn = c ∈ 〈0,∞〉

(δ
∞

k
|k|

+ δ
∞

s
|s|

), limn n
αεn =∞
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2δ0(ξ), limn n

βεn = 0
(δ0 + δcs)(ξ), limn n

βεn = c ∈ 〈0,∞〉
δ0(ξ), limn n

βεn =∞ & limn n
αεn = 0

δck, limn n
αεn = c ∈ 〈0,∞〉

0, limn n
αεn =∞

µK0,∞ = λ(x)�

8>>>>>>>><>>>>>>>>:

(δ
0

k
|k|

+ δ
0

s
|s|

)(ξ), limn n
βεn = 0

(δ
0

k
|k|

+ δcs)(ξ), limn n
βεn = c ∈ 〈0,∞〉

(δ
0

k
|k|

+ δ
∞

s
|s|

)(ξ), limn n
βεn =∞ & limn n

αεn = 0

(δck + δ
∞

s
|s|

)(ξ), limn n
αεn = c ∈ 〈0,∞〉

(δ
∞

k
|k|

+ δ
∞

s
|s|

), limn n
αεn =∞
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One-scale parabolic H-measures

A similar construction can be carried out by starting with parabolic H-measures
instead of classical H-measures.
The resulting objects will have two scales: one corresponding to t, and another
to x.
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One-scale H-distributions

This construction requires much more work. The topological construction is
not enough, as we also have to check the derivatives.
However, the construction is feasible, and we obtain the new objects.
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Localisation principle

Most of the known applications of H-measures depend in one way or the other
on the localisation principle, which gives the information on the support of
H-measure.
It is indispensable even for the known applications of the propagation principle.

A similar statement holds for semiclassical measures as well.
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Localisation principle for H-measures (symmetric systems)

dX
k=1

∂k(Aku) + Bu = f , Ak ∈ Cb(Ω; Mr×r) Hermitian

Assume:

un
L2

−−⇀ 0 , and defines µH

fn
H−1

loc−−→ 0 .

Theorem. If un satisfies:

dX
k=1

∂k
`
Akun

´
−→ 0 in H−1

loc(Ω; Cr) ,

then for P(x, ξ) :=
Pd
k=1 ξkA

k(x) on Ω× Sd−1 one has:

P(x, ξ)µ>H = 0 .

Thus, the support of H-measure µ is contaned in the set˘
(x, ξ) ∈ Ω× Sd−1 : det P(x, ξ) = 0

¯
of points where P is a singular matrix.

It contains a generalisation of compactness by compensation to variable
coefficients.
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Localisation principle for H-measures (higher derivatives)

Let Ω ⊆ Rd open, m ∈ N, un ⇀ 0 in L2
loc(Ω; Cr), Aα ∈ C(Ω; Mr(C)) and

Pun =
X
|α|=m

∂α(Aαun) −→ 0 in H−mloc (Ω; Cr) .

Then we have
p(x, ξ)µ>H = 0 ,

where p(x, ξ) =
P
|α|=m ξαAα(x) is the principle simbol of P.
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Localisation principle for parabolic H-measures
In the parabolic case the details become more involved.

Anisotropic Sobolev spaces (s ∈ R; kp(τ, ξ) := 4
p

1 + σ4(τ, ξ))

H
s
2 ,s(R1+d) :=

n
u ∈ S ′ : kspû ∈ L2(R1+d)

o
.

Theorem. (localisation principle) Let un −⇀ 0 in L2(R1+d; Cr), uniformly
compactly supported in t, satisfy (s ∈ N)

√
∂t
s
(un · b) +

X
|α|=s

∂α
x (un · aα) −→ 0 in H

− s2 ,−s
loc (R1+d) ,

where b, aα ∈ Cb(R
1+d; Cr), while

√
∂t is a pseudodifferential operator with

polyhomogeneous symbol
√

2πiτ , i.e.

√
∂tu = F

“√
2πiτ û(τ)

”
.

For a parabolic H-measure µ associated to (a sub)sequence (of) (un) one has

µ

„
(
√

2πiτ)sb +
X
|α|=s

(2πiξ)α aα

«
= 0.
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Localisation principle for semiclassical measures

Let Ω ⊆ Rd open, m ∈ N, Aα ∈ C(Ω; Mr(C)), εn ↘ 0, fn −→ 0 in
L2

loc(Ω; Cr) and consider:

Pnun =
X
|α|6m

ε|α|n ∂α(Aαun) = fn in Ω .

Furthermore, assume that un −⇀ 0 in L2
loc(Ω; Cr).

Then we have
p(x, ξ)µ>sc = 0 ,

where p(x, ξ) =
P
|α|6m ξαAα(x), and µsc is semiclassical measure with

characteristic length (εn), corresponding to (un).

Problem: µsc = 0 is not enough for the strong convergence!
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One-scale H-measures

Let un ⇀ 0 in L2
loc(Ω; Cr), εn ↘ 0, Aα ∈ C(Ω; Mr(C))X

l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

where fn ∈ H−mloc (Ω; Cr) such that

(∀ϕ ∈ C∞c (Ω))
dϕfn

1 +
Pm
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd; Cr) (C(εn))

Lemma.
a) (C(εn)) is equivalent to

(∀ϕ ∈ C∞c (Ω))
dϕfn

1 + |ξ|l + εm−ln |ξ|m
−→ 0 in L2(Rd; Cr) .

b) (∃ k ∈ l..m) fn −→ 0 in H−kloc (Ω; Cr) =⇒ (εk−ln fn) satisfies (C(εn)).
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Localisation principle

X
l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

(∀ϕ ∈ C∞c (Ω))
dϕfn

1 +
Pm
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd; Cr) . (C(εn))

Theorem. [Tartar (2009)] Under previous assumptions and l = 1, 1-scale
H-measure µK0,∞ with characteristic length εn corresponding to (un) satisfies

supp (pµ>K0,∞) ⊆ Ω× Σ0 ,

where

p(x, ξ) :=
X

16|α|6m

(2πi)|α|
ξα

|ξ|+ |ξ|mAα(x) .

35



Localisation principle

X
l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

(∀ϕ ∈ C∞c (Ω))
dϕfn

1 +
Pm
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd; Cr) . (C(εn))

Theorem. Under previous assumptions, 1-scale H-measure µK0,∞ with

characteristic length εn corresponding to (un) satisfies

pµ>K0,∞ = 0 ,

where

p(x, ξ) :=
X

l6|α|6m

(2πi)|α|
ξα

|ξ|l + |ξ|mAα(x) .

35



Localisation principle — final generalisation
Theorem. εn > 0 bounded un ⇀ 0 in L2

loc(Ω; Cr) andX
l6|α|6m

ε|α|−ln ∂α(Aα
n un) = fn ,

where Aα
n ∈ C(Ω; Mr(C)), Aα

n −→ Aα uniformly on compact sets, and
fn ∈ H−mloc (Ω; Cr) satisfies (C(εn)).
Then for ωn → 0 such that limn

ωn
εn

= c ∈ [0,∞], corresponding 1-scale
H-measure µK0,∞ with characteristic length ωn satisfies

pµ>K0,∞ = 0 ,

where

p(x, ξ) :=

8>><>>:
P
|α|=l

ξα

|ξ|l+|ξ|mAα(x) , limn
ωn
εn

=∞P
l6|α|6m

“
2πi
c

”|α|
ξα

|ξ|l+|ξ|mAα(x) , limn
ωn
εn

= c ∈ 〈0,∞〉P
|α|=m

ξα

|ξ|l+|ξ|mAα(x) , limn
ωn
εn

= 0

Moreover, if there exists ε0 > 0 such that εn > ε0, n ∈ N, we can take

p(x, ξ) :=
X
|α|=m

ξα

|ξ|mAα(x) .
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Localisation principle (H-measures and semiclassical measures)

• Using the preceding theorem and µK0,∞ = µH on Ω× Sd−1, we can obtained
the known localisation principle for H-measures.

Theorem. Under the assumptions of the preceding theorem, we have

p(x, ξ)µ>sc = 0 ,

where

p(x, ξ) :=

8><>:
P
|α|=l ξ

αAα(x) , limn
ωn
εn

=∞P
l6|α|6m

“
2πi
c

”|α|
ξαAα(x) , limn

ωn
εn

= c ∈ 〈0,∞〉P
|α|=m ξαAα(x) , limn

ωn
εn

= 0
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