H-measures, H-distributions and applications

Nenad Antonić

Department of Mathematics Faculty of Science University of Zagreb

Modern challenges in continuum mechanics Zagreb, 3–6 April 2016

http://riemann.math.hr/weconmapp/

Introduction to H-measures

What are H-measures? First examples

Localisation principle

Symmetric systems — compactness by compensation again Localisation principle for parabolic H-measures

Applications in homogenisation

Small-amplitude homogenisation of heat equation Periodic small-amplitude homogenisation Homogenisation of a model based on the Stokes equation Model based on time-dependent Stokes

H-distributions

Existence Localisation principle Other variants

One-scale H-measures

Semiclassical measures One-scale H-measures Localisation principle

What are H-measures?

Mathematical objects introduced by:

 $\,\circ\,$ Luc Tartar, motivated by intended applications in homogenisation (H),

What are H-measures?

Mathematical objects introduced by:

- $\circ\,$ Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects *microlocal defect measures*).

What are H-measures?

Mathematical objects introduced by:

- \circ Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects *microlocal defect measures*).

Start from $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^d)$, $\varphi \in C_c(\mathbf{R}^d)$, and take the Fourier transform:

$$\widehat{\varphi u_n}(\boldsymbol{\xi}) = \int_{\mathbf{R}^d} e^{-2\pi i \mathbf{x} \cdot \boldsymbol{\xi}}(\varphi u_n)(\mathbf{x}) d\mathbf{x}$$

As φu_n is supported on a fixed compact set K, so $|\widehat{\varphi u_n}(\boldsymbol{\xi})| \leq C$. Furthermore, $u_n \longrightarrow 0$, and from the definition $\widehat{\varphi u_n}(\boldsymbol{\xi}) \longrightarrow 0$ pointwise. By the Lebesgue dominated convergence theorem applied on bounded sets, we get

$$\widehat{\varphi u_n} \longrightarrow 0$$
 strong, i.e. strongly in $L^2_{loc}(\mathbf{R}^d)$.

On the other hand, by the Plancherel theorem: $\|\widehat{\varphi u_n}\|_{L^2(\mathbf{R}^d)} = \|\varphi u_n\|_{L^2(\mathbf{R}^d)}$.

If $\varphi u_n \neq 0$ in $L^2(\mathbf{R}^d)$, then $\widehat{\varphi u_n} \neq 0$; some information must go to infinity.

Limit is a measure

How does it go to infinity in various directions? Take $\psi\in C(S^{d-1}),$ and consider:

$$\lim_{n} \int_{\mathbf{R}^{d}} \psi(\boldsymbol{\xi}/|\boldsymbol{\xi}|) |\widehat{\varphi u_{n}}|^{2} d\boldsymbol{\xi} = \int_{\mathrm{S}^{d-1}} \psi(\boldsymbol{\xi}) d\nu_{\varphi}(\boldsymbol{\xi}) \ .$$

The limit is a linear functional in ψ , thus an integral over the sphere of some nonnegative Radon measure (a bounded sequence of Radon measures has an accumulation point), which depends on φ . How does it depend on φ ?

Limit is a measure

How does it go to infinity in various directions? Take $\psi\in C(S^{d-1}),$ and consider:

$$\lim_{n} \int_{\mathbf{R}^{d}} \psi(\boldsymbol{\xi}/|\boldsymbol{\xi}|) |\widehat{\varphi u_{n}}|^{2} d\boldsymbol{\xi} = \int_{\mathbf{S}^{d-1}} \psi(\boldsymbol{\xi}) d\nu_{\varphi}(\boldsymbol{\xi}) \ .$$

The limit is a linear functional in ψ , thus an integral over the sphere of some nonnegative Radon measure (a bounded sequence of Radon measures has an accumulation point), which depends on φ . How does it depend on φ ?

Theorem. (u^n) a sequence in $L^2(\mathbf{R}^d; \mathbf{R}^r)$, $u^n \xrightarrow{L^2} 0$ (weakly), then there is a subsequence $(u^{n'})$ and μ on $\mathbf{R}^d \times S^{d-1}$ such that:

$$\begin{split} \lim_{n' \to \infty} \int_{\mathbf{R}^d} \mathcal{F}\Big(\varphi_1 \mathsf{u}^{n'}\Big) \otimes \mathcal{F}\Big(\varphi_2 \mathsf{u}^{n'}\Big) \psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) d\boldsymbol{\xi} &= \langle \boldsymbol{\mu}, \varphi_1 \bar{\varphi}_2 \psi \rangle \\ &= \int_{\mathbf{R}^d \times \mathrm{S}^{d-1}} \varphi_1(\mathbf{x}) \bar{\varphi}_2(\mathbf{x}) \psi(\boldsymbol{\xi}) d\bar{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) \;. \end{split}$$

Parabolic pde-s are:

well studied, and we have good theory for them

in some cases we even have explicit solutions (by formulae)

 $1:2 \mbox{ is certainly a good ratio to start with }$

Parabolic pde-s are:

well studied, and we have good theory for them

in some cases we even have explicit solutions (by formulae)

 $1:2 \mbox{ is certainly a good ratio to start with }$

Besides the immediate applications (which motivated this research), related to the properties of parabolic equations, applications are possible to other equations and problems involving the scaling 1:2.

Naturally, after understanding this ratio 1:2, other ratios should be considered as well, as required by intended applications.

Parabolic pde-s are:

well studied, and we have good theory for them

in some cases we even have explicit solutions (by formulae)

 $1:2 \mbox{ is certainly a good ratio to start with }$

Besides the immediate applications (which motivated this research), related to the properties of parabolic equations, applications are possible to other equations and problems involving the scaling 1:2.

Naturally, after understanding this ratio 1:2, other ratios should be considered as well, as required by intended applications.

Terminology: *classical* as opposed to *parabolic or variant* H-measures. The sphere we replace by:

$$\begin{split} \sigma^4(\tau, \pmb{\xi}) &:= (2\pi\tau)^2 + (2\pi |\pmb{\xi}|)^4 = 1 \;, \; \text{or} \\ \sigma_1^2(\tau, \pmb{\xi}) &:= |\tau| + (2\pi |\pmb{\xi}|)^2 = 1 \;. \end{split}$$

Parabolic pde-s are:

well studied, and we have good theory for them

in some cases we even have explicit solutions (by formulae)

 $1:2 \mbox{ is certainly a good ratio to start with }$

Besides the immediate applications (which motivated this research), related to the properties of parabolic equations, applications are possible to other equations and problems involving the scaling 1:2.

Naturally, after understanding this ratio 1:2, other ratios should be considered as well, as required by intended applications.

Terminology: *classical* as opposed to *parabolic or variant* H-measures. The sphere we replace by:

$$\begin{split} \sigma^4(\tau, \pmb{\xi}) &:= (2\pi\tau)^2 + (2\pi|\pmb{\xi}|)^4 = 1 \ , \ \text{or} \\ \sigma_1^2(\tau, \pmb{\xi}) &:= |\tau| + (2\pi|\pmb{\xi}|)^2 = 1 \ . \\ \text{finally we chose the ellipse} \\ \rho^2(\tau, \pmb{\xi}) &:= |\pmb{\xi}/2|^2 + \sqrt{(\pmb{\xi}/2)^4 + \tau^2} = 1 \ . \end{split}$$

Notation.

For simplicity (2D):
$$(t, x) = (x^0, x^1) = \mathbf{x}$$
 and $(\tau, \xi) = (\xi_0, \xi_1) = \boldsymbol{\xi}$.
We use the Fourier transform in both space and time variables.

Take a sequence $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^2)$, and integrate $|\widehat{\varphi u_n}|^2$ along rays and project onto S^1

Take a sequence $u_n \longrightarrow 0$ in $L^2(\mathbb{R}^2)$, and integrate $|\widehat{\varphi u_n}|^2$ along rays and project onto S^1 parabolas and project onto P^1

Take a sequence $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^2)$, and integrate $|\widehat{\varphi u_n}|^2$ along rays and project onto S^1 parabolas and project onto P^1

In \mathbf{R}^2 we have a compact curve (a surface in higher dimensions):

 $S^1 \dots r^2(\tau, \xi) := \tau^2 + \xi^2 = 1$

Take a sequence $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^2)$, and integrate $|\widehat{\varphi u_n}|^2$ along rays and project onto S^1 parabolas and project onto P^1

In \mathbf{R}^2 we have a compact curve (a surface in higher dimensions):

$$S^{1} \dots r^{2}(\tau, \xi) := \tau^{2} + \xi^{2} = 1 \qquad P^{1} \dots \rho^{2}(\tau, \xi) := (\xi/2)^{2} + \sqrt{(\xi/2)^{4} + \tau^{2}} = 1$$

Take a sequence $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^2)$, and integrate $|\widehat{\varphi u_n}|^2$ along rays and project onto S^1 parabolas and project onto P^1

In \mathbf{R}^2 we have a compact curve (a surface in higher dimensions):

 $S^{1} \dots r^{2}(\tau,\xi) := \tau^{2} + \xi^{2} = 1 \qquad P^{1} \dots \rho^{2}(\tau,\xi) := (\xi/2)^{2} + \sqrt{(\xi/2)^{4} + \tau^{2}} = 1$

and projection $\mathbf{R}^2_*=\mathbf{R}^2\setminus\{\mathbf{0}\}$ onto the curve (surface):

$$p(\tau,\xi) := \left(\frac{\tau}{r(\tau,\xi)}, \frac{\xi}{r(\tau,\xi)}\right)$$

Take a sequence $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^2)$, and integrate $|\widehat{\varphi u_n}|^2$ along rays and project onto S^1 parabolas and project onto P^1

In \mathbf{R}^2 we have a compact curve (a surface in higher dimensions):

 $S^1 \dots r^2(\tau, \xi) := \tau^2 + \xi^2 = 1 \qquad P^1 \dots \rho^2(\tau, \xi) := (\xi/2)^2 + \sqrt{(\xi/2)^4 + \tau^2} = 1$

and projection $\mathbf{R}^2_*=\mathbf{R}^2\setminus\{\mathbf{0}\}$ onto the curve (surface):

$$p(\tau,\xi) := \left(\frac{\tau}{r(\tau,\xi)}, \frac{\xi}{r(\tau,\xi)}\right) \qquad \qquad \pi(\tau,\xi) := \left(\frac{\tau}{\rho^2(\tau,\xi)}, \frac{\xi}{\rho(\tau,\xi)}\right)$$

Multiplication by $b \in L^{\infty}(\mathbf{R}^2)$, a bounded operator M_b on $L^2(\mathbf{R}^2)$: $(M_b u)(\mathbf{x}) := b(\mathbf{x})u(\mathbf{x})$,

 $\begin{array}{l} \mbox{Multiplication by } b \in \mathrm{L}^\infty(\mathbf{R}^2) \text{, a bounded operator } M_b \mbox{ on } \mathrm{L}^2(\mathbf{R}^2) \text{:} \\ (M_b u)(\mathbf{x}) := b(\mathbf{x}) u(\mathbf{x}) \quad , \qquad \mbox{ norm equal to } \|b\|_{\mathrm{L}^\infty(\mathbf{R}^2)}. \end{array}$

 $\begin{array}{l} \mbox{Multiplication by } b \in L^\infty({\bf R}^2) \mbox{, a bounded operator } M_b \mbox{ on } L^2({\bf R}^2) \mbox{:} \\ (M_b u)({\bf x}) := b({\bf x})u({\bf x}) \mbox{ , norm equal to } \|b\|_{L^\infty({\bf R}^2)}. \end{array}$

Fourier multiplier P_a , for $a \in L^{\infty}(\mathbf{R}^2)$: $\widehat{P_a u} = a\hat{u}$.

 $\begin{array}{l} \mbox{Multiplication by } b \in \mathrm{L}^\infty(\mathbf{R}^2) \mbox{, a bounded operator } M_b \mbox{ on } \mathrm{L}^2(\mathbf{R}^2) \mbox{:} \\ (M_b u)(\mathbf{x}) := b(\mathbf{x}) u(\mathbf{x}) \mbox{ , orm equal to } \|b\|_{\mathrm{L}^\infty(\mathbf{R}^2)}. \end{array}$

Fourier multiplier P_a , for $a \in L^{\infty}(\mathbf{R}^2)$: $\widehat{P_a u} = a\hat{u}$. The norm is again equal to $\|a\|_{L^{\infty}(\mathbf{R}^2)}$.

 $\begin{array}{l} \mbox{Multiplication by } b \in \mathrm{L}^\infty(\mathbf{R}^2) \mbox{, a bounded operator } M_b \mbox{ on } \mathrm{L}^2(\mathbf{R}^2) \mbox{:} \\ (M_b u)(\mathbf{x}) := b(\mathbf{x}) u(\mathbf{x}) \mbox{ , orm equal to } \|b\|_{\mathrm{L}^\infty(\mathbf{R}^2)}. \end{array}$

Fourier multiplier P_a , for $a \in L^{\infty}(\mathbf{R}^2)$: $\widehat{P_a u} = a\hat{u}$. The norm is again equal to $\|a\|_{L^{\infty}(\mathbf{R}^2)}$.

Delicate part: *a* is given only on S^1 or P^1 . We extend it by the projections, *p* or π :

 $\begin{array}{l} \mbox{Multiplication by } b \in \mathrm{L}^\infty(\mathbf{R}^2) \text{, a bounded operator } M_b \mbox{ on } \mathrm{L}^2(\mathbf{R}^2) \text{:} \\ (M_b u)(\mathbf{x}) := b(\mathbf{x})u(\mathbf{x}) \ , \qquad \mbox{ norm equal to } \|b\|_{\mathrm{L}^\infty(\mathbf{R}^2)}. \end{array}$

Fourier multiplier P_a , for $a \in L^{\infty}(\mathbf{R}^2)$: $\widehat{P_a u} = a\hat{u}$. The norm is again equal to $\|a\|_{L^{\infty}(\mathbf{R}^2)}$.

Delicate part: a is given only on S^1 or P^1 . We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a := \alpha \circ p$ or $a := \alpha \circ \pi$, i.e.

$$a(\tau,\xi) := \alpha\Big(\frac{\tau}{r(\tau,\xi)}, \frac{\xi}{r(\tau,\xi)}\Big)$$

 $\begin{array}{l} \mbox{Multiplication by } b \in \mathrm{L}^\infty(\mathbf{R}^2) \text{, a bounded operator } M_b \mbox{ on } \mathrm{L}^2(\mathbf{R}^2) \text{:} \\ (M_b u)(\mathbf{x}) := b(\mathbf{x})u(\mathbf{x}) \ , \qquad \mbox{ norm equal to } \|b\|_{\mathrm{L}^\infty(\mathbf{R}^2)}. \end{array}$

Fourier multiplier P_a , for $a \in L^{\infty}(\mathbf{R}^2)$: $\widehat{P_a u} = a\hat{u}$. The norm is again equal to $\|a\|_{L^{\infty}(\mathbf{R}^2)}$.

Delicate part: a is given only on S^1 or P^1 . We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a := \alpha \circ p$ or $a := \alpha \circ \pi$, i.e.

$$a(\tau,\xi) := \alpha\Big(\frac{\tau}{r(\tau,\xi)}, \frac{\xi}{r(\tau,\xi)}\Big) \qquad \qquad a(\tau,\xi) := \alpha\Big(\frac{\tau}{\rho^2(\tau,\xi)}, \frac{\xi}{\rho(\tau,\xi)}\Big)$$

 $\begin{array}{l} \mbox{Multiplication by } b \in \mathrm{L}^\infty(\mathbf{R}^2) \text{, a bounded operator } M_b \mbox{ on } \mathrm{L}^2(\mathbf{R}^2) \text{:} \\ (M_b u)(\mathbf{x}) := b(\mathbf{x})u(\mathbf{x}) \ , \qquad \mbox{ norm equal to } \|b\|_{\mathrm{L}^\infty(\mathbf{R}^2)}. \end{array}$

Fourier multiplier P_a , for $a \in L^{\infty}(\mathbf{R}^2)$: $\widehat{P_a u} = a\hat{u}$. The norm is again equal to $\|a\|_{L^{\infty}(\mathbf{R}^2)}$.

Delicate part: a is given only on S^1 or P^1 . We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a := \alpha \circ p$ or $a := \alpha \circ \pi$, i.e.

$$a(\tau,\xi) := \alpha\Big(\frac{\tau}{r(\tau,\xi)}, \frac{\xi}{r(\tau,\xi)}\Big) \qquad \qquad a(\tau,\xi) := \alpha\Big(\frac{\tau}{\rho^2(\tau,\xi)}, \frac{\xi}{\rho(\tau,\xi)}\Big)$$

The precise scaling is contained in the projections, not the surface.

 $\begin{array}{l} \mbox{Multiplication by } b \in \mathrm{L}^\infty(\mathbf{R}^2) \mbox{, a bounded operator } M_b \mbox{ on } \mathrm{L}^2(\mathbf{R}^2) \mbox{:} \\ (M_b u)(\mathbf{x}) := b(\mathbf{x}) u(\mathbf{x}) \mbox{ , orm equal to } \|b\|_{\mathrm{L}^\infty(\mathbf{R}^2)}. \end{array}$

Fourier multiplier P_a , for $a \in L^{\infty}(\mathbf{R}^2)$: $\widehat{P_a u} = a\hat{u}$. The norm is again equal to $\|a\|_{L^{\infty}(\mathbf{R}^2)}$.

Delicate part: a is given only on S^1 or P^1 . We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a := \alpha \circ p$ or $a := \alpha \circ \pi$, i.e.

$$a(\tau,\xi) := \alpha\Big(\frac{\tau}{r(\tau,\xi)}, \frac{\xi}{r(\tau,\xi)}\Big) \qquad \qquad a(\tau,\xi) := \alpha\Big(\frac{\tau}{\rho^2(\tau,\xi)}, \frac{\xi}{\rho(\tau,\xi)}\Big)$$

The precise scaling is contained in the projections, not the surface. Now we can state the main theorem.

Existence of H-measures

Theorem. If $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^d; \mathbf{R}^r)$, then there exists its subsequence and a complex matrix Radon measure μ on

 $\mathbf{R}^d \times S^{d-1}$

such that for any $\varphi_1, \varphi_2 \in \mathrm{C}_0(\mathbf{R}^d)$ and

 $\psi \in \mathcal{C}(S^{d-1})$

one has

$$\begin{split} &\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 \mathbf{u}_{n'}} \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\psi \circ p \) \, d\boldsymbol{\xi} = \langle \boldsymbol{\mu}, (\varphi_1 \bar{\varphi}_2) \boxtimes \psi \rangle \\ &= \int_{\mathbf{R}^d \times S^{d-1}} \varphi_1(\mathbf{x}) \bar{\varphi}_2(\mathbf{x}) \psi(\boldsymbol{\xi}) \, d\bar{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) \end{split}$$

Existence of H-measures

Theorem. If $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^d; \mathbf{R}^r)$, then there exists its subsequence and a complex matrix Radon measure μ on

 $\mathbf{R}^d \times P^{d-1}$

such that for any $\varphi_1, \varphi_2 \in \mathrm{C}_0(\mathbf{R}^d)$ and

 $\psi \in \mathcal{C}(P^{d-1})$

one has

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 \mathbf{u}_{n'}} \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\psi \circ \pi) \, d\boldsymbol{\xi} &= \langle \boldsymbol{\mu}, (\varphi_1 \bar{\varphi}_2) \boxtimes \psi \rangle \\ &= \int_{\mathbf{R}^d \times P^{d-1}} \varphi_1(\mathbf{x}) \bar{\varphi}_2(\mathbf{x}) \psi(\boldsymbol{\xi}) \, d\bar{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) \; . \end{split}$$

Existence of H-measures

Theorem. If $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^d; \mathbf{R}^r)$, then there exists its subsequence and a complex matrix Radon measure μ on

 $\mathbf{R}^d \times S^{d-1} \qquad \qquad \mathbf{R}^d \times P^{d-1}$

such that for any $\varphi_1, \varphi_2 \in \mathrm{C}_0(\mathbf{R}^d)$ and

$$\psi \in \mathcal{C}(S^{d-1})$$
 $\psi \in \mathcal{C}(P^{d-1})$

one has

$$\begin{split} &\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 \mathbf{u}_{n'}} \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\psi \circ \pi) \, d\boldsymbol{\xi} = \langle \boldsymbol{\mu}, (\varphi_1 \bar{\varphi}_2) \boxtimes \psi \rangle \\ &= \int_{\mathbf{R}^d \times S^{d-1}} \varphi_1(\mathbf{x}) \bar{\varphi}_2(\mathbf{x}) \psi(\boldsymbol{\xi}) \, d\bar{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) \quad = \int_{\mathbf{R}^d \times P^{d-1}} \varphi_1(\mathbf{x}) \bar{\varphi}_2(\mathbf{x}) \psi(\boldsymbol{\xi}) \, d\bar{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) \, . \end{split}$$

Oscillation (classical H-measures)

$$u_n(\mathbf{x}) := v(n\mathbf{x}) \longrightarrow 0$$

 $v\in L^2_{loc}({\bf R}^d)$ periodic function (with the unit period in each of variables), with the zero mean value.

Oscillation (classical H-measures)

 $u_n(\mathbf{x}) := v(n\mathbf{x}) \longrightarrow 0$

 $v\in L^2_{loc}({\bf R}^d)$ periodic function (with the unit period in each of variables), with the zero mean value.

The associated H-measure

$$\mu(\mathbf{x},\boldsymbol{\xi}) = \sum_{\mathsf{k}\in\mathbf{Z}^d\setminus\{0\}} |v_\mathsf{k}|^2 \lambda(\mathbf{x}) \,\delta_{\frac{\mathsf{k}}{|\mathsf{k}|}}(\boldsymbol{\xi}),$$

 v_k Fourier coefficients of $v(v(\mathbf{x}) = \sum_{k \in \mathbf{Z}^d} v_k e^{2\pi i k \cdot \mathbf{x}}).$

Dual variable *preserves* information on the direction of propagation (of oscillation).

Oscillation (parabolic H-measures)

Let $v \in L^2(\mathbf{R}^{1+d})$ be a periodic function

$$v(t, \mathbf{x}) = \sum_{(\omega, \mathbf{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathbf{k}} e^{2\pi i (\omega t + \mathbf{k} \cdot \mathbf{x})} ,$$

where $\hat{v}_{\omega,\mathbf{k}}$ denotes Fourier coefficients. Further, assume that v has mean value zero, i.e. $\hat{v}_{0,0} = 0$.

Oscillation (parabolic H-measures)

Let $v \in L^2(\mathbf{R}^{1+d})$ be a periodic function

$$v(t, \mathbf{x}) = \sum_{(\omega, \mathbf{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathbf{k}} e^{2\pi i (\omega t + \mathbf{k} \cdot \mathbf{x})} ,$$

where $\hat{v}_{\omega,\mathbf{k}}$ denotes Fourier coefficients. Further, assume that v has mean value zero, i.e. $\hat{v}_{0,0} = 0$.

For $\alpha,\beta\in\mathbf{R}^+,$ we have a sequence of periodic functions with period tending to zero:

$$u_n(t, \mathbf{x}) := v(n^{\alpha}t, n^{\beta}\mathbf{x}) = \sum_{(\omega, \mathbf{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathbf{k}} e^{2\pi i (n^{\alpha}\omega t + n^{\beta}\mathbf{k} \cdot \mathbf{x})}$$

.

Oscillation (parabolic H-measures)

Let $v \in L^2(\mathbf{R}^{1+d})$ be a periodic function

$$v(t, \mathbf{x}) = \sum_{(\omega, \mathbf{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathbf{k}} e^{2\pi i (\omega t + \mathbf{k} \cdot \mathbf{x})} ,$$

where $\hat{v}_{\omega,\mathbf{k}}$ denotes Fourier coefficients. Further, assume that v has mean value zero, i.e. $\hat{v}_{0,0} = 0$.

For $\alpha,\beta\in {\bf R}^+,$ we have a sequence of periodic functions with period tending to zero:

$$u_n(t, \mathbf{x}) := v(n^{\alpha} t, n^{\beta} \mathbf{x}) = \sum_{(\omega, \mathbf{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathbf{k}} e^{2\pi i (n^{\alpha} \omega t + n^{\beta} \mathbf{k} \cdot \mathbf{x})} .$$

Their Fourier transforms are:

$$\hat{u}_n(\tau, \boldsymbol{\xi}) = \sum_{(\omega, \mathsf{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathsf{k}} \, \delta_{n^{\alpha} \omega}(\tau) \delta_{n^{\beta} \mathsf{k}}(\boldsymbol{\xi}) \; .$$

Oscillation (cont.)

 (u_n) is a pure sequence, and the corresponding parabolic H-measure $\mu(t,\mathbf{x},\tau,\pmb{\xi})$ is

$$\lambda(t,\mathbf{x}) \begin{cases} \sum_{\substack{(\omega,\mathbf{k})\in\mathbf{Z}^{1+d} \\ \omega\neq 0 \\ \mathbf{k}\neq 0 \\ \mathbf{k}\neq 0 \\ \mathbf{k}\neq 0 \\ \mathbf{k}\neq 0 \\ (\omega,\mathbf{k})\in\mathbf{Z}^{1+d} \\ \mathbf{k}\neq 0 \end{cases}} |\hat{v}_{\omega,\mathbf{k}}|^2 \delta_{(0,\frac{\mathbf{k}}{|\mathbf{k}|})}(\tau,\boldsymbol{\xi}) + \sum_{\omega\in\mathbf{Z}} |\hat{v}_{\omega,0}|^2 \delta_{(\frac{\omega}{|\omega|},0)}(\tau,\boldsymbol{\xi}), \qquad \alpha > 2\beta \\ \sum_{\substack{(\omega,\mathbf{k})\in\mathbf{Z}^{1+d} \\ \mathbf{k}\neq 0 \\ (\omega,\mathbf{k})\in\mathbf{Z}^{1+d} \\ (\frac{\omega}{\rho^2(\omega,\mathbf{k})},\frac{\mathbf{k}}{\rho(\omega,\mathbf{k})})(\tau,\boldsymbol{\xi}), \qquad \alpha = 2\beta, \end{cases}$$

where λ denotes the Lebesgue measure.

Concentration (classical H-measures)

$$u_n(\mathbf{x}) := n^{\frac{d}{2}} v(n\mathbf{x}), \qquad \left(v \in \mathrm{L}^2(\mathbf{R}^d) \right).$$
Concentration (classical H-measures)

$$u_n(\mathbf{x}) := n^{\frac{d}{2}} v(n\mathbf{x}), \qquad \left(v \in \mathcal{L}^2(\mathbf{R}^d) \right).$$

The associated H-measure is of the form $\delta_0(\mathbf{x})\nu(\boldsymbol{\xi})$, where ν is measure on S^{d-1} with surface density

$$\nu(\boldsymbol{\xi}) = \int_0^\infty |\hat{v}(t\boldsymbol{\xi})|^2 t^{d-1} dt,$$

i.e.

$$\mu(\mathbf{x},\boldsymbol{\xi}) = \int_{\mathbf{R}^d} |\hat{v}(\boldsymbol{\eta})|^2 \delta_{\frac{\boldsymbol{\eta}}{|\boldsymbol{\eta}|}}(\boldsymbol{\xi}) \delta_0(\mathbf{x}) \, d\boldsymbol{\eta},$$

where \hat{v} denotes the Fourier transformation of v.

Concentration (parabolic H-measures)

For $v \in L^2(\mathbf{R}^{1+d})$ and $\alpha, \beta \in \mathbf{R}^+$

$$u_n(t,\mathbf{x}) := n^{\alpha+\beta d} v(n^{2\alpha}t, n^{2\beta}\mathbf{x}),$$

is bounded in $L^2(\mathbf{R}^{1+d})$ with the norm $||u_n||_{L^2(\mathbf{R}^{1+d})} = ||v||_{L^2(\mathbf{R}^{1+d})}$ which does not depend on n, and weakly converges to zero.

Concentration (parabolic H-measures)

For $v \in L^2(\mathbf{R}^{1+d})$ and $\alpha, \beta \in \mathbf{R}^+$

$$u_n(t,\mathbf{x}) := n^{\alpha+\beta d} v(n^{2\alpha}t, n^{2\beta}\mathbf{x}),$$

is bounded in $L^2(\mathbf{R}^{1+d})$ with the norm $||u_n||_{L^2(\mathbf{R}^{1+d})} = ||v||_{L^2(\mathbf{R}^{1+d})}$ which does not depend on n, and weakly converges to zero.

 (u_n) is a pure sequence, with the parabolic H-measure $\langle oldsymbol{\mu},\phioxtimes\psi
angle =$

$$\phi(0,0) \begin{cases} \int_{\mathbf{R}^{1+d}} |\hat{v}(\sigma,\boldsymbol{\eta})|^2 \psi(\frac{\sigma}{|\sigma|},0) d\sigma d\boldsymbol{\eta} + \int_{\mathbf{R}^d} |\hat{v}(0,\boldsymbol{\eta})|^2 \psi(0,\frac{\boldsymbol{\eta}}{|\boldsymbol{\eta}|}) d\boldsymbol{\eta}, & \alpha > 2\beta \\ \int_{\mathbf{R}^{1+d}} |\hat{v}(\sigma,\boldsymbol{\eta})|^2 \psi(0,\frac{\boldsymbol{\eta}}{|\boldsymbol{\eta}|}) d\sigma d\boldsymbol{\eta} + \int_{\mathbf{R}} |\hat{v}(\sigma,0)|^2 \psi(\frac{\sigma}{|\sigma|},0) d\sigma, & \alpha < 2\beta \\ \int_{\mathbf{R}^{1+d}} |\hat{v}(\sigma,\boldsymbol{\eta})|^2 \psi\left(\frac{\sigma}{\rho^2(\sigma,\boldsymbol{\eta})},\frac{\boldsymbol{\eta}}{\rho(\sigma,\boldsymbol{\eta})}\right) d\sigma d\boldsymbol{\eta}, & \alpha = 2\beta. \end{cases}$$

Actually, any non-negative Radon measure on $\Omega \times P^{d-1}$, of total mass A^2 , can be described as a parabolic H-measure of some sequence $u_n \longrightarrow 0$, with $||u_n||_{L^2} \leq A + \varepsilon$.

Actually, any non-negative Radon measure on $\Omega \times P^{d-1}$, of total mass A^2 , can be described as a parabolic H-measure of some sequence $u_n \longrightarrow 0$, with $||u_n||_{L^2} \leq A + \varepsilon$.

Both for oscillation and concentration, for $\alpha > 2\beta$ the measure μ is supported in *poles*, while for $\alpha < 2\beta$ on the *equator* of the surface P^d , regardless of the choice of v.

Actually, any non-negative Radon measure on $\Omega \times P^{d-1}$, of total mass A^2 , can be described as a parabolic H-measure of some sequence $u_n \longrightarrow 0$, with $||u_n||_{L^2} \leq A + \varepsilon$.

Both for oscillation and concentration, for $\alpha > 2\beta$ the measure μ is supported in *poles*, while for $\alpha < 2\beta$ on the *equator* of the surface P^d , regardless of the choice of v.

When $\alpha=2\beta$ the parabolic H-measure can be supported in any point of the surface $\mathbf{P}^d.$

Actually, any non-negative Radon measure on $\Omega \times P^{d-1}$, of total mass A^2 , can be described as a parabolic H-measure of some sequence $u_n \longrightarrow 0$, with $||u_n||_{L^2} \leq A + \varepsilon$.

Both for oscillation and concentration, for $\alpha > 2\beta$ the measure μ is supported in *poles*, while for $\alpha < 2\beta$ on the *equator* of the surface P^d , regardless of the choice of v.

When $\alpha=2\beta$ the parabolic H-measure can be supported in any point of the surface $\mathbf{P}^d.$

Other research in this direction: Panov (IHP:AN, 2011): ultraparabolic H-measures Ivec & Mitrović (CPAA, 2011) Lazar & Mitrović (MathComm, 2011): Erceg & Ivec (2017): fractional H-measures

Introduction to H-measures

What are H-measures? First examples

Localisation principle

Symmetric systems — compactness by compensation again Localisation principle for parabolic H-measures

Applications in homogenisation

Small-amplitude homogenisation of heat equation Periodic small-amplitude homogenisation Homogenisation of a model based on the Stokes equation Model based on time-dependent Stokes

H-distributions

Existence Localisation principle Other variants

One-scale H-measures

Semiclassical measures One-scale H-measures Localisation principle

$$\partial_k(\mathbf{A}^k \mathsf{u}) + \mathbf{B}\mathsf{u} = \mathsf{f} \ , \ \mathbf{A}^k \in \mathrm{C}_b(\mathbf{R}^d; \mathrm{M}_{r imes r})$$
 Hermitian

$$\partial_k(\mathbf{A}^k \mathsf{u}) + \mathbf{B}\mathsf{u} = \mathsf{f} \ , \ \mathbf{A}^k \in \mathrm{C}_b(\mathbf{R}^d; \mathrm{M}_{r imes r})$$
 Hermitian

Assume:

$$u^n \xrightarrow{L^2} 0$$
, and defines μ
 $f^n \xrightarrow{H^{-1}_{loc}} 0$.

$$\partial_k(\mathbf{A}^k \mathbf{u}) + \mathbf{B}\mathbf{u} = \mathbf{f} \ , \ \mathbf{A}^k \in \mathrm{C}_b(\mathbf{R}^d; \mathrm{M}_{r \times r})$$
 Hermitian

Assume:

$$u^n \xrightarrow{L^2} 0$$
, and defines μ
 $f^n \xrightarrow{H^{-1}_{loc}} 0$.

Theorem. (localisation principle) If uⁿ satisfies:

$$\partial_k \left(\mathbf{A}^k \mathbf{u}^n \right) \longrightarrow \mathbf{0} \text{ in space } \mathbf{H}_{\mathrm{loc}}^{-1} \left(\mathbf{R}^d \right)^r$$
,

then for $\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) := \xi_k \mathbf{A}^k(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

 $\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) ar{\mu} = \mathbf{0}$.

$$\partial_k(\mathbf{A}^k \mathbf{u}) + \mathbf{B}\mathbf{u} = \mathbf{f} \ , \ \mathbf{A}^k \in \mathrm{C}_b(\mathbf{R}^d; \mathrm{M}_{r imes r})$$
 Hermitian

Assume:

$$u^n \xrightarrow{L^2} 0$$
, and defines μ
 $f^n \xrightarrow{H^{-1}_{loc}} 0$.

Theorem. (localisation principle) If uⁿ satisfies:

$$\partial_k (\mathbf{A}^k \mathbf{u}^n) \longrightarrow \mathbf{0} \text{ in space } \mathbf{H}^{-1}_{\mathrm{loc}} (\mathbf{R}^d)^r$$

then for $\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) := \xi_k \mathbf{A}^k(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) ar{\boldsymbol{\mu}} = \mathbf{0}$$
 .

Thus, the support of H-measure μ is contained in the set $\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times S^{d-1} : \det \mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) = 0\}$ of points where \mathbf{P} is a singular matrix.

$$\partial_k(\mathbf{A}^k \mathsf{u}) + \mathbf{B}\mathsf{u} = \mathsf{f} \ , \ \mathbf{A}^k \in \mathrm{C}_b(\mathbf{R}^d; \mathrm{M}_{r imes r})$$
 Hermitian

Assume:

$$u^n \xrightarrow{L^2} 0$$
, and defines μ
 $f^n \xrightarrow{H^{-1}_{loc}} 0$.

Theorem. (localisation principle) If uⁿ satisfies:

$$\partial_k \left(\mathbf{A}^k \mathbf{u}^n \right) \longrightarrow \mathbf{0} \text{ in space } \mathbf{H}^{-1}_{\mathrm{loc}} \left(\mathbf{R}^d \right)^r$$

then for $\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) := \xi_k \mathbf{A}^k(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) ar{m{\mu}} = \mathbf{0}$$
 .

Thus, the support of H-measure μ is contained in the set $\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times S^{d-1} : \det \mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) = 0\}$ of points where \mathbf{P} is a singular matrix.

The localisation principle is behind the applications to the small-amplitude homogenisation, which can be used in optimal design.

$$\partial_k(\mathbf{A}^k \mathsf{u}) + \mathbf{B}\mathsf{u} = \mathsf{f} \ , \ \mathbf{A}^k \in \mathrm{C}_b(\mathbf{R}^d; \mathrm{M}_{r imes r})$$
 Hermitian

Assume:

$$u^n \xrightarrow{L^2} 0$$
, and defines μ
 $f^n \xrightarrow{H^{-1}_{loc}} 0$.

Theorem. (localisation principle) If uⁿ satisfies:

$$\partial_k \left(\mathbf{A}^k \mathbf{u}^n \right) \longrightarrow \mathbf{0} \text{ in space } \mathbf{H}^{-1}_{\mathrm{loc}} \left(\mathbf{R}^d \right)^r$$

then for $\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) := \xi_k \mathbf{A}^k(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) ar{\boldsymbol{\mu}} = \mathbf{0}$$
 .

Thus, the support of H-measure μ is contained in the set $\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times S^{d-1} : \det \mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) = 0\}$ of points where \mathbf{P} is a singular matrix.

The localisation principle is behind the applications to the small-amplitude homogenisation, which can be used in optimal design.

It is a generalisation of compactness by compensation to variable coefficients.

Anisotropic Sobolev spaces ($s\in {\bf R}; \ k_p(\tau,{\boldsymbol\xi}):=(1+\sigma^4(\tau,{\boldsymbol\xi}))^{1/4})$)

$$\mathrm{H}^{\frac{s}{2},s}(\mathbf{R}^{1+d}) := \left\{ u \in \mathcal{S}' : k_p^s \hat{u} \in \mathrm{L}^2(\mathbf{R}^{1+d}) \right\} \,.$$

Anisotropic Sobolev spaces ($s\in {\bf R}; \ k_p(\tau,{\boldsymbol\xi}):=(1+\sigma^4(\tau,{\boldsymbol\xi}))^{1/4})$)

$$\mathrm{H}^{\frac{s}{2},s}(\mathbf{R}^{1+d}) := \left\{ u \in \mathcal{S}' : k_p^s \hat{u} \in \mathrm{L}^2(\mathbf{R}^{1+d}) \right\} \,.$$

Theorem. (localisation principle) Let $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^{1+d}; \mathbf{C}^r)$, uniformly compactly supported in t, satisfy $(s \in \mathbf{N})$

$$\sqrt{\partial_t}^s (\mathbf{u}_n \cdot \mathbf{b}) + \sum_{|\boldsymbol{\alpha}| = s} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}} (\mathbf{u}_n \cdot \mathbf{a}_{\boldsymbol{\alpha}}) \longrightarrow 0 \quad \text{in} \quad \mathbf{H}_{\mathrm{loc}}^{-\frac{s}{2}, -s} (\mathbf{R}^{1+d}) \;,$$

where $\mathsf{b}, \mathsf{a}_{oldsymbol{lpha}} \in \mathrm{C}_b(\mathbf{R}^{1+d}; \mathbf{C}^r)$,

Anisotropic Sobolev spaces ($s\in {\bf R}; \ k_p(\tau,{\boldsymbol\xi}):=(1+\sigma^4(\tau,{\boldsymbol\xi}))^{1/4})$)

$$\mathrm{H}^{\frac{s}{2},s}(\mathbf{R}^{1+d}) := \left\{ u \in \mathcal{S}' : k_p^s \hat{u} \in \mathrm{L}^2(\mathbf{R}^{1+d}) \right\} \,.$$

Theorem. (localisation principle) Let $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^{1+d}; \mathbf{C}^r)$, uniformly compactly supported in t, satisfy $(s \in \mathbf{N})$

$$\sqrt{\partial_t}^s (\mathbf{u}_n \cdot \mathbf{b}) + \sum_{|\boldsymbol{\alpha}| = s} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}} (\mathbf{u}_n \cdot \mathbf{a}_{\boldsymbol{\alpha}}) \longrightarrow 0 \quad \text{in} \quad \mathbf{H}_{\mathrm{loc}}^{-\frac{s}{2}, -s} (\mathbf{R}^{1+d}) \;,$$

where $b, a_{\alpha} \in C_b(\mathbf{R}^{1+d}; \mathbf{C}^r)$, while $\sqrt{\partial}_t$ is a pseudodifferential operator with polyhomogeneous symbol $\sqrt{2\pi i \tau}$, i.e.

$$\sqrt{\partial}_t u = \overline{\mathcal{F}}\left(\sqrt{2\pi i\tau}\,\hat{u}(\tau)\right).$$

Anisotropic Sobolev spaces ($s\in {\bf R}; \ k_p(\tau,{\boldsymbol\xi}):=(1+\sigma^4(\tau,{\boldsymbol\xi}))^{1/4})$)

$$\mathrm{H}^{\frac{s}{2},s}(\mathbf{R}^{1+d}) := \left\{ u \in \mathcal{S}' : k_p^s \hat{u} \in \mathrm{L}^2(\mathbf{R}^{1+d}) \right\} \,.$$

Theorem. (localisation principle) Let $u_n \longrightarrow 0$ in $L^2(\mathbf{R}^{1+d}; \mathbf{C}^r)$, uniformly compactly supported in t, satisfy $(s \in \mathbf{N})$

$$\sqrt{\partial_t}^s(\mathbf{u}_n\cdot\mathbf{b}) + \sum_{|\boldsymbol{\alpha}|=s} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}}(\mathbf{u}_n\cdot\mathbf{a}_{\boldsymbol{\alpha}}) \longrightarrow 0 \quad \text{in} \quad \mathbf{H}_{\mathrm{loc}}^{-\frac{s}{2},-s}(\mathbf{R}^{1+d}) \;,$$

where $b, a_{\alpha} \in C_b(\mathbf{R}^{1+d}; \mathbf{C}^r)$, while $\sqrt{\partial}_t$ is a pseudodifferential operator with polyhomogeneous symbol $\sqrt{2\pi i \tau}$, i.e.

$$\sqrt{\partial}_t u = \overline{\mathcal{F}}\left(\sqrt{2\pi i\tau}\,\hat{u}(\tau)\right).$$

For parabolic H-measure μ associated to sequence (u_n) one has

$$\mu\left(\left(\sqrt{2\pi i\tau}\right)^{s}\overline{\mathbf{b}}+\sum_{|\boldsymbol{\alpha}|=s}(2\pi i\boldsymbol{\xi})^{\boldsymbol{\alpha}}\,\overline{\mathbf{a}}_{\boldsymbol{\alpha}}\right)=\mathbf{0}.$$

How to use such a relation? — the heat equation

$$\begin{cases} \partial_t u_n - \operatorname{div} \left(\mathbf{A} \nabla u_n \right) = \operatorname{div} \mathsf{f}_n \\ u_n(0) = \gamma_n \; , \end{cases}$$

$$f_n \longrightarrow 0$$
 in $L^2_{loc}(\mathbf{R}^{1+d}; \mathbf{R}^d)$, $\gamma_n \longrightarrow 0$ in $L^2(\mathbf{R}^d)$

continuous, bounded and positive definite: $\mathbf{A}(t, \mathbf{x}) \mathbf{v} \cdot \mathbf{v} \ge \alpha \mathbf{v} \cdot \mathbf{v}$

How to use such a relation? — the heat equation

$$\begin{cases} \partial_t u_n - \operatorname{div}\left(\mathbf{A}\nabla u_n\right) = \operatorname{div}\mathsf{f}_n\\ u_n(0) = \gamma_n \;, \end{cases}$$

$$f_n \longrightarrow 0$$
 in $L^2_{loc}(\mathbf{R}^{1+d}; \mathbf{R}^d)$, $\gamma_n \longrightarrow 0$ in $L^2(\mathbf{R}^d)$

continuous, bounded and positive definite: $\mathbf{A}(t, \mathbf{x}) \mathbf{v} \cdot \mathbf{v} \ge \alpha \mathbf{v} \cdot \mathbf{v}$

Localise in time: take θu_n , for $\theta \in C_c^1(\mathbf{R}^+)$, ... Now we can apply the localisation principle (we still denote the localised

solutions by u_n).

How to use such a relation? — the heat equation

$$\begin{cases} \partial_t u_n - \operatorname{div}\left(\mathbf{A}\nabla u_n\right) = \operatorname{div}\mathsf{f}_n\\ u_n(0) = \gamma_n \;, \end{cases}$$

$$f_n \longrightarrow 0$$
 in $L^2_{loc}(\mathbf{R}^{1+d}; \mathbf{R}^d)$, $\gamma_n \longrightarrow 0$ in $L^2(\mathbf{R}^d)$

continuous, bounded and positive definite: $\mathbf{A}(t, \mathbf{x}) \mathbf{v} \cdot \mathbf{v} \ge \alpha \mathbf{v} \cdot \mathbf{v}$

Localise in time: take θu_n , for $\theta \in C_c^1(\mathbf{R}^+)$, ...

Now we can apply the localisation principle (we still denote the localised solutions by u_n).

Furthermore,
$$\sqrt{\partial_t} \left(u_n \right) := \left(\sqrt{2\pi i \tau} \, \widehat{u_n} \right)^{\vee} \longrightarrow 0$$
 in $\mathrm{L}^2(\mathbf{R}^{1+d})$.

The heat equation (cont.)

Take

$$\tilde{\mathsf{v}}_n = (v_n^0, \mathsf{v}_n, \mathsf{f}_n) := (\sqrt{\partial_t} u_n, \nabla u_n, \mathsf{f}_n) \longrightarrow \mathbf{0}$$

in $L^2({\bf R}^{1+d};{\bf R}^{1+2d}),$ which (on a subsequence) defines H-measure

$$ilde{\mu} = egin{bmatrix} \mu_0 & \mu_{01} & \mu_{02} \ \mu_{10} & \mu & \mu_{12} \ \mu_{20} & \mu_{21} & \mu_f \end{bmatrix}$$

The heat equation (cont.)

Take

$$\tilde{\mathsf{v}}_n = (v_n^0, \mathsf{v}_n, \mathsf{f}_n) := (\sqrt{\partial_t} u_n, \nabla u_n, \mathsf{f}_n) \longrightarrow \mathsf{0}$$

in $L^2({\bf R}^{1+d};{\bf R}^{1+2d}),$ which (on a subsequence) defines H-measure

$$ilde{m{\mu}} = egin{bmatrix} \mu_0 & m{\mu}_{01} & m{\mu}_{02} \ m{\mu}_{10} & m{\mu} & m{\mu}_{12} \ m{\mu}_{20} & m{\mu}_{21} & m{\mu}_f \end{bmatrix}$$

The localisation principle gives us:

$$\mu_0 \sqrt{2\pi i \tau} - 2\pi i \boldsymbol{\mu}_{01} \cdot \mathbf{A}^\top \boldsymbol{\xi} - 2\pi i \boldsymbol{\mu}_{02} \cdot \boldsymbol{\xi} = 0$$

$$\boldsymbol{\mu}_{10} \sqrt{2\pi i \tau} - 2\pi i \boldsymbol{\mu} \mathbf{A}^\top \boldsymbol{\xi} - 2\pi i \boldsymbol{\mu}_{12} \boldsymbol{\xi} = 0$$

$$\boldsymbol{\mu}_{20} \sqrt{2\pi i \tau} - 2\pi i \boldsymbol{\mu}_{21} \mathbf{A}^\top \boldsymbol{\xi} - 2\pi i \boldsymbol{\mu}_f \boldsymbol{\xi} = 0.$$

The heat equation (cont.)

Take

$$\tilde{\mathsf{v}}_n = (v_n^0, \mathsf{v}_n, \mathsf{f}_n) := (\sqrt{\partial_t} u_n, \nabla u_n, \mathsf{f}_n) \longrightarrow \mathsf{0}$$

in $\mathrm{L}^2(\mathbf{R}^{1+d};\mathbf{R}^{1+2d})$, which (on a subsequence) defines H-measure

$$ilde{m{\mu}} = egin{bmatrix} \mu_0 & m{\mu}_{01} & m{\mu}_{02} \ m{\mu}_{10} & m{\mu} & m{\mu}_{12} \ m{\mu}_{20} & m{\mu}_{21} & m{\mu}_f \end{bmatrix}$$

The localisation principle gives us:

$$\mu_0 \sqrt{2\pi i \tau} - 2\pi i \boldsymbol{\mu}_{01} \cdot \mathbf{A}^\top \boldsymbol{\xi} - 2\pi i \boldsymbol{\mu}_{02} \cdot \boldsymbol{\xi} = 0$$
$$\boldsymbol{\mu}_{10} \sqrt{2\pi i \tau} - 2\pi i \boldsymbol{\mu} \mathbf{A}^\top \boldsymbol{\xi} - 2\pi i \boldsymbol{\mu}_{12} \, \boldsymbol{\xi} = 0$$
$$\boldsymbol{\mu}_{20} \sqrt{2\pi i \tau} - 2\pi i \boldsymbol{\mu}_{21} \, \mathbf{A}^\top \boldsymbol{\xi} - 2\pi i \boldsymbol{\mu}_f \boldsymbol{\xi} = 0.$$

After some calculation (linear algebra) ...

$$\operatorname{tr} \boldsymbol{\mu} = \frac{(2\pi\boldsymbol{\xi})^2}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi})^2} \boldsymbol{\mu}_f \boldsymbol{\xi}\cdot\boldsymbol{\xi},$$
$$\boldsymbol{\mu} = \frac{(2\pi)^2}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi})^2} (\boldsymbol{\mu}_f \boldsymbol{\xi}\cdot\boldsymbol{\xi})\boldsymbol{\xi}\otimes\boldsymbol{\xi}.$$

$$\operatorname{tr} \boldsymbol{\mu} = \frac{(2\pi\boldsymbol{\xi})^2}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi} \cdot \boldsymbol{\xi})^2} \boldsymbol{\mu}_f \boldsymbol{\xi} \cdot \boldsymbol{\xi},$$
$$\boldsymbol{\mu} = \frac{(2\pi)^2}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi} \cdot \boldsymbol{\xi})^2} (\boldsymbol{\mu}_f \boldsymbol{\xi} \cdot \boldsymbol{\xi}) \boldsymbol{\xi} \otimes \boldsymbol{\xi}.$$

$$\mu_0 = \frac{|2\pi\tau|}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi})^2}\boldsymbol{\mu}_f\boldsymbol{\xi}\cdot\boldsymbol{\xi}$$

$$\operatorname{tr} \boldsymbol{\mu} = \frac{(2\pi\boldsymbol{\xi})^2}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi})^2} \boldsymbol{\mu}_f \boldsymbol{\xi}\cdot\boldsymbol{\xi},$$
$$\boldsymbol{\mu} = \frac{(2\pi)^2}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi})^2} (\boldsymbol{\mu}_f \boldsymbol{\xi}\cdot\boldsymbol{\xi})\boldsymbol{\xi}\otimes\boldsymbol{\xi}.$$

$$\mu_0 = \frac{|2\pi\tau|}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi})^2}\boldsymbol{\mu}_f\boldsymbol{\xi}\cdot\boldsymbol{\xi}$$

Thus, from the H-measures for the right hand side term f one can calculate the H-measure of the solution.

$$\operatorname{tr} \boldsymbol{\mu} = \frac{(2\pi\boldsymbol{\xi})^2}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi})^2} \boldsymbol{\mu}_f \boldsymbol{\xi}\cdot\boldsymbol{\xi},$$
$$\boldsymbol{\mu} = \frac{(2\pi)^2}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi})^2} (\boldsymbol{\mu}_f \boldsymbol{\xi}\cdot\boldsymbol{\xi})\boldsymbol{\xi}\otimes\boldsymbol{\xi}.$$

$$\mu_0 = \frac{|2\pi\tau|}{\tau^2 + (2\pi\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi})^2}\boldsymbol{\mu}_f\boldsymbol{\xi}\cdot\boldsymbol{\xi}.$$

Thus, from the H-measures for the right hand side term f one can calculate the H-measure of the solution.

However, the oscillation in initial data dies out (the equation is hypoelliptic). Only the right hand side affects the H-measure of solutions.

The situation is different for the Schrödinger equation and for the vibrating plate equation.

Introduction to H-measures

What are H-measures? First examples

Localisation principle

Symmetric systems — compactness by compensation again Localisation principle for parabolic H-measures

Applications in homogenisation

Small-amplitude homogenisation of heat equation Periodic small-amplitude homogenisation Homogenisation of a model based on the Stokes equation Model based on time-dependent Stokes

H-distributions

Existence Localisation principle Other variants

One-scale H-measures

Semiclassical measures One-scale H-measures Localisation principle

Small amplitude homogenisation: setting of the problem

A sequence of parabolic problems

(*)
$$\begin{cases} \partial_t u_n - \operatorname{div} \left(\mathbf{A}^n \nabla u_n \right) = f \\ u_n(0, \cdot) = u_0 . \end{cases}$$

where \mathbf{A}^n is a perturbation of $\mathbf{A}_0 \in \mathrm{C}(Q; \mathrm{M}_{d \times d})$, which is bounded from below; for small γ function \mathbf{A}^n is analytic in γ :

$$\mathbf{A}_{\gamma}^{n}(t,\mathbf{x}) = \mathbf{A}_{0} + \gamma \mathbf{B}^{n}(t,\mathbf{x}) + \gamma^{2} \mathbf{C}^{n}(t,\mathbf{x}) + o(\gamma^{2}) ,$$

where $\mathbf{B}^n, \mathbf{C}^n \xrightarrow{*} \mathbf{0}$ in $\mathcal{L}^{\infty}(Q; \mathcal{M}_{d \times d})$).

Small amplitude homogenisation: setting of the problem

A sequence of parabolic problems

(*)
$$\begin{cases} \partial_t u_n - \operatorname{div} \left(\mathbf{A}^n \nabla u_n \right) = f \\ u_n(0, \cdot) = u_0 . \end{cases}$$

where \mathbf{A}^n is a perturbation of $\mathbf{A}_0 \in \mathrm{C}(Q; \mathrm{M}_{d \times d})$, which is bounded from below; for small γ function \mathbf{A}^n is analytic in γ :

$$\mathbf{A}_{\gamma}^{n}(t,\mathbf{x}) = \mathbf{A}_{0} + \gamma \mathbf{B}^{n}(t,\mathbf{x}) + \gamma^{2} \mathbf{C}^{n}(t,\mathbf{x}) + o(\gamma^{2}) ,$$

where $\mathbf{B}^n, \mathbf{C}^n \xrightarrow{*} \mathbf{0}$ in $L^{\infty}(Q; M_{d \times d})$). Then (after passing to a subsequence if needed)

$$\mathbf{A}_{\gamma}^{n} \xrightarrow{H} \mathbf{A}_{\gamma}^{\infty} = \mathbf{A}_{0} + \gamma \mathbf{B}_{0} + \gamma^{2} \mathbf{C}_{0} + o(\gamma^{2}) ;$$

the limit being measurable in t, \mathbf{x} , and analytic in γ .

Theorem. The effective conductivity matrix $\mathbf{A}^{\infty}_{\gamma}$ admits the expansion

$$\mathbf{A}_{\gamma}^{\infty}(t,\mathbf{x}) = \mathbf{A}_{0}(t,\mathbf{x}) + \gamma^{2} \mathbf{C}_{0}(t,\mathbf{x}) + o(\gamma^{2}) .$$

Theorem. The effective conductivity matrix $\mathbf{A}^{\infty}_{\gamma}$ admits the expansion

$$\mathbf{A}_{\gamma}^{\infty}(t,\mathbf{x}) = \mathbf{A}_{0}(t,\mathbf{x}) + \gamma^{2} \mathbf{C}_{0}(t,\mathbf{x}) + o(\gamma^{2}) .$$

Indeed, take $u \in L^2([0,T]; H^1_0(\Omega)) \cap H^1(\langle 0,T \rangle; H^{-1}(\Omega))$, and define $f_{\gamma} := \partial_t u - \operatorname{div}(\mathbf{A}^{\infty}_{\gamma} \nabla u)$, and $u_0 := u(0, \cdot) \in L^2(\Omega)$.

Theorem. The effective conductivity matrix $\mathbf{A}^{\infty}_{\gamma}$ admits the expansion

$$\mathbf{A}_{\gamma}^{\infty}(t,\mathbf{x}) = \mathbf{A}_{0}(t,\mathbf{x}) + \gamma^{2} \mathbf{C}_{0}(t,\mathbf{x}) + o(\gamma^{2}) .$$

Indeed, take $u \in L^2([0,T]; H^1_0(\Omega)) \cap H^1(\langle 0,T \rangle; H^{-1}(\Omega))$, and define $f_{\gamma} := \partial_t u - \operatorname{div}(\mathbf{A}^{\infty}_{\gamma} \nabla u)$, and $u_0 := u(0, \cdot) \in L^2(\Omega)$. Next, solve (*) with $\mathbf{A}^{\alpha}_{\gamma}$, f_{γ} and u_0 , the solution u^{α}_{γ} .

Of course, f_{γ} and u_{γ}^{n} analytically depend on γ .

Theorem. The effective conductivity matrix $\mathbf{A}^{\infty}_{\gamma}$ admits the expansion

$$\mathbf{A}_{\gamma}^{\infty}(t,\mathbf{x}) = \mathbf{A}_{0}(t,\mathbf{x}) + \gamma^{2} \mathbf{C}_{0}(t,\mathbf{x}) + o(\gamma^{2}) .$$

Indeed, take $u \in L^2([0,T]; H^1_0(\Omega)) \cap H^1(\langle 0,T \rangle; H^{-1}(\Omega))$, and define $f_{\gamma} := \partial_t u - \operatorname{div}(\mathbf{A}^{\infty}_{\gamma} \nabla u)$, and $u_0 := u(0, \cdot) \in L^2(\Omega)$. Next, solve (*) with \mathbf{A}^n_{γ} , f_{γ} and u_0 , the solution u^n_{γ} . Of course, f_{γ} and u^n_{γ} analytically depend on γ .

Because of H-convergence, we have the weak convergences in $L^2(Q)$:

(†)
$$\begin{aligned} \mathsf{E}_{\gamma}^{n} &\coloneqq \nabla u_{\gamma}^{n} \longrightarrow \nabla u \\ \mathsf{D}_{\gamma}^{n} &\coloneqq \mathbf{A}_{\gamma}^{n} \mathsf{E}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u \end{aligned}$$
No first-order term on the limit

Theorem. The effective conductivity matrix $\mathbf{A}^{\infty}_{\gamma}$ admits the expansion

$$\mathbf{A}_{\gamma}^{\infty}(t,\mathbf{x}) = \mathbf{A}_{0}(t,\mathbf{x}) + \gamma^{2} \mathbf{C}_{0}(t,\mathbf{x}) + o(\gamma^{2}) .$$

Indeed, take $u \in L^2([0,T]; H^1_0(\Omega)) \cap H^1(\langle 0,T \rangle; H^{-1}(\Omega))$, and define $f_{\gamma} := \partial_t u - \operatorname{div}(\mathbf{A}^{\infty}_{\gamma} \nabla u)$, and $u_0 := u(0, \cdot) \in L^2(\Omega)$. Next, solve (*) with \mathbf{A}^n_{γ} , f_{γ} and u_0 , the solution u^n_{γ} . Of course, f_{γ} and u^n_{γ} analytically depend on γ .

Because of H-convergence, we have the weak convergences in $L^2(Q)$:

(†)
$$\begin{aligned} \mathsf{E}_{\gamma}^{n} &\coloneqq \nabla u_{\gamma}^{n} \longrightarrow \nabla u \\ \mathsf{D}_{\gamma}^{n} &\coloneqq \mathbf{A}_{\gamma}^{n} \mathsf{E}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u \end{aligned}$$

Expansions in Taylor serieses (similarly for f_{γ} and u_{γ}^{n}):

$$\begin{split} \mathsf{E}_{\gamma}^n &= \mathsf{E}_0^n + \gamma \mathsf{E}_1^n + \gamma^2 \mathsf{E}_2^n + o(\gamma^2) \\ \mathsf{D}_{\gamma}^n &= \mathsf{D}_0^n + \gamma \mathsf{D}_1^n + \gamma^2 \mathsf{D}_2^n + o(\gamma^2) \end{split}$$

Inserting (†) and equating the terms with equal powers of γ :

$$\begin{split} \mathsf{E}_0^n &= \nabla u \;, \qquad \mathsf{D}_0^n = \mathbf{A}_0 \nabla u \\ \mathsf{D}_1^n &= \mathbf{A}_0 \mathsf{E}_1^n + \mathbf{B}^n \nabla u \longrightarrow \mathsf{0} \quad \text{ in } \operatorname{L}^2(Q) \;. \end{split}$$

Inserting (†) and equating the terms with equal powers of γ :

$$\begin{split} \mathbf{E}_0^n &= \nabla u \;, \qquad \mathbf{D}_0^n = \mathbf{A}_0 \nabla u \\ \mathbf{D}_1^n &= \mathbf{A}_0 \mathbf{E}_1^n + \mathbf{B}^n \nabla u \longrightarrow \mathbf{0} \quad \text{ in } \mathbf{L}^2(Q) \;. \end{split}$$

Also, D_1^n converges to $\mathbf{B}_0 \nabla u$ (the term in expansion with γ^1)

$$\mathsf{D}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u = \mathbf{A}_{0} \nabla u + \gamma \mathbf{B}_{0} \nabla u + \gamma^{2} \mathbf{C}_{0} \nabla u + o(\gamma^{2}) \; .$$

Inserting (†) and equating the terms with equal powers of γ :

$$\begin{split} \mathbf{E}_0^n &= \nabla u \ , \qquad \mathbf{D}_0^n = \mathbf{A}_0 \nabla u \\ \mathbf{D}_1^n &= \mathbf{A}_0 \mathbf{E}_1^n + \mathbf{B}^n \nabla u \longrightarrow \mathbf{0} \quad \text{ in } \mathbf{L}^2(Q) \ . \end{split}$$

Also, D_1^n converges to $\mathbf{B}_0 \nabla u$ (the term in expansion with γ^1)

$$\mathsf{D}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u = \mathbf{A}_{0} \nabla u + \gamma \mathbf{B}_{0} \nabla u + \gamma^{2} \mathbf{C}_{0} \nabla u + o(\gamma^{2}) .$$

Thus $\mathbf{B}_0 \nabla u = \mathbf{0}$, and as $u \in \mathrm{L}^2([0,T];\mathrm{H}_0^1(\Omega)) \cap \mathrm{H}^1(\langle 0,T \rangle;\mathrm{H}^{-1}(\Omega))$ was arbitrary, we conclude that $\mathbf{B}_0 = \mathbf{0}$.

Inserting (†) and equating the terms with equal powers of γ :

$$\begin{split} \mathbf{E}_0^n &= \nabla u \ , \qquad \mathbf{D}_0^n = \mathbf{A}_0 \nabla u \\ \mathbf{D}_1^n &= \mathbf{A}_0 \mathbf{E}_1^n + \mathbf{B}^n \nabla u \longrightarrow \mathbf{0} \quad \text{ in } \mathbf{L}^2(Q) \ . \end{split}$$

Also, D_1^n converges to $\mathbf{B}_0 \nabla u$ (the term in expansion with γ^1)

$$\mathsf{D}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u = \mathbf{A}_{0} \nabla u + \gamma \mathbf{B}_{0} \nabla u + \gamma^{2} \mathbf{C}_{0} \nabla u + o(\gamma^{2}) .$$

Thus $\mathbf{B}_0 \nabla u = \mathbf{0}$, and as $u \in L^2([0,T]; \mathrm{H}_0^1(\Omega)) \cap \mathrm{H}^1(\langle 0,T \rangle; \mathrm{H}^{-1}(\Omega))$ was arbitrary, we conclude that $\mathbf{B}_0 = \mathbf{0}$. For the quadratic term we have:

$$\mathsf{D}_2^n = \mathbf{A}_0 \mathsf{E}_2^n + \mathbf{B}^n \mathsf{E}_1^n + \mathbf{C}^n \nabla u \longrightarrow \lim \mathbf{B}^n \mathsf{E}_1^n = \mathbf{C}_0 \nabla u ,$$

and this is the limit we still have to compute.

In the periodic case the explicit formulae for the homogenisation limit are known [BLP].

Together with Fourier analysis:

leading terms in expansion for the small amplitude homogenisation limit.

In the periodic case the explicit formulae for the homogenisation limit are known [BLP].

Together with Fourier analysis:

leading terms in expansion for the small amplitude homogenisation limit.

Periodic functions—functions defined on $T:=S^1={\bf R}/{\bf Z},$ $Y:={\bf R}^d/{\bf Z}^d$ and $Z:={\bf R}^{1+d}/{\bf Z}^{1+d}$

We implicitly assume projections of $\mathbf{x} \mapsto \mathbf{y} \in Y$, etc.

In the periodic case the explicit formulae for the homogenisation limit are known [BLP].

Together with Fourier analysis:

leading terms in expansion for the small amplitude homogenisation limit.

Periodic functions—functions defined on $T := S^1 = \mathbf{R}/\mathbf{Z}$, $Y := \mathbf{R}^d/\mathbf{Z}^d$ and $Z := \mathbf{R}^{1+d}/\mathbf{Z}^{1+d}$

We implicitly assume projections of $\mathbf{x} \mapsto \mathbf{y} \in Y$, etc. For given $\rho \in \langle 0, \infty \rangle$ we define the sequence \mathbf{A}_n by

$$\mathbf{A}_n(t,\mathbf{x}) = \mathbf{A}(n^{\rho}t, n\mathbf{x}) \,.$$

In the periodic case the explicit formulae for the homogenisation limit are known [BLP].

Together with Fourier analysis:

leading terms in expansion for the small amplitude homogenisation limit.

Periodic functions—functions defined on $T := S^1 = \mathbf{R}/\mathbf{Z}$, $Y := \mathbf{R}^d/\mathbf{Z}^d$ and $Z := \mathbf{R}^{1+d}/\mathbf{Z}^{1+d}$ We implicitly assume projections of $\mathbf{x} \mapsto \mathbf{y} \in Y$, etc. For given $\rho \in \langle 0, \infty \rangle$ we define the sequence \mathbf{A}_n by

$$\mathbf{A}_n(t,\mathbf{x}) = \mathbf{A}(n^{\rho}t, n\mathbf{x}) \,.$$

Then \mathbf{A}_n *H*-converges to a constant \mathbf{A}_∞ defined by

$$\mathbf{A}_{\infty}\mathbf{h} = \int_{Z} \mathbf{A}(\tau, \mathbf{y}) (\mathbf{h} + \nabla w(\tau, \mathbf{y})) \, d\tau d\mathbf{y} \, .$$

For given h, w is a solution of some BVP, depending on ρ .

Three different cases depending on ρ

 $\rho \in \langle 0,2 \rangle \!\!: w(\tau,\cdot)$ is the unique solution of

$$\begin{split} -\operatorname{div}\left(\mathbf{A}(\tau,\cdot)(\mathbf{h}+\nabla w(\tau,\cdot))\right) &= 0\\ w(\tau,\cdot) \in \operatorname{H}^{1}(Y)\,,\; \int_{Y} w(\tau,\mathbf{y})\,d\mathbf{y} = 0\,, \end{split}$$

Three different cases depending on ρ

 $\rho \in \langle 0,2 \rangle \!\!: w(\tau,\cdot)$ is the unique solution of

$$\begin{split} -\operatorname{div}\left(\mathbf{A}(\tau,\cdot)(\mathbf{h}+\nabla w(\tau,\cdot))\right) &= 0\\ w(\tau,\cdot) \in \mathrm{H}^{1}(Y)\,,\; \int_{Y} w(\tau,\mathbf{y})\,d\mathbf{y} = 0\,, \end{split}$$

 $\rho = 2$: w is defined by

$$\begin{split} &\partial_t w - \operatorname{div} \left(\mathbf{A}(\mathbf{h} + \nabla w) \right) = 0 \\ &w \in \mathbf{L}^2(T; \mathbf{H}^1(Y)) \,, \; \partial_t w \in \mathbf{L}^2(T; \mathbf{H}^{-1}(Y)) \,, \; \int_Z w \, d\tau d\mathbf{y} = 0 \,. \end{split}$$

Three different cases depending on ρ

 $\rho \in \langle 0,2 \rangle \!\!: w(\tau,\cdot)$ is the unique solution of

$$\begin{split} -\operatorname{div}\left(\mathbf{A}(\tau,\cdot)(\mathbf{h}+\nabla w(\tau,\cdot))\right) &= 0\\ w(\tau,\cdot) \in \mathrm{H}^{1}(Y)\,,\; \int_{Y} w(\tau,\mathbf{y})\,d\mathbf{y} = 0\,, \end{split}$$

 $\rho = 2$: w is defined by

$$\begin{split} \partial_t w &-\operatorname{div}\left(\mathbf{A}(\mathbf{h}+\nabla w)\right) = 0\\ w &\in \mathbf{L}^2(T; \mathbf{H}^1(Y)) \,, \; \partial_t w \in \mathbf{L}^2(T; \mathbf{H}^{-1}(Y)) \,, \; \int_Z w \, d\tau d\mathbf{y} = 0 \,. \end{split}$$

 $\rho\in\langle 2,\infty\rangle :$ define $\widetilde{\mathbf{A}}(y)=\int_0^1\mathbf{A}(\tau,\mathbf{y})\,d\tau$ and w as the solution of

$$\begin{split} -\operatorname{div}\left(\widetilde{\mathbf{A}}(\mathbf{h}+\nabla w)\right) &= 0\\ w \in \operatorname{H}^{1}(Y)\,, \ \int_{Y} w \, d\mathbf{y} = 0 \end{split}$$

A sequence of small perturbations of a constant coercive matrix $A_0 \in M_{d \times d}$:

$$\mathbf{A}_{\gamma}^{n}(t,\mathbf{x}) = \mathbf{A}_{0} + \gamma \mathbf{B}^{n}(t,\mathbf{x}),$$

where $\mathbf{B}^{n}(t, \mathbf{x}) = \mathbf{B}(n^{\rho}t, n\mathbf{x})$, \mathbf{B} is Z-periodic L^{∞} matrix function satisfying $\int_{Z} \mathbf{B} d\tau d\mathbf{y} = 0$.

A sequence of small perturbations of a constant coercive matrix $A_0 \in M_{d \times d}$:

$$\mathbf{A}_{\gamma}^{n}(t,\mathbf{x}) = \mathbf{A}_{0} + \gamma \mathbf{B}^{n}(t,\mathbf{x}),$$

where $\mathbf{B}^{n}(t, \mathbf{x}) = \mathbf{B}(n^{\rho}t, n\mathbf{x})$, **B** is Z-periodic L^{∞} matrix function satisfying $\int_{Z} \mathbf{B} d\tau d\mathbf{y} = 0$.

For γ small enough, (eventually passing to a subsequence) we have *H*-convergence to a limit depending analytically on γ :

$$\mathbf{A}_{\gamma}^{n} \xrightarrow{H} \mathbf{A}_{\gamma}^{\infty} = \mathbf{A}_{0} + \gamma \mathbf{B}_{0} + \gamma^{2} \mathbf{C}_{0} + o(\gamma^{2})$$

A sequence of small perturbations of a constant coercive matrix $A_0 \in M_{d \times d}$:

$$\mathbf{A}_{\gamma}^{n}(t,\mathbf{x}) = \mathbf{A}_{0} + \gamma \mathbf{B}^{n}(t,\mathbf{x}),$$

where $\mathbf{B}^{n}(t, \mathbf{x}) = \mathbf{B}(n^{\rho}t, n\mathbf{x})$, **B** is Z-periodic \mathbf{L}^{∞} matrix function satisfying $\int_{Z} \mathbf{B} d\tau d\mathbf{y} = 0$.

For γ small enough, (eventually passing to a subsequence) we have H-convergence to a limit depending analytically on γ :

$$\mathbf{A}_{\gamma}^{n} \xrightarrow{H} \mathbf{A}_{\gamma}^{\infty} = \mathbf{A}_{0} + \gamma \mathbf{B}_{0} + \gamma^{2} \mathbf{C}_{0} + o(\gamma^{2})$$

and a formula for $\mathbf{A}^{\infty}_{\gamma}$:

$$\begin{split} \mathbf{A}_{\gamma}^{\infty} \mathbf{h} &= \int_{Z} (\mathbf{A}_{0} + \gamma \mathbf{B}))(\mathbf{h} + \nabla w_{\gamma}) \, d\tau d\mathbf{y} \\ &= \mathbf{A}_{0} \mathbf{h} + \int_{Z} \mathbf{A}_{0} \nabla w_{\gamma} + \gamma \int_{Z} \mathbf{B} \mathbf{h} + \gamma \int_{Z} \mathbf{B} \nabla w_{\gamma} = \mathbf{A}_{0} \mathbf{h} + \gamma \int_{Z} \mathbf{B} \nabla w_{\gamma} \, . \end{split}$$

In the last equality the second term equals zero by Gauss' theorem, as w_{γ} is a periodic function. Similarly for the third term.

In the last equality the second term equals zero by Gauss' theorem, as w_{γ} is a periodic function. Similarly for the third term.

Since w_{γ} is a solution of some (initial–)boundary value problem, depending on ρ , it also depends analytically on γ :

$$w_{\gamma} = w_0 + \gamma w_1 + o(\gamma) \,.$$

In the last equality the second term equals zero by Gauss' theorem, as w_{γ} is a periodic function. Similarly for the third term.

Since w_{γ} is a solution of some (initial-)boundary value problem, depending on ρ , it also depends analytically on γ :

$$w_{\gamma} = w_0 + \gamma w_1 + o(\gamma) \,.$$

The first order term vanishes, as A_0 is constant.

$$\mathbf{A}_{\gamma}^{\infty}\mathbf{h} = \mathbf{A}_{0}\mathbf{h} + \gamma^{2}\int_{Z}\mathbf{B}\nabla w_{1} + o(\gamma^{2}),$$

so we conclude that $\mathbf{B}_0 = \mathbf{0}$ and $\mathbf{C}_0 \mathbf{h} = \int_Z \mathbf{B} \nabla w_1$.

In the last equality the second term equals zero by Gauss' theorem, as w_{γ} is a periodic function. Similarly for the third term.

Since w_{γ} is a solution of some (initial-)boundary value problem, depending on ρ , it also depends analytically on γ :

$$w_{\gamma} = w_0 + \gamma w_1 + o(\gamma) \,.$$

The first order term vanishes, as A_0 is constant.

$$\mathbf{A}_{\gamma}^{\infty}\mathbf{h} = \mathbf{A}_{0}\mathbf{h} + \gamma^{2}\int_{Z}\mathbf{B}\nabla w_{1} + o(\gamma^{2}),$$

so we conclude that $\mathbf{B}_0 = \mathbf{0}$ and $\mathbf{C}_0 \mathbf{h} = \int_Z \mathbf{B} \nabla w_1$.

From this formula, using the Fourier series, one can calculate the second-term approximation C_0 . Off course, we must treat separately each one of the above three cases for ρ .

Fix $\tau \in [0, 1]$; the BVP with coefficient $A_0 + \gamma B$ instead of A and the above expression for w, we see that w_1 solves

$$(\ddagger) \quad -\mathsf{div}\left(\mathbf{A}_0\nabla w_1(\tau,\cdot)\right) = \mathsf{div}\left(\mathbf{Bh}\right), \ w_1(\tau,\cdot) \in \mathrm{H}^1(Y), \ \int_Y w_1(\tau,\mathbf{y}) \, d\mathbf{y} = 0$$

Fix $\tau \in [0, 1]$; the BVP with coefficient $A_0 + \gamma B$ instead of A and the above expression for w, we see that w_1 solves

$$(\ddagger) \quad -\mathsf{div}\left(\mathbf{A}_0\nabla w_1(\tau,\cdot)\right) = \mathsf{div}\left(\mathbf{B}\mathsf{h}\right), \ w_1(\tau,\cdot) \in \mathrm{H}^1(Y), \ \int_Y w_1(\tau,\mathbf{y}) \, d\mathbf{y} = 0$$

Expanding w_1 in the Fourier series gives us $(J = \mathbf{Z} \times (\mathbf{Z}^d \setminus \{\mathbf{0}\}))$

$$w_1 = \sum_{(l,\mathbf{k})\in J} a_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} ,$$

because of $\int_Y w_1(\tau, \mathbf{y}) d\mathbf{y} = 0.$

Fix $\tau \in [0, 1]$; the BVP with coefficient $A_0 + \gamma B$ instead of A and the above expression for w, we see that w_1 solves

$$(\ddagger) \quad -\mathsf{div}\left(\mathbf{A}_0 \nabla w_1(\tau, \cdot)\right) = \mathsf{div}\left(\mathbf{B}\mathsf{h}\right), \ w_1(\tau, \cdot) \in \mathrm{H}^1(Y), \ \int_Y w_1(\tau, \mathbf{y}) \, d\mathbf{y} = 0$$

Expanding w_1 in the Fourier series gives us $(J = \mathbf{Z} \times (\mathbf{Z}^d \setminus \{\mathbf{0}\}))$

$$w_1 = \sum_{(l,\mathbf{k})\in J} a_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} ,$$

because of $\int_Y w_1(\tau, \mathbf{y}) d\mathbf{y} = 0$. Straightforward calculation gives us

$$\begin{split} \nabla w_1 &= \sum_J 2\pi i \mathsf{k} \, a_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} \,, \\ \mathrm{div} \, \mathbf{A}_0 \nabla w_1 &= \sum_J (2\pi i)^2 \mathbf{A}_0 \mathsf{k} \cdot \mathsf{k} \, a_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} \end{split}$$

The case $\rho \in \langle 0, 2 \rangle$ on the limit (cont.) For B denote $I := \mathbf{Z}^{d+1} \setminus \{\mathbf{0}\}$

 $\mathbf{B} = \sum_{I} \mathbf{B}_{lk} e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} ,$

$$\operatorname{div} \mathbf{B} \mathbf{h} = \sum_{I}^{I} 2\pi i \, \mathbf{B}_{l\mathbf{k}} \mathbf{h} \cdot \mathbf{k} \, e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} \,.$$

For ${f B}$ denote $I:={f Z}^{d+1}\setminus\{{f 0}\}$

$$\begin{split} \mathbf{B} &= \sum_{I} \mathbf{B}_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} \,,\\ \mathrm{div} \, \mathbf{B} \mathbf{h} &= \sum_{I} 2\pi i \, \mathbf{B}_{l\mathbf{k}} \mathbf{h} \cdot \mathbf{k} \, e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} \end{split}$$

٠

(‡) leads to a relation among corresponding Fourier coefficients

$$\begin{aligned} &2\pi i \mathbf{A}_0 \mathbf{k} \cdot \mathbf{k} \, a_{l\mathbf{k}} = -\mathbf{B}_{l\mathbf{k}} \mathbf{h} \cdot \mathbf{k} \,, \quad (l, \mathbf{k}) \in \mathbf{Z}^{d+1} \,, \\ &\text{i.e.} \quad a_{l\mathbf{k}} = \left\{ \begin{array}{cc} & - \frac{\mathbf{B}_{l\mathbf{k}} \mathbf{h} \cdot \mathbf{k}}{2\pi i \mathbf{A}_0 \mathbf{k} \cdot \mathbf{k}} \,, \quad (l, \mathbf{k}) \in J \\ & 0 \,, \quad \text{otherwise} \,. \end{array} \right. \end{aligned}$$

For ${f B}$ denote $I:={f Z}^{d+1}\setminus\{{f 0}\}$

$$\begin{split} \mathbf{B} &= \sum_{I} \mathbf{B}_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} \,,\\ \mathrm{div} \, \mathbf{B} \mathbf{h} &= \sum_{I} 2\pi i \, \mathbf{B}_{l\mathbf{k}} \mathbf{h} \cdot \mathbf{k} \, e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} \end{split}$$

٠

(‡) leads to a relation among corresponding Fourier coefficients

$$\begin{split} & 2\pi i \mathbf{A}_0 \mathbf{k} \cdot \mathbf{k} \, a_{l\mathbf{k}} = -\mathbf{B}_{l\mathbf{k}} \mathbf{h} \cdot \mathbf{k} \,, \quad (l,\mathbf{k}) \in \mathbf{Z}^{d+1} \,, \\ & \text{i.e.} \quad a_{l\mathbf{k}} = \begin{cases} -\frac{\mathbf{B}_{l\mathbf{k}} \mathbf{h} \cdot \mathbf{k}}{2\pi i \mathbf{A}_0 \mathbf{k} \cdot \mathbf{k}} \,, \quad (l,\mathbf{k}) \in J \\ & 0 \,, \quad \text{otherwise} \,. \end{cases} \end{split}$$

Finally, we obtain

$$\begin{split} \mathbf{C}_{0}\mathbf{h} &= \int_{Z} \mathbf{B} \nabla w_{1} \, d\tau d\mathbf{y} \\ &= \int_{Z} \left(\sum_{I} \mathbf{B}_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})} \right) \left(\sum_{J} (2\pi i \mathbf{k}') a_{l'\mathbf{k}'} e^{2\pi i (l'\tau + \mathbf{k}' \cdot \mathbf{y})} \right) d\tau d\mathbf{y} \end{split}$$

Due to orthogonality, for the non-vanishing terms in the above product of two series we have l' = -l and k' = -k. Therefore,

$$\begin{split} \mathbf{C}_{0}\mathbf{h} &= -2\pi i \sum_{J} \mathbf{B}_{l\mathbf{k}} \mathbf{k} a_{-l,-\mathbf{k}} \\ &= -\sum_{J} \mathbf{B}_{l\mathbf{k}} \mathbf{k} \frac{\mathbf{B}_{-l,-\mathbf{k}} \mathbf{h} \cdot \mathbf{k}}{\mathbf{A}_{0} \mathbf{k} \cdot \mathbf{k}} = -\sum_{J} \frac{\mathbf{B}_{l\mathbf{k}} \mathbf{k} \otimes \mathbf{B}_{l\mathbf{k}} \mathbf{k}}{\mathbf{A}_{0} \mathbf{k} \cdot \mathbf{k}} \mathbf{h} \,, \end{split}$$

where the last equality holds since ${\bf B}$ is a real matrix function i.e. $\overline{{\bf B}_{lk}}={\bf B}_{-l,-k}.$

Due to orthogonality, for the non-vanishing terms in the above product of two series we have l' = -l and k' = -k. Therefore,

$$\begin{split} \mathbf{C}_{0}\mathbf{h} &= -2\pi i \sum_{J} \mathbf{B}_{l\mathbf{k}} \mathbf{k} a_{-l,-\mathbf{k}} \\ &= -\sum_{J} \mathbf{B}_{l\mathbf{k}} \mathbf{k} \frac{\mathbf{B}_{-l,-\mathbf{k}} \mathbf{h} \cdot \mathbf{k}}{\mathbf{A}_{0} \mathbf{k} \cdot \mathbf{k}} = -\sum_{J} \frac{\mathbf{B}_{l\mathbf{k}} \mathbf{k} \otimes \mathbf{B}_{l\mathbf{k}} \mathbf{k}}{\mathbf{A}_{0} \mathbf{k} \cdot \mathbf{k}} \mathbf{h} \,, \end{split}$$

where the last equality holds since ${\bf B}$ is a real matrix function i.e. $\overline{{\bf B}_{lk}}={\bf B}_{-l,-k}.$ We conclude

$$\mathbf{C}_0 = -\sum_J \frac{\mathbf{B}_{lk} \mathbf{k} \otimes \mathbf{B}_{lk} \mathbf{k}}{\mathbf{A}_0 \mathbf{k} \cdot \mathbf{k}}$$

The case $\rho = 2$ on the limit

The calculation is similar to the first case. The only difference appears in the equation for $w_1 = \sum_{(l,\mathbf{k})\in I} a_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k}\cdot\mathbf{y})}$:

$$\partial_{\tau} w_1 - \operatorname{div} \left(\mathbf{A}_0 \nabla w_1(\tau, \cdot) \right) = \operatorname{div} \left(\mathbf{B} \mathbf{h} \right),$$

The case $\rho = 2$ on the limit

The calculation is similar to the first case. The only difference appears in the equation for $w_1 = \sum_{(l,\mathbf{k})\in I} a_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k} \cdot \mathbf{y})}$:

$$\partial_{\tau} w_1 - \operatorname{div} \left(\mathbf{A}_0 \nabla w_1(\tau, \cdot) \right) = \operatorname{div} \left(\mathbf{B} \mathbf{h} \right),$$

implying the following relation for the Fourier coefficients

$$(l - 2\pi i \mathbf{A}_0 \mathsf{k} \cdot \mathsf{k} a_{l\mathsf{k}}) = \mathbf{B}_{l\mathsf{k}} \mathsf{h} \cdot \mathsf{k} \,, \quad (l, \mathsf{k}) \in I \,,$$

The case $\rho = 2$ on the limit

The calculation is similar to the first case. The only difference appears in the equation for $w_1 = \sum_{(l,\mathbf{k})\in I} a_{l\mathbf{k}} e^{2\pi i (l\tau + \mathbf{k}\cdot\mathbf{y})}$:

$$\partial_{\tau} w_1 - \operatorname{div} \left(\mathbf{A}_0 \nabla w_1(\tau, \cdot) \right) = \operatorname{div} \left(\mathbf{B} \mathbf{h} \right),$$

implying the following relation for the Fourier coefficients

$$(l - 2\pi i \mathbf{A}_0 \mathsf{k} \cdot \mathsf{k} a_{l\mathsf{k}}) = \mathbf{B}_{l\mathsf{k}} \mathsf{h} \cdot \mathsf{k} \,, \quad (l, \mathsf{k}) \in I \,,$$

and the formula for the second order approximation of the H-limit:

$$\mathbf{C}_0 = -\sum_J \frac{\mathbf{B}_{lk} \mathsf{k} \otimes \mathbf{B}_{lk} \mathsf{k}}{\frac{l}{2\pi i} + \mathbf{A}_0 \mathsf{k} \cdot \mathsf{k}}$$

In this case w_1 does not depend on τ . Introducing

$$\widetilde{\mathbf{B}}(\mathbf{y}) := \int_0^1 \mathbf{B}(\tau, \mathbf{y}) \, d\tau$$

this case actually has the same behaviour as the one in elliptic setting, giving the formula \sim

$$\mathbf{C}_0 = -\sum_{\mathbf{Z}^d \setminus \{\mathbf{0}\}} \frac{\mathbf{\ddot{B}}_k k \otimes \mathbf{\ddot{B}}_k k}{\mathbf{A}_0 k \cdot k} \,.$$

Parabolic small-amplitude homogenisation-general case

Let us continue what we were doing before

Parabolic small-amplitude homogenisation—general case

Let us continue what we were doing before ... For the quadratic term we have:

$$\mathsf{D}_2^n = \mathbf{A}_0 \mathsf{E}_2^n + \mathbf{B}^n \mathsf{E}_1^n + \mathbf{C}^n \nabla u \longrightarrow \lim \mathbf{B}^n \mathsf{E}_1^n = \mathbf{C}_0 \nabla u ,$$

and this is the limit we shall express using only the parabolic variant H-measure $\mu.$

Parabolic small-amplitude homogenisation—general case

Let us continue what we were doing before ... For the quadratic term we have:

$$\mathsf{D}_2^n = \mathbf{A}_0 \mathsf{E}_2^n + \mathbf{B}^n \mathsf{E}_1^n + \mathbf{C}^n \nabla u \longrightarrow \lim \mathbf{B}^n \mathsf{E}_1^n = \mathbf{C}_0 \nabla u ,$$

and this is the limit we shall express using only the parabolic variant H-measure μ_{\cdot}

 u_1^n satisfies the equation (*) with coefficients A_0 , div $(\mathbf{B}^n \nabla u)$ on the right hand side and the homogeneous innitial condition.

Parabolic small-amplitude homogenisation—general case

Let us continue what we were doing before For the quadratic term we have:

$$\mathsf{D}_2^n = \mathbf{A}_0 \mathsf{E}_2^n + \mathbf{B}^n \mathsf{E}_1^n + \mathbf{C}^n \nabla u \longrightarrow \lim \mathbf{B}^n \mathsf{E}_1^n = \mathbf{C}_0 \nabla u ,$$

and this is the limit we shall express using only the parabolic variant H-measure μ_{\cdot}

 u_1^n satisfies the equation (*) with coefficients A_0 , div $(\mathbf{B}^n \nabla u)$ on the right hand side and the homogeneous innitial condition.

By applying the Fourier transform (as if the equation were valid in the whole space), and multiplying by $2\pi i \boldsymbol{\xi}$, for $(\tau, \boldsymbol{\xi}) \neq (0, 0)$ we get

$$\widehat{\nabla u_1^n}(\tau, \boldsymbol{\xi}) = -\frac{(2\pi)^2 \left(\boldsymbol{\xi} \otimes \boldsymbol{\xi}\right) (\widehat{\mathbf{B}^n \nabla u})(\tau, \boldsymbol{\xi})}{2\pi i \tau + (2\pi)^2 \mathbf{A}_0 \boldsymbol{\xi} \cdot \boldsymbol{\xi}}$$

Parabolic small-amplitude homogenisation-general case

Let us continue what we were doing before For the quadratic term we have:

$$\mathsf{D}_2^n = \mathbf{A}_0 \mathsf{E}_2^n + \mathbf{B}^n \mathsf{E}_1^n + \mathbf{C}^n \nabla u \longrightarrow \lim \mathbf{B}^n \mathsf{E}_1^n = \mathbf{C}_0 \nabla u$$

and this is the limit we shall express using only the parabolic variant H-measure μ_{\cdot}

 u_1^n satisfies the equation (*) with coefficients A_0 , div $(\mathbf{B}^n \nabla u)$ on the right hand side and the homogeneous innitial condition.

By applying the Fourier transform (as if the equation were valid in the whole space), and multiplying by $2\pi i \xi$, for $(\tau, \xi) \neq (0, 0)$ we get

$$\widehat{\nabla u_1^n}(\tau, \boldsymbol{\xi}) = -\frac{(2\pi)^2 \left(\boldsymbol{\xi} \otimes \boldsymbol{\xi}\right) (\widehat{\mathbf{B}^n \nabla u})(\tau, \boldsymbol{\xi})}{2\pi i \tau + (2\pi)^2 \mathbf{A}_0 \boldsymbol{\xi} \cdot \boldsymbol{\xi}}.$$

(the precise argument involves localisation principle and some calculations ...)
Expression for the quadratic correction

As $(\boldsymbol{\xi} \otimes \boldsymbol{\xi})/(2\pi i \tau + (2\pi)^2 \mathbf{A}_0 \boldsymbol{\xi} \cdot \boldsymbol{\xi})$ is constant along branches of paraboloids $\tau = c \boldsymbol{\xi}^2, c \in \overline{\mathbf{R}}$, we have $(\varphi \in C_c^{\infty}(Q))$

$$\begin{split} \lim_{n} \left\langle \varphi \mathbf{B}^{n} \mid \nabla u_{1}^{n} \right\rangle &= -\lim_{n} \left\langle \widehat{\varphi \mathbf{B}^{n}} \mid \frac{(2\pi)^{2} \left(\boldsymbol{\xi} \otimes \boldsymbol{\xi}\right) \left(\widehat{\mathbf{B}^{n} \nabla u}\right)}{2\pi i \tau + (2\pi)^{2} \mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}} \right\rangle \\ &= - \left\langle \boldsymbol{\mu}, \varphi \frac{(2\pi)^{2} \boldsymbol{\xi} \otimes \boldsymbol{\xi} \otimes \nabla u}{-2\pi i \tau + (2\pi)^{2} \mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}} \right\rangle, \end{split}$$

where μ is the parabolic variant H-measure associated to (\mathbf{B}^n) , a measure with four indices (the first two of them not being contracted above).

Expression for the quadratic correction (cont.)

By varying function $u \in C^1(Q)$ (e.g. choosing ∇u constant on $(0, T) \times \omega$, where $\omega \subseteq \Omega$) we get

$$\int_{\langle 0,T\rangle\times\omega} C_0^{ij}(t,\mathbf{x})\phi(t,\mathbf{x})dtd\mathbf{x} = -\Big\langle \boldsymbol{\mu}^{ij}, \phi \frac{(2\pi)^2 \boldsymbol{\xi}\otimes\boldsymbol{\xi}}{-2\pi i \tau + (2\pi)^2 \mathbf{A}_0 \boldsymbol{\xi}\cdot\boldsymbol{\xi}} \Big\rangle,$$

where μ^{ij} denotes the matrix measure with components $(\mu^{ij})_{kl} = \mu_{iklj}$.

Expression for the quadratic correction (cont.)

By varying function $u \in C^1(Q)$ (e.g. choosing ∇u constant on $(0, T) \times \omega$, where $\omega \subseteq \Omega$) we get

$$\int_{\langle 0,T\rangle\times\omega} C_0^{ij}(t,\mathbf{x})\phi(t,\mathbf{x})dtd\mathbf{x} = -\Big\langle \boldsymbol{\mu}^{ij}, \phi \frac{(2\pi)^2 \boldsymbol{\xi}\otimes\boldsymbol{\xi}}{-2\pi i \tau + (2\pi)^2 \mathbf{A}_0 \boldsymbol{\xi}\cdot\boldsymbol{\xi}} \Big\rangle,$$

where μ^{ij} denotes the matrix measure with components $(\mu^{ij})_{kl} = \mu_{iklj}$.

For the periodic example of small-amplitude homogenisation, we get the same results by applying the variant H-measures, as with direct calculations performed above.

Homogenisation of a model based on the Stokes equation: stationary case

$$\begin{array}{l} (\text{Tartar, 1976 and 1984})\\ \Omega \subseteq \mathbf{R}^3 \text{ open set, } \mathsf{u}_n \longrightarrow \mathsf{u}_0 \text{ in } \mathrm{H}^1_{\mathrm{loc}}(\Omega; \mathbf{R}^3) \\ \\ \left\{ \begin{array}{l} -\nu \triangle \mathsf{u}_n + \mathsf{u}_n \times \mathsf{rot} \left(\mathsf{v}_0 + \lambda \mathsf{v}_n\right) + \nabla p_n = \mathsf{f}_n \\ \\ \mathsf{div} \, \mathsf{u}_n = 0 \ . \end{array} \right. \end{array}$$

Homogenisation of a model based on the Stokes equation: stationary case

$$\begin{array}{l} (\mathsf{Tartar}, \ \mathsf{1976} \ \mathsf{and} \ \ \mathsf{1984}) \\ \Omega \subseteq \mathbf{R}^3 \ \mathsf{open \ set}, \ \mathsf{u}_n \longrightarrow \mathsf{u}_0 \ \mathsf{in} \ \mathrm{H}^1_{\mathrm{loc}}(\Omega; \mathbf{R}^3) \\ \\ \left\{ \begin{array}{l} -\nu \triangle \mathsf{u}_n + \mathsf{u}_n \times \mathsf{rot} \left(\mathsf{v}_0 + \lambda \mathsf{v}_n\right) + \nabla p_n = \mathsf{f}_n \\ \\ \mathsf{div} \ \mathsf{u}_n = 0 \ . \end{array} \right. \end{array}$$

Not a realistic model, but contains the terms: $\mathbf{u} \times \operatorname{rot} \mathbf{A}$ resulting from the Lorentz force $q(\mathbf{u} \times \mathbf{B})$ in electrostatics, or in fluids $(\nabla \mathbf{u})\mathbf{u} = \mathbf{u} \times \operatorname{rot} (-\mathbf{u}) + \nabla \frac{|\mathbf{u}|^2}{2}$.

Homogenisation of a model based on the Stokes equation: stationary case

$$\begin{array}{l} (\operatorname{Tartar}, \ 1976 \ \text{and} \ 1984) \\ \Omega \subseteq \mathbf{R}^3 \ \text{open set,} \ \mathsf{u}_n \longrightarrow \mathsf{u}_0 \ \text{in} \ \mathrm{H}^1_{\mathrm{loc}}(\Omega; \mathbf{R}^3) \\ \\ \left\{ \begin{array}{l} -\nu \triangle \mathsf{u}_n + \mathsf{u}_n \times \operatorname{rot}\left(\mathsf{v}_0 + \lambda \mathsf{v}_n\right) + \nabla p_n = \mathsf{f}_n \\ \\ & \operatorname{div} \mathsf{u}_n = 0 \end{array} \right. \end{array}$$

Not a realistic model, but contains the terms: $\mathbf{u} \times \operatorname{rot} \mathbf{A}$ resulting from the Lorentz force $q(\mathbf{u} \times \mathbf{B})$ in electrostatics, or in fluids $(\nabla \mathbf{u})\mathbf{u} = \mathbf{u} \times \operatorname{rot} (-\mathbf{u}) + \nabla \frac{|\mathbf{u}|^2}{2}$.

Theorem. There is a subsequence and $\mathbf{M} \ge 0$, depending on the choice of the subsequence, such that the limit u_0 satisfies:

$$\left\{ \begin{split} -\nu \triangle \mathsf{u}_0 + \mathsf{u}_0 \times \mathsf{rot}\,\mathsf{v}_0 + \lambda^2 \mathbf{M} \mathsf{u}_0 + \nabla p_0 = \mathsf{f}_0 \\ & \mathsf{div}\,\mathsf{u}_0 = 0 \;, \end{split} \right.$$

and it holds:

$$u |\nabla \mathbf{u}_n|^2 \longrightarrow \nu |\nabla \mathbf{u}_0|^2 + \lambda^2 \mathbf{M} \mathbf{u}_0 \cdot \mathbf{u}_0 \qquad \text{in } \mathcal{D}'(\Omega) \ .$$

Can M be computed directly from $v_n \longrightarrow 0$ in $L^2(\Omega; \mathbf{R}^3)$ (also bounded in $L^3(\Omega; \mathbf{R}^3)$)?

Can **M** be computed directly from $v_n \longrightarrow 0$ in $L^2(\Omega; \mathbf{R}^3)$ (also bounded in $L^3(\Omega; \mathbf{R}^3)$)? Yes! (Tartar, 1990)

$$\mathbf{M} = rac{1}{
u} \left\langle \! \left\langle oldsymbol{\mu}, (oldsymbol{\mathsf{v}}^2 - (oldsymbol{\mathsf{v}} \cdot oldsymbol{\xi})^2) oldsymbol{\xi} \otimes oldsymbol{\xi}
ight
angle
ight
angle$$

Can **M** be computed directly from $v_n \longrightarrow 0$ in $L^2(\Omega; \mathbf{R}^3)$ (also bounded in $L^3(\Omega; \mathbf{R}^3)$)? Yes! (Tartar, 1990)

$$\mathbf{M} = rac{1}{
u} \left\langle \! \left\langle oldsymbol{\mu}, (oldsymbol{\mathsf{v}}^2 - (oldsymbol{\mathsf{v}} \cdot oldsymbol{\xi})^2) oldsymbol{\xi} \otimes oldsymbol{\xi}
ight
angle
ight
angle \, .$$

Note. The meaning of the formula: $(\forall \varphi \in C_c^{\infty}(\Omega))$

$$\int_{\Omega} \mathbf{M}(\mathbf{x})\varphi(\mathbf{x}) \, d\mathbf{x} = \frac{1}{\nu} \left[\langle \mathsf{tr} \boldsymbol{\mu}, \varphi \boxtimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \rangle - \langle \boldsymbol{\mu}, \varphi \boxtimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \rangle \right] \, .$$

Can M be computed directly from $v_n \longrightarrow 0$ in $L^2(\Omega; \mathbf{R}^3)$ (also bounded in $L^3(\Omega; \mathbf{R}^3)$)? Yes! (Tartar, 1990)

$$\mathbf{M} = rac{1}{
u} \left\langle\!\left\langle oldsymbol{\mu}, (oldsymbol{\mathsf{v}}^2 - (oldsymbol{\mathsf{v}} \cdot oldsymbol{\xi})^2) oldsymbol{\xi} \otimes oldsymbol{\xi}
ight
angle
ight
angle \, .$$

Note. The meaning of the formula: $(\forall \varphi \in C_c^{\infty}(\Omega))$

$$\int_{\Omega} \mathbf{M}(\mathbf{x})\varphi(\mathbf{x}) \, d\mathbf{x} = \frac{1}{\nu} \left[\langle \mathsf{tr} \boldsymbol{\mu}, \varphi \boxtimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \rangle - \langle \boldsymbol{\mu}, \varphi \boxtimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \otimes (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \rangle \right] \, .$$

 ${\bf M}$ is not only a measure, but a function.

Stationary model motivated the introduction of H-measures. Time-dependent led to a variant.

Stationary model motivated the introduction of H-measures.

Time-dependent led to a variant.

Tartar with Chun Liu and Konstantina Trevisa some twenty years ago; only written record in Multiscales 2000.

Stationary model motivated the introduction of H-measures.

Time-dependent led to a variant.

Tartar with Chun Liu and Konstantina Trevisa some twenty years ago; only written record in Multiscales 2000.

M. Lazar and myself — wrote it down (technical difference in the scaling).

Time dependent case

On ${\bf R}^3$ (we need good estimates for the pressure).

Time dependent case

On \mathbf{R}^3 (we need good estimates for the pressure). Tartar's model from 1985:

$$\begin{cases} \partial_t \mathsf{u}_n - \nu \triangle \mathsf{u}_n + \mathsf{u}_n \times \mathsf{rot} \left(\mathsf{v}_0 + \lambda \mathsf{v}_n\right) + \nabla p_n = \mathsf{f}_n \\ & \mathsf{div} \ \mathsf{u}_n = 0 \ . \end{cases}$$

Assume that

$$\begin{array}{ll} \mathsf{u}_n & \longrightarrow & \mathsf{u}_0 & \text{ in } \mathrm{L}^2([0,T];\mathrm{H}^1(\mathbf{R}^3;\mathbf{R}^3)) \ , \\ \mathsf{u}_n & \stackrel{*}{\longrightarrow} & \mathsf{u}_0 & \text{ in } \mathrm{L}^\infty([0,T];\mathrm{L}^2(\mathbf{R}^3;\mathbf{R}^3)) \ . \end{array}$$

and (p_n) is bounded in $L^2([0,T] \times \mathbf{R}^3)$.

Time dependent case

On \mathbf{R}^3 (we need good estimates for the pressure). Tartar's model from 1985:

$$\begin{cases} \partial_t \mathsf{u}_n - \nu \triangle \mathsf{u}_n + \mathsf{u}_n \times \mathsf{rot} \left(\mathsf{v}_0 + \lambda \mathsf{v}_n\right) + \nabla p_n = \mathsf{f}_n \\ & \mathsf{div} \ \mathsf{u}_n = 0 \ . \end{cases}$$

Assume that

$$\begin{split} \mathsf{u}_n & \longrightarrow \mathsf{u}_0 \quad \text{in } \mathrm{L}^2([0,T];\mathrm{H}^1(\mathbf{R}^3;\mathbf{R}^3)) \ , \\ \mathsf{u}_n & \stackrel{*}{\longrightarrow} \mathsf{u}_0 \quad \text{in } \mathrm{L}^\infty([0,T];\mathrm{L}^2(\mathbf{R}^3;\mathbf{R}^3)) \ . \end{split}$$

and (p_n) is bounded in $L^2([0,T] \times \mathbf{R}^3)$.

Oscillation in (v_n) generates oscillation in (∇u_n) , which dissipates energy via viscosity.

This should be visible from macroscopic equation (equation satisfied by u_0).

Sufficient assumptions on v_n and f_n

 $f_n = \operatorname{div} \mathbf{G}_n$, with $\mathbf{G}_n \longrightarrow \mathbf{G}_0$ in $L^2([0,T] \times \mathbf{R}^3; M_{3 \times 3})$

Sufficient assumptions on v_n and f_n

$$\begin{split} &\mathsf{f}_n = \mathsf{div}\,\mathbf{G}_n,\,\mathsf{with}\,\,\mathbf{G}_n \longrightarrow \mathbf{G}_0\,\,\mathsf{in}\,\,\mathrm{L}^2([0,T]\times\mathbf{R}^3;\mathrm{M}_{3\times 3})\\ &\mathsf{v}_0 \in \mathrm{L}^2([0,T];\mathrm{L}^\infty(\mathbf{R}^3;\mathbf{R}^3)) + \mathrm{L}^\infty([0,T];\mathrm{L}^3(\mathbf{R}^3;\mathbf{R}^3)) \end{split}$$

Sufficient assumptions on v_n and f_n

$$\begin{split} \mathbf{f}_n &= \mathsf{div}\,\mathbf{G}_n, \, \mathsf{with}\,\,\mathbf{G}_n \longrightarrow \mathbf{G}_0 \,\,\mathsf{in}\,\,\mathrm{L}^2([0,T]\times\mathbf{R}^3;\mathrm{M}_{3\times3}) \\ \mathbf{v}_0 &\in \mathrm{L}^2([0,T];\mathrm{L}^\infty(\mathbf{R}^3;\mathbf{R}^3)) + \mathrm{L}^\infty([0,T];\mathrm{L}^3(\mathbf{R}^3;\mathbf{R}^3)) \\ \mathbf{v}_n &= \mathbf{a}_n + \mathbf{b}_n, \,\,\mathsf{where} \\ &= \mathbf{a}_n \stackrel{*}{\longrightarrow} 0 \,\,\mathsf{in}\,\,\mathrm{L}^q([0,T];\mathrm{L}^\infty(\mathbf{R}^3;\mathbf{R}^3)), \,\,\mathsf{for some}\,\, q>2, \\ &= \mathbf{b}_n \stackrel{*}{\longrightarrow} 0 \,\,\mathsf{in}\,\,\mathrm{L}^\infty([0,T];\mathrm{L}^r(\mathbf{R}^3;\mathbf{R}^3)), \,\,\mathsf{for some}\,\, r>3. \end{split}$$

Theorem. There is a subsequence and a function $\mathbf{M} \geqslant \mathbf{0}$ such that the limit u_0 satisfies:

$$\begin{cases} \partial_t \mathbf{u}_0 - \nu \triangle \mathbf{u}_0 + \mathbf{u}_0 \times \operatorname{rot} \mathbf{v}_0 + \lambda^2 \mathbf{M} \mathbf{u}_0 + \nabla p_0 = \mathbf{f}_0 \\ & \operatorname{div} \mathbf{u}_0 = 0 \;, \end{cases}$$

Theorem. There is a subsequence and a function $\mathbf{M} \geqslant \mathbf{0}$ such that the limit u_0 satisfies:

$$\begin{cases} \partial_t \mathbf{u}_0 - \nu \triangle \mathbf{u}_0 + \mathbf{u}_0 \times \operatorname{rot} \mathbf{v}_0 + \lambda^2 \mathbf{M} \mathbf{u}_0 + \nabla p_0 = \mathbf{f}_0 \\ \operatorname{div} \mathbf{u}_0 = 0 \ , \end{cases}$$

and that we have the convergence

$$u |\nabla \mathsf{u}_n|^2 \longrightarrow \nu |\nabla \mathsf{u}_0|^2 + \lambda^2 \mathbf{M} \mathsf{u}_0 \cdot \mathsf{u}_0 \quad \text{in } \mathcal{D}'(\mathbf{R}^{1+3}) .$$

Theorem. There is a subsequence and a function $\mathbf{M} \geqslant \mathbf{0}$ such that the limit u_0 satisfies:

$$\begin{cases} \partial_t \mathbf{u}_0 - \nu \triangle \mathbf{u}_0 + \mathbf{u}_0 \times \operatorname{rot} \mathbf{v}_0 + \lambda^2 \mathbf{M} \mathbf{u}_0 + \nabla p_0 = \mathbf{f}_0 \\ \operatorname{div} \mathbf{u}_0 = 0 \ , \end{cases}$$

and that we have the convergence

$$u |\nabla \mathbf{u}_n|^2 \longrightarrow \nu |\nabla \mathbf{u}_0|^2 + \lambda^2 \mathbf{M} \mathbf{u}_0 \cdot \mathbf{u}_0 \quad \text{in } \mathcal{D}'(\mathbf{R}^{1+3}) .$$

There is a new term, \mathbf{M} , in the macroscopic equation. How can it be computed?

Oscillating test functions

$$\begin{cases} -\partial_t \mathsf{w}_n - \nu \triangle \mathsf{w}_n + \mathsf{k} \times \operatorname{rot} \mathsf{v}_n + \nabla r_n = \mathsf{0} \\ & \operatorname{div} \mathsf{w}_n = 0 \;, \end{cases}$$

supplemented by requirements:

$$w_n \longrightarrow 0$$
 in $L^2([0,T]; H^1(\mathbf{R}^3; \mathbf{R}^3))$, and
 $w_n \longrightarrow 0$ in $L^{\infty}([0,T]; L^2(\mathbf{R}^3; \mathbf{R}^3))$.

Oscillating test functions

$$\begin{cases} -\partial_t \mathsf{w}_n - \nu \triangle \mathsf{w}_n + \mathsf{k} \times \mathsf{rot} \, \mathsf{v}_n + \nabla r_n = \mathsf{0} \\ & \mathsf{div} \, \mathsf{w}_n = 0 \;, \end{cases}$$

supplemented by requirements:

$$\mathsf{w}_n \longrightarrow \mathsf{0} \text{ in } \mathrm{L}^2([0,T];\mathrm{H}^1(\mathbf{R}^3;\mathbf{R}^3)), \text{ and}$$

 $\mathsf{w}_n \longrightarrow \mathsf{0} \text{ in } \mathrm{L}^\infty([0,T];\mathrm{L}^2(\mathbf{R}^3;\mathbf{R}^3)).$

Sufficient to take homogeneous condition at t = T,

and (additional assumption) v_n bounded in $L^2([0,T]; L^2(\mathbf{R}^3; \mathbf{R}^3))$. This in particular gives r_n bounded in $L^2([0,T] \times \mathbf{R}^3)$.

Oscillating test functions

$$\begin{cases} -\partial_t \mathsf{w}_n - \nu \triangle \mathsf{w}_n + \mathsf{k} \times \mathsf{rot} \, \mathsf{v}_n + \nabla r_n = \mathsf{0} \\ & \mathsf{div} \, \mathsf{w}_n = 0 \;, \end{cases}$$

supplemented by requirements:

$$\mathsf{w}_n \longrightarrow \mathsf{0} \text{ in } \mathrm{L}^2([0,T];\mathrm{H}^1(\mathbf{R}^3;\mathbf{R}^3)), \text{ and}$$

 $\mathsf{w}_n \longrightarrow \mathsf{0} \text{ in } \mathrm{L}^\infty([0,T];\mathrm{L}^2(\mathbf{R}^3;\mathbf{R}^3)).$

Sufficient to take homogeneous condition at t = T,

and (additional assumption) v_n bounded in $L^2([0,T]; L^2(\mathbf{R}^3; \mathbf{R}^3))$. This in particular gives r_n bounded in $L^2([0,T] \times \mathbf{R}^3)$.

$$\nu \int_{\mathbf{R}^{1+3}} \varphi |\nabla \mathbf{w}_n|^2 \, d\mathbf{y} \longrightarrow \int_{\mathbf{R}^{1+3}} \varphi \mathbf{M} \mathbf{k} \cdot \mathbf{k} \, d\mathbf{y} \, ,$$

 $\mathbf{M} \in \mathrm{L}^2([0,T];\mathrm{H}^{-1}(\mathbf{R}^3;\mathrm{M}_{3\times 3\times)}) \text{ and } \langle \, \mathbf{M}\mathsf{k} \mid \mathsf{k} \, \rangle \geqslant 0, \quad \mathsf{k} \in \mathbf{R}^3.$

Theorem. Let μ be a variant H-measure associated to a subsequence of (v_n) .

$$\int_{\mathbf{R}^{1+3}} \mathbf{M}(t, \mathbf{x}) \phi(t, \mathbf{x}) dt d\mathbf{x} =$$

= $4\pi^2 \nu \Big\langle \Big(\mathrm{tr} \boldsymbol{\mu} |\boldsymbol{\xi}|^2 - \boldsymbol{\mu} \cdot (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \Big) \frac{(\boldsymbol{\xi} \otimes \boldsymbol{\xi})}{\tau^2 + \nu^2 4\pi^2 |\boldsymbol{\xi}|^4}, \phi \boxtimes 1 \Big\rangle,$

with $\phi \in \mathrm{C}^\infty_c(\langle 0,T \rangle imes \mathbf{R}^3).$

Proof.

For w_n we have (with $0 \leq \mathbf{M} \in L^2([0,T]; H^{-1}(\mathbf{R}^3; M_{3\times 3})))$:

$$\nu \int_{\mathbf{R}^{1+3}} \varphi |\nabla \mathbf{w}_n|^2 \, d\mathbf{y} \longrightarrow \int_{\mathbf{R}^{1+3}} \varphi \mathbf{M} \mathbf{k} \cdot \mathbf{k} \, d\mathbf{y} \; .$$

Proof.

For w_n we have (with $0 \leq \mathbf{M} \in L^2([0,T]; \mathrm{H}^{-1}(\mathbf{R}^3; \mathrm{M}_{3\times 3})))$:

$$\nu \int_{\mathbf{R}^{1+3}} \varphi |\nabla \mathbf{w}_n|^2 \, d\mathbf{y} \longrightarrow \int_{\mathbf{R}^{1+3}} \varphi \mathbf{M} \mathbf{k} \cdot \mathbf{k} \, d\mathbf{y} \; .$$

From estimates on r_n and v_n we get $w'_n \longrightarrow 0$ in $L^2(0,T; H^{-1}_{loc}(\mathbf{R}^3))$, and compactness lemma gives us $w_n \to 0$ in $L^2_{loc}([0,T] \times \mathbf{R}^3)$.

Proof.

For w_n we have (with $0 \leq \mathbf{M} \in L^2([0,T]; \mathrm{H}^{-1}(\mathbf{R}^3; \mathrm{M}_{3 \times 3})))$:

$$\nu \int_{\mathbf{R}^{1+3}} \varphi |\nabla \mathbf{w}_n|^2 \, d\mathbf{y} \longrightarrow \int_{\mathbf{R}^{1+3}} \varphi \mathbf{M} \mathbf{k} \cdot \mathbf{k} \, d\mathbf{y} \; .$$

From estimates on r_n and v_n we get $w'_n \longrightarrow 0$ in $L^2(0,T; H^{-1}_{loc}(\mathbf{R}^3))$, and compactness lemma gives us $w_n \to 0$ in $L^2_{loc}([0,T] \times \mathbf{R}^3)$. Therefore:

$$\lim_{n} \int_{\mathbf{R}^{1+3}} \left| \varphi \nabla \mathsf{w}_{n} \right|^{2} d\mathbf{y} = \lim_{n} \int_{\mathbf{R}^{1+3}} \left| \nabla (\varphi \mathsf{w}_{n}) \right|^{2} d\mathbf{y} \ .$$

Localise . . .

Localise by multiplying the auxilliary problem by $\varphi \in C_c^{\infty}(\langle 0,T \rangle \times \mathbf{R}^3)$

$$-\partial_t(\varphi \mathsf{w}_n) - \nu \triangle(\varphi \mathsf{w}_n) + \mathsf{k} \times \mathsf{rot} (\varphi \mathsf{v}_n) = -\nabla(\varphi r_n) + \mathsf{q}_n ,$$

Localise . . .

Localise by multiplying the auxiliary problem by $\varphi \in C_c^{\infty}(\langle 0,T \rangle \times \mathbf{R}^3)$

$$-\partial_t(\varphi \mathsf{w}_n) - \nu \triangle(\varphi \mathsf{w}_n) + \mathsf{k} \times \mathsf{rot} (\varphi \mathsf{v}_n) = -\nabla(\varphi r_n) + \mathsf{q}_n ,$$

$$\mathbf{q}_n = -(\partial_t \varphi) \mathbf{w}_n - \nu(\triangle \varphi) \mathbf{w}_n - 2\nu(\nabla \mathbf{w}_n) \nabla \varphi + \mathbf{k} \times (\nabla \varphi \times \mathbf{v}_n) + r_n \nabla \varphi ,$$

 $q_n \longrightarrow 0$ in $L^2(\mathbf{R}^{1+3})$ (and also strongly in $H^{-\frac{1}{2},-1}(\mathbf{R}^{1+3})$). As $w_n \longrightarrow 0$ in $L^2([0,T]; H^1(\mathbf{R}^3))$, so localised w_n and ∇w_n converge weakly in L^2 .

Of course, localised v_n and r_n converge weakly in L^2 as well. From boundedness of the support of φ , we have strong convergence in $H^{-\frac{1}{2},-1}$.

The Fourier transform

$$(-2\pi i\tau + \nu 4\pi^2 \boldsymbol{\xi}^2)\widehat{\varphi \mathbf{w}_n} = -\mathbf{k} \times \left((2\pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathbf{v}_n} \right) - 2\pi i \widehat{\varphi r_n} \boldsymbol{\xi} + \hat{\mathbf{q}}_n ,$$

The Fourier transform

$$(-2\pi i\tau + \nu 4\pi^2 \boldsymbol{\xi}^2)\widehat{\varphi \mathbf{w}_n} = -\mathbf{k} \times \left((2\pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathbf{v}_n}\right) - 2\pi i \widehat{\varphi r_n} \boldsymbol{\xi} + \hat{\mathbf{q}}_n ,$$

and dividing by $(-2\pi i \tau + \nu 4\pi^2 \pmb{\xi}^2)$ we get

$$\widehat{\varphi \mathbf{w}_n} = \frac{-\mathsf{k} \times \left((2\pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathbf{v}_n} \right) - 2\pi i \widehat{\varphi r_n} \boldsymbol{\xi} + \hat{\mathsf{q}}_n}{-2\pi i \tau + \nu 4\pi^2 \boldsymbol{\xi}^2} \ .$$

The penultimate term disappears if we project it to the plane $\perp \xi$ (projection P_{ξ}).

The Fourier transform

$$(-2\pi i\tau + \nu 4\pi^2 \boldsymbol{\xi}^2)\widehat{\varphi \mathbf{w}_n} = -\mathbf{k} \times \left((2\pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathbf{v}_n}\right) - 2\pi i \widehat{\varphi r_n} \boldsymbol{\xi} + \hat{\mathbf{q}}_n ,$$

and dividing by $(-2\pi i \tau + \nu 4\pi^2 \pmb{\xi}^2)$ we get

$$\widehat{\varphi \mathbf{w}_n} = \frac{-\mathsf{k} \times \left((2\pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathbf{v}_n} \right) - 2\pi i \widehat{\varphi r_n} \boldsymbol{\xi} + \hat{\mathsf{q}}_n}{-2\pi i \tau + \nu 4\pi^2 \boldsymbol{\xi}^2} \ .$$

The penultimate term disappears if we project it to the plane $\perp \boldsymbol{\xi}$ (projection $P_{\boldsymbol{\xi}}$).

div $w_n = 0$, so $\boldsymbol{\xi} \cdot \hat{w}_n = 0$; which does not hold for div $(\varphi w_n) = \nabla \varphi \cdot w_n$. However, the RHS converges strongly in L^2 to 0, so in the Fourier space:

$$2\pi \boldsymbol{\xi} \cdot \widehat{\varphi \mathbf{w}_n} \longrightarrow 0$$
.

Projection by $P_{\boldsymbol{\xi}}$

After projection

$$\widehat{\varphi \mathbf{w}_n} = \frac{-P_{\boldsymbol{\xi}} \Big(\mathbf{k} \times \left((2\pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathbf{v}_n} \right) \Big) + P_{\boldsymbol{\xi}} \widehat{\mathbf{q}}_n}{-2\pi i \tau + \nu 4\pi^2 \boldsymbol{\xi}^2} + \mathbf{d}_n \ ,$$

with $d_n \longrightarrow 0$ in L^2 .

Projection by $P_{\boldsymbol{\xi}}$

After projection

$$\widehat{\varphi \mathbf{w}_n} = \frac{-P_{\boldsymbol{\xi}} \Big(\mathbf{k} \times \left((2\pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathbf{v}_n} \right) \Big) + P_{\boldsymbol{\xi}} \widehat{\mathbf{q}}_n}{-2\pi i \tau + \nu 4\pi^2 \boldsymbol{\xi}^2} + \mathbf{d}_n \;,$$

with $d_n \longrightarrow 0$ in L^2 . By Plancherel

$$\begin{split} \lim_{n} \int_{\Omega} \nu |\nabla(\varphi \mathsf{w}_{n})|^{2} \, d\mathbf{x} &= \lim_{n} \int_{\mathbf{R}}^{1+d} \nu 4\pi^{2} |\widehat{(\varphi \mathsf{w}_{n})}|^{2} d\tau d\boldsymbol{\xi} \\ &= \lim_{n} \int_{\mathbf{R}}^{1+d} \nu 4\pi^{2} \boldsymbol{\xi}^{2} \left| \frac{P_{\boldsymbol{\xi}} \Big(\mathsf{k} \times \left((2\pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathsf{v}_{n}} \right) + \hat{\mathsf{q}}_{n} \right)}{-2\pi i \tau + \nu 4\pi^{2} \boldsymbol{\xi}^{2}} \right|^{2} d\tau d\boldsymbol{\xi} \\ &= \lim_{n} \int_{\mathbf{R}}^{1+d} \nu \boldsymbol{\xi}^{2} \frac{\left| P_{\boldsymbol{\xi}} \Big(\mathsf{k} \times \left((2\pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathsf{v}_{n}} \right) + \hat{\mathsf{q}}_{n} \right) \right|^{2}}{\tau^{2} + \nu 4\pi^{2} \boldsymbol{\xi}^{4}} d\tau d\boldsymbol{\xi} \end{split}$$
Applying the Lemma (analysis)

$$\frac{|\pmb{\xi}|\hat{\mathbf{q}}_n}{\sqrt{\tau^2 + \nu 4\pi^2 \pmb{\xi}^4}} \to 0 \quad \text{in} \qquad L^2(\mathbf{R}^{1+3}) \; .$$

Applying the Lemma (analysis)

$$\frac{|\boldsymbol{\xi}|\hat{\mathbf{q}}_n}{\sqrt{\tau^2 + \nu 4\pi^2 \boldsymbol{\xi}^4}} \to 0 \quad \text{in} \qquad L^2(\mathbf{R}^{1+3}) \; .$$

By P_{η}

$$\left|P_{\boldsymbol{\eta}} \Big(\mathbf{k} \times (\boldsymbol{\eta} \times \mathbf{a}) \Big) \right|^2 = (\mathbf{k} \cdot \boldsymbol{\eta})^2 \Big(|\mathbf{a}|^2 - |\mathbf{a} \cdot \boldsymbol{\eta}_0|^2 \Big)$$

where η_0 is the unit vector in the direction of η .

Applying the Lemma (analysis)

$$\frac{|\boldsymbol{\xi}|\hat{\mathbf{q}}_n}{\sqrt{\tau^2 + \nu 4\pi^2 \boldsymbol{\xi}^4}} \to 0 \quad \text{in} \qquad L^2(\mathbf{R}^{1+3}) \; .$$

By P_{η}

$$\Big| P_{\boldsymbol{\eta}} \Big(\mathsf{k} \times (\boldsymbol{\eta} \times \mathbf{a}) \Big) \Big|^2 = (\mathsf{k} \cdot \boldsymbol{\eta})^2 \Big(|\mathsf{a}|^2 - |\mathsf{a} \cdot \boldsymbol{\eta}_0|^2 \Big)$$

where η_0 is the unit vector in the direction of η . Note that k and η are real, while only a is complex. Therefore:

$$\begin{split} \lim_{n} \int_{\Omega} \nu |\nabla(\varphi \mathsf{w}_{n})|^{2} \, d\mathbf{x} \\ &= \lim_{n} \int_{\mathbf{R}^{3}} \boldsymbol{\xi}^{2} \frac{\left(\mathsf{k} \cdot 2\pi i \boldsymbol{\xi}\right)^{2} \left(|\widehat{\varphi \mathsf{v}_{n}}|^{2} - \left|\widehat{\varphi \mathsf{v}_{n}} \cdot \frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right|^{2}\right)}{\tau^{2} + \nu 4\pi^{2} \boldsymbol{\xi}^{4}} \, d\boldsymbol{\xi} \, . \end{split}$$

Finally (after some algebra)

$$\begin{split} \lim_{n} \int_{\mathbf{R}^{3}} \boldsymbol{\xi}_{0}^{2} \frac{\left(\mathbf{k} \cdot 2\pi i \boldsymbol{\xi}_{0}\right)^{2} \left(|\widehat{\varphi \mathbf{v}_{n}}|^{2} - \left|\widehat{\varphi \mathbf{v}_{n}} \cdot \frac{\boldsymbol{\xi}_{0}}{|\boldsymbol{\xi}_{0}|}\right|^{2}\right)}{\tau_{0}^{2} + \nu 4\pi^{2} \boldsymbol{\xi}_{0}^{4}} d\boldsymbol{\xi} = \\ &= \frac{1}{\nu} \langle \mathrm{tr} \boldsymbol{\mu}, (\frac{\boldsymbol{\xi}_{0} \cdot \mathbf{k}}{\tau_{0}^{2} + \nu 4\pi^{2} \boldsymbol{\xi}_{0}^{4}})^{2} \varphi \overline{\varphi} \rangle \\ &\quad - \frac{1}{\nu} \langle \boldsymbol{\mu}, (\frac{\boldsymbol{\xi}_{0} \cdot \mathbf{k}}{\tau_{0}^{2} + \nu 4\pi^{2} \boldsymbol{\xi}_{0}^{4}})^{2} \varphi \overline{\varphi} \boldsymbol{\xi} \otimes \boldsymbol{\xi} \rangle \;. \end{split}$$

Introduction to H-measures

What are H-measures? First examples

Localisation principle

Symmetric systems — compactness by compensation again Localisation principle for parabolic H-measures

Applications in homogenisation

Small-amplitude homogenisation of heat equation Periodic small-amplitude homogenisation Homogenisation of a model based on the Stokes equation Model based on time-dependent Stokes

H-distributions

Existence Localisation principle Other variants

One-scale H-measures

Semiclassical measures One-scale H-measures Localisation principle Good bounds in the L^p case: the Hörmander-Mihlin theorem

 $\psi: \mathbf{R}^d \to \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^p(\mathbf{R}^d)$ if

$$\bar{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^p(\mathbf{R}^d) , \qquad \text{for } \theta \in \mathcal{S}(\mathbf{R}^d),$$

and

$$\mathcal{S}(\mathbf{R}^d) \ni \theta \mapsto \bar{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathbf{L}^p(\mathbf{R}^d)$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: L^{p}(\mathbf{R}^{d}) \rightarrow L^{p}(\mathbf{R}^{d})$.

Good bounds in the L^p case: the Hörmander-Mihlin theorem

 $\psi: \mathbf{R}^d \to \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^p(\mathbf{R}^d)$ if

$$\bar{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^p(\mathbf{R}^d) , \qquad \text{for } \theta \in \mathcal{S}(\mathbf{R}^d),$$

and

$$\mathcal{S}(\mathbf{R}^d) \ni \theta \mapsto \bar{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathbf{L}^p(\mathbf{R}^d)$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: L^p(\mathbf{R}^d) \to L^p(\mathbf{R}^d)$.

Theorem. [Hörmander-Mihlin] Let $\psi \in L^{\infty}(\mathbf{R}^d)$ have partial derivatives of order less than or equal to $\kappa = [\frac{d}{2}] + 1$. If for some k > 0

$$(\forall r > 0)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d) \qquad |\boldsymbol{\alpha}| \leqslant \kappa \implies \int_{\frac{r}{2} \leqslant |\boldsymbol{\xi}| \leqslant r} |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} \leqslant k^2 r^{d-2|\boldsymbol{\alpha}|} ,$$

then for any $p \in \langle 1, \infty \rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_d (depending only on the dimension d) such that

$$\|\mathcal{A}_{\psi}\|_{\mathrm{L}^{p}\to\mathrm{L}^{p}} \leqslant C_{d} \max\left\{p, \frac{1}{p-1}\right\} (k+\|\psi\|_{\infty}) .$$

Good bounds in the L^p case: the Hörmander-Mihlin theorem

 $\psi: \mathbf{R}^d \to \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^p(\mathbf{R}^d)$ if

$$ar{\mathcal{F}}(\psi\mathcal{F}(\theta))\in \mathrm{L}^p(\mathbf{R}^d)\ ,\qquad ext{for }\theta\in\mathcal{S}(\mathbf{R}^d),$$

and

$$\mathcal{S}(\mathbf{R}^d) \ni \theta \mapsto \bar{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathbf{L}^p(\mathbf{R}^d)$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: L^p(\mathbf{R}^d) \to L^p(\mathbf{R}^d)$.

Theorem. [Hörmander-Mihlin] Let $\psi \in L^{\infty}(\mathbf{R}^d)$ have partial derivatives of order less than or equal to $\kappa = [\frac{d}{2}] + 1$. If for some k > 0

$$(\forall r > 0)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d) \qquad |\boldsymbol{\alpha}| \leqslant \kappa \implies \int_{\frac{r}{2} \leqslant |\boldsymbol{\xi}| \leqslant r} |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} \leqslant k^2 r^{d-2|\boldsymbol{\alpha}|} ,$$

then for any $p \in \langle 1, \infty \rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_d (depending only on the dimension d) such that

$$\|\mathcal{A}_{\psi}\|_{\mathbf{L}^{p}\to\mathbf{L}^{p}} \leqslant C_{d} \max\left\{p, \frac{1}{p-1}\right\} (k+\|\psi\|_{\infty}) .$$

For $\psi \in C^{\kappa}(S^{d-1})$, extended by homogeneity to \mathbf{R}^{d}_{*} , we can take $k = \|\psi\|_{C^{\kappa}}$.

Theorem. [N.A. & D. Mitrović (2011)] If $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$ and $v_n \stackrel{*}{\longrightarrow} v$ in $L^q(\mathbf{R}^d)$ for some $q \ge \max\{p', 2\}$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$, such that for every $\varphi_1, \varphi_2 \in C_c^{\infty}(\mathbf{R}^d)$ and $\psi \in C^{\kappa}(S^{d-1})$ we have:

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} = \lim_{n'} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x}$$
$$= \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle .$$

Theorem. [N.A. & D. Mitrović (2011)] If $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$ and $v_n \stackrel{*}{\longrightarrow} v$ in $L^q(\mathbf{R}^d)$ for some $q \ge \max\{p', 2\}$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$, such that for every $\varphi_1, \varphi_2 \in C_c^{\infty}(\mathbf{R}^d)$ and $\psi \in C^{\kappa}(S^{d-1})$ we have:

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} &= \lim_{n'} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} \\ &= \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle \,. \end{split}$$

 μ is the *H*-distribution corresponding to (a subsequence of) (u_n) and (v_n) .

Theorem. [N.A. & D. Mitrović (2011)] If $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$ and $v_n \stackrel{*}{\longrightarrow} v$ in $L^q(\mathbf{R}^d)$ for some $q \ge \max\{p', 2\}$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$, such that for every $\varphi_1, \varphi_2 \in C_c^{\infty}(\mathbf{R}^d)$ and $\psi \in C^{\kappa}(S^{d-1})$ we have:

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} &= \lim_{n'} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} \\ &= \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle \,. \end{split}$$

 μ is the *H*-distribution corresponding to (a subsequence of) (u_n) and (v_n) . If (u_n) , (v_n) are defined on $\Omega \subseteq \mathbf{R}^d$, extension by zero to \mathbf{R}^d preserves the convergence, and we can apply the Theorem. μ is supported on $\mathsf{Cl}\,\Omega \times \mathrm{S}^{d-1}$.

Theorem. [N.A. & D. Mitrović (2011)] If $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$ and $v_n \stackrel{*}{\longrightarrow} v$ in $L^q(\mathbf{R}^d)$ for some $q \ge \max\{p', 2\}$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$, such that for every $\varphi_1, \varphi_2 \in C_c^{\infty}(\mathbf{R}^d)$ and $\psi \in C^{\kappa}(S^{d-1})$ we have:

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} &= \lim_{n'} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} \\ &= \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle \,. \end{split}$$

 μ is the *H*-distribution corresponding to (a subsequence of) (u_n) and (v_n) . If (u_n) , (v_n) are defined on $\Omega \subseteq \mathbf{R}^d$, extension by zero to \mathbf{R}^d preserves the convergence, and we can apply the Theorem. μ is supported on $\operatorname{Cl}\Omega \times \operatorname{S}^{d-1}$. We distinguish $u_n \in \operatorname{L}^p(\mathbf{R}^d)$ and $v_n \in \operatorname{L}^q(\mathbf{R}^d)$. For $p \ge 2$, $p' \le 2$ and we can take $q \ge 2$; this covers the L^2 case (including $u_n = v_n$). The assumptions imply $u_n, v_n \longrightarrow 0$ in $\operatorname{L}^2_{\operatorname{loc}}(\mathbf{R}^d)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution). The novelty in Theorem is for p < 2.

Theorem. [N.A. & D. Mitrović (2011)] If $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$ and $v_n \stackrel{*}{\longrightarrow} v$ in $L^q(\mathbf{R}^d)$ for some $q \ge \max\{p', 2\}$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$, such that for every $\varphi_1, \varphi_2 \in C_c^{\infty}(\mathbf{R}^d)$ and $\psi \in C^{\kappa}(S^{d-1})$ we have:

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} &= \lim_{n'} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} \\ &= \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle \;. \end{split}$$

 μ is the *H*-distribution corresponding to (a subsequence of) (u_n) and (v_n) . If (u_n) , (v_n) are defined on $\Omega \subseteq \mathbf{R}^d$, extension by zero to \mathbf{R}^d preserves the convergence, and we can apply the Theorem. μ is supported on $\operatorname{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_n \in \mathrm{L}^p(\mathbf{R}^d)$ and $v_n \in \mathrm{L}^q(\mathbf{R}^d)$. For $p \ge 2$, $p' \le 2$ and we can take $q \ge 2$; this covers the L^2 case (including $u_n = v_n$). The assumptions imply $u_n, v_n \longrightarrow 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\mathbf{R}^d)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution). The novelty in Theorem is for p < 2.

For vector-valued $u_n \in L^p(\mathbf{R}^d; \mathbf{C}^k)$ and $v_n \in L^q(\mathbf{R}^d; \mathbf{C}^l)$, the result is a *matrix* valued distribution $\boldsymbol{\mu} = [\mu^{ij}], i \in 1..k$ and $j \in 1..l$.

Theorem. [N.A. & D. Mitrović (2011)] If $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$ and $v_n \stackrel{*}{\longrightarrow} v$ in $L^q(\mathbf{R}^d)$ for some $q \ge \max\{p', 2\}$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$, such that for every $\varphi_1, \varphi_2 \in C_c^{\infty}(\mathbf{R}^d)$ and $\psi \in C^{\kappa}(S^{d-1})$ we have:

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} &= \lim_{n'} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} \\ &= \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle \;. \end{split}$$

 μ is the *H*-distribution corresponding to (a subsequence of) (u_n) and (v_n) . If (u_n) , (v_n) are defined on $\Omega \subseteq \mathbf{R}^d$, extension by zero to \mathbf{R}^d preserves the convergence, and we can apply the Theorem. μ is supported on $\operatorname{Cl} \Omega \times \operatorname{S}^{d-1}$. We distinguish $u_n \in \operatorname{L}^p(\mathbf{R}^d)$ and $v_n \in \operatorname{L}^q(\mathbf{R}^d)$. For $p \ge 2$, $p' \le 2$ and we can take $q \ge 2$; this covers the L^2 case (including $u_n = v_n$). The assumptions imply $u_n, v_n \longrightarrow 0$ in $\operatorname{L}^2_{\operatorname{loc}}(\mathbf{R}^d)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution). The novelty in Theorem is for p < 2.

For vector-valued $u_n \in L^p(\mathbf{R}^d; \mathbf{C}^k)$ and $v_n \in L^q(\mathbf{R}^d; \mathbf{C}^l)$, the result is a *matrix* valued distribution $\boldsymbol{\mu} = [\mu^{ij}], i \in 1..k$ and $j \in 1..l$.

The H-distribution would correspond to a non-diagonal block for an H-measure.

Theorem. Take $u_n \rightarrow 0$ in $L^p(\mathbf{R}^d)$, $f_n \rightarrow 0$ in $W_{loc}^{-1,q}(\mathbf{R}^d)$, for some $q \in \langle 1, d \rangle$, such that

 $\operatorname{div}\left(\mathsf{a}(\mathbf{x})u_n(\mathbf{x})\right) = f_n(\mathbf{x}) \;.$

Theorem. Take $u_n \rightharpoonup 0$ in $L^p(\mathbf{R}^d)$, $f_n \rightarrow 0$ in $W^{-1,q}_{loc}(\mathbf{R}^d)$, for some $q \in \langle 1, d \rangle$, such that

 $\mathsf{div}\left(\mathsf{a}(\mathbf{x})u_n(\mathbf{x})\right) = f_n(\mathbf{x}) \;.$

Take an arbitrary (v_n) bounded in $L^{\infty}(\mathbf{R}^d)$, and by μ denote the *H*-distribution corresponding to a subsequence of (u_n) and (v_n) . Then

$$(\mathbf{a}(\mathbf{x})\cdot\boldsymbol{\xi})\mu(\mathbf{x},\boldsymbol{\xi})=0$$

in the sense of distributions on $\mathbf{R}^d \times S^{d-1}$, $(\mathbf{x}, \boldsymbol{\xi}) \mapsto \mathsf{a}(\mathbf{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_0^{κ} coefficients.

Theorem. Take $u_n \rightharpoonup 0$ in $L^p(\mathbf{R}^d)$, $f_n \rightarrow 0$ in $W^{-1,q}_{loc}(\mathbf{R}^d)$, for some $q \in \langle 1, d \rangle$, such that

$$\mathsf{div}\left(\mathsf{a}(\mathbf{x})u_n(\mathbf{x})\right) = f_n(\mathbf{x}) \; .$$

Take an arbitrary (v_n) bounded in $L^{\infty}(\mathbf{R}^d)$, and by μ denote the *H*-distribution corresponding to a subsequence of (u_n) and (v_n) . Then

$$(\mathbf{a}(\mathbf{x}) \cdot \boldsymbol{\xi}) \mu(\mathbf{x}, \boldsymbol{\xi}) = 0$$

in the sense of distributions on $\mathbf{R}^d \times S^{d-1}$, $(\mathbf{x}, \boldsymbol{\xi}) \mapsto \mathsf{a}(\mathbf{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_0^{κ} coefficients.

In order to prove the theorem, we need a particular multiplier, the so called (Marcel) Riesz potential $I_1 := \mathcal{A}_{|2\pi\boldsymbol{\xi}|^{-1}}$, and the Riesz transforms $R_j := \mathcal{A}_{\frac{\xi_j}{i|\boldsymbol{\xi}|}}$. Note that

$$\int I_1(\phi)\partial_j g = \int (R_j\phi)g, \ g \in \mathcal{S}(\mathbf{R}^d).$$

Using the density argument and that R_j is bounded from $L^p(\mathbf{R}^d)$ to itself, we conclude $\partial_j I_1(\phi) = -R_j(\phi)$, for $\phi \in L^p(\mathbf{R}^d)$.

Theorem. Take $u_n \rightharpoonup 0$ in $L^p(\mathbf{R}^d)$, $f_n \rightarrow 0$ in $W^{-1,q}_{loc}(\mathbf{R}^d)$, for some $q \in \langle 1, d \rangle$, such that

 $\operatorname{div}\left(\mathsf{a}(\mathbf{x})u_n(\mathbf{x})\right) = f_n(\mathbf{x}) \;.$

Take an arbitrary (v_n) bounded in $L^{\infty}(\mathbf{R}^d)$, and by μ denote the *H*-distribution corresponding to a subsequence of (u_n) and (v_n) . Then

$$(\mathsf{a}(\mathbf{x})\cdot\pmb{\xi})\mu(\mathbf{x},\pmb{\xi})=0$$

in the sense of distributions on $\mathbf{R}^d \times S^{d-1}$, $(\mathbf{x}, \boldsymbol{\xi}) \mapsto a(\mathbf{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_0^{κ} coefficients.

(an application suggested by Darko Mitrović) For scalar conservation law with discontinuous flux, the most up to date existence result for the equation

 $u_t + \operatorname{div} \mathsf{f}(t, \mathbf{x}, u) = 0$

is obtained under the assumptions

$$\max_{\lambda \in \mathbf{R}} |\mathsf{f}(t, \mathbf{x}, \lambda)| \in L^{2+\varepsilon}(\mathbf{R}^d_+) \ .$$

Using the H-distributions, it is poossible to prove an existence result for the given equation under the assumption

$$\max_{\lambda \in \mathbf{R}} |\mathsf{f}(t, \mathbf{x}, \lambda)| \in L^{1+\varepsilon}(\mathbf{R}^d_+) .$$

Further variants

N.A. & I. Ivec (JMAA, 2016): extension to Lebesgue spaces with mixed norm M. Lazar & D. Mitrović (DynPDE, 2012): applications to velocity averaging M. Mišur & D. Mitrović (JFA, 2015): a form of compactness by compensation J. Aleksić, S. Pilipović, I. Vojnović (Mediter. J. Maths, 2017): in S - S' setting F. Rindler (ARMA, 2015): microlocal compactness forms

Theorem. If $\mathbf{u}_n \to \mathbf{0}$ in $L^2(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}_{sc}^{(\omega_n)} \in \mathcal{M}_b(\Omega \times \mathbf{R}^d; M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c^{\infty}(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{sc}^{(\omega_n)}, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \right\rangle.$$

Measure $\mu_{sc}^{(\omega_n)}$ we call the semiclassical measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

Theorem. If $u_n \rightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$, $\omega_n \rightarrow 0^+$, then there exist a subsequence $(u_{n'})$ and $\boldsymbol{\mu}_{sc}^{(\omega_n)} \in \mathcal{M}(\Omega \times \mathbf{R}^d; M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c^{\infty}(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{sc}^{(\omega_n)}, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \right\rangle.$$

The distribution of the zero order $\mu_{sc}^{(\omega_n)}$ we call the semiclassical measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

Theorem. If $\mathbf{u}_n \to 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}_{sc}^{(\omega_n)} \in \mathcal{M}(\Omega \times \mathbf{R}^d; M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c^{\infty}(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{sc}^{(\omega_n)}, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \right\rangle.$$

The distribution of the zero order $\mu_{sc}^{(\omega_n)}$ we call the semiclassical measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

Theorem.

0

$$\mathsf{u}_n \stackrel{\mathrm{L}^2_{\mathrm{loc}}}{\longrightarrow} \mathsf{0} \iff \boldsymbol{\mu}_{sc}^{(\omega_n)} = \mathbf{0} \quad \& \quad (\mathsf{u}_n) \text{ is } (\omega_n) - \textit{oscillatory}$$

Theorem. If $\mathbf{u}_n \to 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exist a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}_{sc}^{(\omega_n)} \in \mathcal{M}(\Omega \times \mathbf{R}^d; M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c^{\infty}(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{\varphi_1 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_2 \mathbf{u}_{n'}}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{sc}^{(\omega_n)}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

The distribution of the zero order $\mu_{sc}^{(\omega_n)}$ we call the semiclassical measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

 $\begin{array}{ll} \text{Definition } (\mathfrak{u}_n) \text{ is } (\omega_n) \text{-socillatory if} \\ (\forall \, \varphi \in \mathrm{C}^\infty_c(\Omega)) \quad \lim_{R \to \infty} \limsup_n \int_{|\boldsymbol{\xi}| \geqslant \frac{R}{\omega_n}} |\widehat{\varphi \mathfrak{u}_n}(\boldsymbol{\xi})|^2 \, d\boldsymbol{\xi} = 0 \, . \end{array}$

Theorem.

$$u_n \stackrel{\mathrm{L}^2_{\mathrm{loc}}}{\longrightarrow} \mathsf{0} \iff \mu_{sc}^{(\omega_n)} = \mathsf{0} \quad \& \quad (\mathsf{u}_n) \text{ is } (\omega_n) - \textit{oscillatory} \,.$$

Localisation principle for semiclassical measures

Let $\Omega \subseteq \mathbf{R}^d$ open, $m \in \mathbf{N}$, $u_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$ and

$$\mathbf{P}_n \mathbf{u}_n := \sum_{|\boldsymbol{\alpha}| \leqslant m} \varepsilon_n^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}} (\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega \,,$$

where

- $\varepsilon_n \to 0^+$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in C(\Omega; M_r(\mathbf{C}))$
- $f_n \longrightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$. Then we have

$$\mathbf{p}\boldsymbol{\mu}_{sc}^{\top}=\mathbf{0}\,,$$

where $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) = \sum_{|\boldsymbol{\alpha}| \leq m} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})$, and $\boldsymbol{\mu}_{sc}$ is semiclassical measure with characteristic length (ε_n) , corresponding to (u_n) .

Localisation principle for semiclassical measures

Let $\Omega \subseteq \mathbf{R}^d$ open, $m \in \mathbf{N}$, $u_n
ightarrow \mathbf{0}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$ and

$$\mathbf{P}_n\mathbf{u}_n:=\sum_{|\boldsymbol{\alpha}|\leqslant m}\varepsilon_n^{|\boldsymbol{\alpha}|}\partial_{\boldsymbol{\alpha}}(\mathbf{A}^{\boldsymbol{\alpha}}\mathbf{u}_n)=\mathbf{f}_n\quad\text{in }\Omega\,,$$

where

- $\varepsilon_n \to 0^+$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in C(\Omega; M_r(\mathbf{C}))$
- $f_n \longrightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$. Then we have

 $\operatorname{supp} \boldsymbol{\mu}_{sc} \subseteq \{ (\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathbf{R}^d : \det \mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) = 0 \},\$

where $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) = \sum_{|\boldsymbol{\alpha}| \leq m} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})$, and $\boldsymbol{\mu}_{sc}$ is semiclassical measure with characteristic length (ε_n) , corresponding to (u_n) .

Localisation principle for semiclassical measures

Let $\Omega \subseteq \mathbf{R}^d$ open, $m \in \mathbf{N}$, $u_n
ightarrow \mathbf{0}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$ and

$$\mathbf{P}_n\mathbf{u}_n:=\sum_{|\pmb{\alpha}|\leqslant m}\varepsilon_n^{|\pmb{\alpha}|}\partial_{\pmb{\alpha}}(\mathbf{A}^{\pmb{\alpha}}\mathbf{u}_n)=\mathbf{f}_n\quad\text{in }\Omega\,,$$

where

- $\varepsilon_n \to 0^+$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in C(\Omega; M_r(\mathbf{C}))$
- $f_n \longrightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$. Then we have

$$\operatorname{supp} \boldsymbol{\mu}_{sc} \subseteq \left\{ (\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathbf{R}^d : \det \mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) = 0 \right\},\$$

where $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) = \sum_{|\boldsymbol{\alpha}| \leq m} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})$, and $\boldsymbol{\mu}_{sc}$ is semiclassical measure with characteristic length (ε_n) , corresponding to (u_n) .

Problem: $\mu_{sc} = 0$ is not enough for the strong convergence!

Compatification of $\mathbf{R}^d \setminus \{\mathbf{0}\}$

 $\begin{array}{ll} \text{Corollary.} & \textbf{a}) \operatorname{C}_0(\mathbf{R}^d) \subseteq \operatorname{C}(\operatorname{K}_{0,\infty}(\mathbf{R}^d)). \\ \textbf{b}) \ \psi \in \operatorname{C}(\operatorname{S}^{d-1}), \ \psi \circ \boldsymbol{\pi} \in \operatorname{C}(\operatorname{K}_{0,\infty}(\mathbf{R}^d)), \ \text{where} \ \boldsymbol{\pi}(\boldsymbol{\xi}) = \boldsymbol{\xi}/|\boldsymbol{\xi}|. \end{array}$

Theorem. If $\mathbf{u}_n \to 0$ in $L^2(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exists a subsequence $(\mathbf{u}_{n'})$ and $\boldsymbol{\mu}_{sc}^{(\omega_n)} \in \mathcal{M}_b(\Omega \times \mathbf{R}^d; M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in \mathbf{C}_c^{\infty}(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \left((\widehat{\varphi_1 \mathbf{u}_{n'}})(\boldsymbol{\xi}) \otimes (\widehat{\varphi_2 \mathbf{u}_{n'}})(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{sc}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle \, .$$

Measure $\mu_{sc}^{(\omega_n)}$ is called the semiclassical measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

Theorem. If $u_n \to 0$ in $L^2(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exists a subsequence $(u_{n'})$ and $\boldsymbol{\mu}_{K_{0,\infty}}^{(\omega_n)} \in \mathcal{M}_b(\Omega \times K_{0,\infty}(\mathbf{R}^d); M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_0(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \left((\widehat{\varphi_1 \mathsf{u}_{n'}})(\boldsymbol{\xi}) \otimes (\widehat{\varphi_2 \mathsf{u}_{n'}})(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

Measure $\mu_{K_{0,\infty}}^{(\omega_n)}$ is called the one-scale H-measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

Theorem. If $u_n \to 0$ in $L^2(\Omega; \mathbf{C}^r)$, $\omega_n \to 0^+$, then there exists a subsequence $(u_{n'})$ and $\boldsymbol{\mu}_{K_{0,\infty}}^{(\omega_n)} \in \mathcal{M}_b(\Omega \times K_{0,\infty}(\mathbf{R}^d); M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_0(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \left((\widehat{\varphi_1 \mathsf{u}_{n'}})(\boldsymbol{\xi}) \otimes (\widehat{\varphi_2 \mathsf{u}_{n'}})(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

Measure $\mu_{K_{0,\infty}}^{(\omega_n)}$ is called the one-scale H-measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

Theorem. If $u_n \rightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$, $\omega_n \rightarrow 0^+$, then there exists a subsequence $(u_{n'})$ and $\boldsymbol{\mu}_{K_{0,\infty}}^{(\omega_n)} \in \mathcal{M}(\Omega \times K_{0,\infty}(\mathbf{R}^d); M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{(\varphi_1 \mathbf{u}_{n'})}(\boldsymbol{\xi}) \otimes \widehat{(\varphi_2 \mathbf{u}_{n'})}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

The distribution of the zero order $\mu_{K_{0,\infty}}^{(\omega_n)}$ is called the one-scale H-measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

Theorem. If $u_n \rightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$, $\omega_n \rightarrow 0^+$, then there exists a subsequence $(u_{n'})$ and $\boldsymbol{\mu}_{K_{0,\infty}}^{(\omega_n)} \in \mathcal{M}(\Omega \times K_{0,\infty}(\mathbf{R}^d); M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \left(\widehat{(\varphi_1 \mathbf{u}_{n'})}(\boldsymbol{\xi}) \otimes \widehat{(\varphi_2 \mathbf{u}_{n'})}(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{\mathbf{K}_{0,\infty}}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

The distribution of the zero order $\mu_{K_{0,\infty}}^{(\omega_n)}$ is called the one-scale H-measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

Theorem. If $u_n \rightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$, $\omega_n \rightarrow 0^+$, then there exists a subsequence $(u_{n'})$ and $\boldsymbol{\mu}_{K_{0,\infty}}^{(\omega_n)} \in \mathcal{M}(\Omega \times K_{0,\infty}(\mathbf{R}^d); M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \left((\widehat{\varphi_1 \mathsf{u}_{n'}})(\boldsymbol{\xi}) \otimes (\widehat{\varphi_2 \mathsf{u}_{n'}})(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

The distribution of the zero order $\mu_{K_{0,\infty}}^{(\omega_n)}$ is called the one-scale H-measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

LUC TARTAR: The general theory of homogenization: A personalized introduction, Springer, 2009. LUC TARTAR: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S **8** (2015) 77–90.

Theorem. If $u_n \rightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$, $\omega_n \rightarrow 0^+$, then there exists a subsequence $(u_{n'})$ and $\boldsymbol{\mu}_{K_{0,\infty}}^{(\omega_n)} \in \mathcal{M}(\Omega \times K_{0,\infty}(\mathbf{R}^d); M_r(\mathbf{C}))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \left((\widehat{\varphi_1 \mathsf{u}_{n'}})(\boldsymbol{\xi}) \otimes (\widehat{\varphi_2 \mathsf{u}_{n'}})(\boldsymbol{\xi}) \right) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

The distribution of the zero order $\mu_{K_{0,\infty}}^{(\omega_n)}$ is called the one-scale H-measure with characteristic length (ω_n) corresponding to the (sub)sequence (u_n) .

LUC TARTAR: The general theory of homogenization: A personalized introduction, Springer, 2009. LUC TARTAR: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77–90. N. A., MARKO ERCEG, MARTIN LAZAR: Localisation principle for one-scale H-measures, submitted (arXiv).

Idea of the proof

Tartar's approach:

- $\mathbf{v}_n(\mathbf{x}, x^{d+1}) := \mathbf{u}_n(\mathbf{x}) e^{\frac{2\pi i x^{d+1}}{\omega_n}} \to \mathbf{0} \text{ in } \mathbf{L}^2_{\mathrm{loc}}(\Omega \times \mathbf{R}; \mathbf{C}^r)$
- $\boldsymbol{\nu}_H \in \mathcal{M}(\Omega \times \mathbf{R} \times \mathrm{S}^d; \mathrm{M}_{\mathrm{r}}(\mathbf{C}))$
- $\mu_{{
 m K}_{0,\infty}}^{(\omega_n)}$ is obtained from u_H (suitable projection in x^{d+1} and ξ_{d+1})

Idea of the proof

Tartar's approach:

- $\mathbf{v}_n(\mathbf{x}, x^{d+1}) := \mathbf{u}_n(\mathbf{x}) e^{\frac{2\pi i x^{d+1}}{\omega_n}} \to \mathbf{0} \text{ in } \mathbf{L}^2_{\mathrm{loc}}(\Omega \times \mathbf{R}; \mathbf{C}^r)$
- $\boldsymbol{\nu}_H \in \mathcal{M}(\Omega \times \mathbf{R} \times \mathrm{S}^d; \mathrm{M}_{\mathrm{r}}(\mathbf{C}))$
- $\mu_{{
 m K}_{0,\infty}}^{(\omega_n)}$ is obtained from u_H (suitable projection in x^{d+1} and ξ_{d+1})

Our approach:

• First commutation lemma:

Lemma. Let $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$, $\varphi \in C_0(\mathbf{R}^d)$, $\omega_n \to 0^+$, and denote $\psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$. Then the commutator can be expressed as a sum

$$C_n := [B_{\varphi}, \mathcal{A}_{\psi_n}] = \tilde{C}_n + K \,,$$

where K is a compact operator on $L^2(\mathbf{R}^d)$, while $\tilde{C}_n \longrightarrow 0$ in the operator norm on $\mathcal{L}(L^2(\mathbf{R}^d))$.

• standard procedure: (a variant of) the kernel theorem, separability, ...
Some properties of $oldsymbol{\mu}_{\mathrm{K}_{0,\infty}}$

Theorem.

$$\begin{array}{ll} \textbf{a} & \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{*} = \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}} , & \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}} \geqslant \mathbf{0} \\ \textbf{b} & \mathbf{u}_{n} \overset{\mathrm{L}^{2}_{\mathrm{loc}}}{\longrightarrow} \mathbf{0} & \Longleftrightarrow & \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}} = \mathbf{0} \\ \textbf{c} & \mathrm{tr} \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}(\Omega \times \Sigma_{\infty}) = \mathbf{0} & \Longleftrightarrow & (\mathbf{u}_{n}) \text{ is } (\omega_{n}) - \textit{oscillatory} \end{array}$$

Some properties of $oldsymbol{\mu}_{\mathrm{K}_{0,\infty}}$

Theorem.

a)
$$\mu_{\mathrm{K}_{0,\infty}}^* = \mu_{\mathrm{K}_{0,\infty}}, \quad \mu_{\mathrm{K}_{0,\infty}} \ge \mathbf{0}$$

b) $u_n \frac{\mathrm{L}_{\mathrm{loc}}^2}{2} \mathbf{0} \quad \Longleftrightarrow \quad \mu_{\mathrm{K}_{0,\infty}} = \mathbf{0}$
c) $\mathrm{tr} \mu_{\mathrm{K}_{0,\infty}}(\Omega \times \Sigma_{\infty}) = \mathbf{0} \quad \Longleftrightarrow \quad (\mathbf{u}_n) \text{ is } (\omega_n) - \text{oscillatory}$

Theorem. $\varphi_1, \varphi_2 \in \mathcal{C}_c(\Omega)$, $\psi \in \mathcal{C}_0(\mathbf{R}^d)$, $\tilde{\psi} \in \mathcal{C}(\mathcal{S}^{d-1})$, $\omega_n \to 0^+$,

$$\begin{array}{ll} \textbf{a)} & \langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{(\omega_n)}, \varphi_1 \bar{\varphi_2} \boxtimes \psi \rangle & = \langle \boldsymbol{\mu}_{sc}^{(\omega_n)}, \varphi_1 \bar{\varphi_2} \boxtimes \psi \rangle \,, \\ \textbf{b)} & \langle \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{(\omega_n)}, \varphi_1 \bar{\varphi_2} \boxtimes \tilde{\psi} \circ \boldsymbol{\pi} \rangle & = \langle \boldsymbol{\mu}_H, \varphi_1 \bar{\varphi_2} \boxtimes \tilde{\psi} \rangle \,, \end{array}$$

where $\pi({m \xi})={m \xi}/|{m \xi}|.$

Let $\Omega \subseteq \mathbf{R}^d$ open, $m \in \mathbf{N}$, $\mathsf{u}_n
ightarrow \mathsf{0}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$ and

$$\sum_{l\leqslant |\pmb{\alpha}|\leqslant m} \varepsilon_n^{|\pmb{\alpha}|-l} \partial_{\pmb{\alpha}}(\mathbf{A}^{\pmb{\alpha}} \mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega\,,$$

where

- $l \in 0..m$
- $\varepsilon_n \to 0^+$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in C(\Omega; M_r(\mathbf{C}))$
- $f_n \in \mathrm{H}^{-m}_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$ such that

$$(\forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega)) \qquad \frac{\widehat{\varphi f_{n}}}{1 + \sum_{s=l}^{m} \varepsilon_{n}^{s-l} |\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text{in} \quad \mathcal{L}^{2}(\mathbf{R}^{d}; \mathbf{C}^{r}) \qquad (\mathcal{C}(\varepsilon_{n}))$$

Let
$$\Omega\subseteq \mathbf{R}^d$$
 open, $m\in \mathbf{N}$, $\mathsf{u}_n
ightarrow \mathsf{0}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega;\mathbf{C}^r)$ and

$$\sum_{l \leqslant |\boldsymbol{\alpha}| \leqslant m} \varepsilon_n^{|\boldsymbol{\alpha}| - l} \partial_{\boldsymbol{\alpha}}(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega \,,$$

where

- $l \in 0..m$
- $\varepsilon_n \to 0^+$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in C(\Omega; M_r(\mathbf{C}))$
- $f_n \in H^{-m}_{loc}(\Omega; \mathbf{C}^r)$ such that

$$(\forall \varphi \in \mathcal{C}_{c}^{\infty}(\Omega)) \qquad \frac{\widehat{\varphi f_{n}}}{1 + \sum_{s=l}^{m} \varepsilon_{n}^{s-l} |\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text{in} \quad \mathcal{L}^{2}(\mathbf{R}^{d}; \mathbf{C}^{r}) \qquad (\mathcal{C}(\varepsilon_{n}))$$

Lemma. a) ($C(\varepsilon_n)$) is equivalent to

$$(\forall \varphi \in \mathrm{C}^\infty_c(\Omega)) \qquad \frac{\widehat{\varphi \mathsf{f}_n}}{1+|\boldsymbol{\xi}|^l + \varepsilon_n^{m-l} |\boldsymbol{\xi}|^m} \longrightarrow 0 \quad \textit{in} \quad \mathrm{L}^2(\mathbf{R}^d; \mathbf{C}^r) \,.$$

 $b) (\exists k \in l..m) f_n \longrightarrow 0 \text{ in } H^{-k}_{loc}(\Omega; \mathbf{C}^r) \implies (\varepsilon_n^{k-l} f_n) \text{ satisfies (} C(\varepsilon_n)).$

$$\begin{split} &\sum_{l\leqslant |\boldsymbol{\alpha}|\leqslant m} \varepsilon_n^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega \,, \\ (\forall \, \varphi \in \mathbf{C}_c^{\infty}(\Omega)) & \quad \frac{\widehat{\varphi \mathbf{f}_n}}{1 + \sum_{s=l}^m \varepsilon_n^{s-l} |\boldsymbol{\xi}|^s} \longrightarrow 0 \quad \text{in } \quad \mathbf{L}^2(\mathbf{R}^d; \mathbf{C}^r) \,. \quad (\mathbf{C}(\varepsilon_n)) \end{split}$$

Theorem. [Tartar (2009)] Under previous assumptions and l = 1, one-scale *H*-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) corresponding to (u_n) satisfies

$$\operatorname{supp}\left(\mathbf{p}\boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{\top}\right)\subseteq\Omega\times\Sigma_{0}\,,$$

where

$$\mathbf{p}(\mathbf{x},\boldsymbol{\xi}) := \sum_{1 \leq |\boldsymbol{\alpha}| \leq m} (2\pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}| + |\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}).$$

$$\begin{split} &\sum_{l\leqslant |\boldsymbol{\alpha}|\leqslant m} \varepsilon_n^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}} (\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega \,, \\ (\forall \, \varphi \in \mathbf{C}_c^{\infty}(\Omega)) & \quad \frac{\widehat{\varphi} \mathbf{f}_n}{1 + \sum_{s=l}^m \varepsilon_n^{s-l} |\boldsymbol{\xi}|^s} \longrightarrow 0 \quad \text{in } \quad \mathbf{L}^2(\mathbf{R}^d; \mathbf{C}^r) \,. \quad (\mathbf{C}(\varepsilon_n)) \end{split}$$

Theorem. [N.A., Erceg, Lazar (2015)] Under previous assumptions, one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) corresponding to (u_n) satisfies

$$\mathbf{p}\boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{\top} = \mathbf{0},$$

where

$$\mathbf{p}(\mathbf{x},\boldsymbol{\xi}) := \sum_{l \leq |\boldsymbol{\alpha}| \leq m} (2\pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}).$$

. .

Localisation principle - final generalisation

Theorem. Take $\varepsilon_n > 0$ bounded, $u_n \rightarrow 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$ and

$$\sum_{l \leqslant |\boldsymbol{\alpha}| \leqslant m} \varepsilon_n^{|\boldsymbol{\alpha}| - l} \partial_{\boldsymbol{\alpha}} (\mathbf{A}_n^{\boldsymbol{\alpha}} \mathbf{u}_n) = \mathbf{f}_n \,,$$

where $\mathbf{A}_{n}^{\boldsymbol{\alpha}} \in C(\Omega; M_{r}(\mathbf{C}))$, $\mathbf{A}_{n}^{\boldsymbol{\alpha}} \longrightarrow \mathbf{A}^{\boldsymbol{\alpha}}$ uniformly on compact sets, and $f_{n} \in H_{loc}^{-m}(\Omega; \mathbf{C}^{r})$ satisfies $(C(\varepsilon_{n}))$.

Then for $\omega_n \to 0^+$ such that $c := \lim_n \frac{\varepsilon_n}{\omega_n} \in [0, \infty]$, the corresponding one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ω_n) satisfies

$$\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{ op} = \mathbf{0}$$

where

$$\mathbf{p}(\mathbf{x},\boldsymbol{\xi}) := \begin{cases} \sum_{|\boldsymbol{\alpha}|=l} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, \quad c = 0\\ \sum_{l \leq |\boldsymbol{\alpha}| \leq m} (2\pi i c)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, \quad c \in \langle 0, \infty \rangle\\ \sum_{|\boldsymbol{\alpha}|=m} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, \quad c = \infty \end{cases}$$

Moreover, if there exists $\varepsilon_0 > 0$ such that $\varepsilon_n > \varepsilon_0$, $n \in \mathbf{N}$, we can take

$$\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) := \sum_{|\boldsymbol{lpha}|=m} rac{\boldsymbol{\xi}^{\boldsymbol{lpha}}}{|\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{lpha}}(\mathbf{x}) \,.$$

Localisation principle - final generalisation

Theorem. Take $\varepsilon_n > 0$ bounded, $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega; \mathbf{C}^r)$ and

$$\sum_{l \leqslant |\boldsymbol{\alpha}| \leqslant m} \varepsilon_n^{|\boldsymbol{\alpha}| - l} \partial_{\boldsymbol{\alpha}} (\mathbf{A}_n^{\boldsymbol{\alpha}} \mathbf{u}_n) = \mathbf{f}_n \,,$$

where $\mathbf{A}_{n}^{\boldsymbol{\alpha}} \in C(\Omega; M_{r}(\mathbf{C}))$, $\mathbf{A}_{n}^{\boldsymbol{\alpha}} \longrightarrow \mathbf{A}^{\boldsymbol{\alpha}}$ uniformly on compact sets, and $f_{n} \in H_{loc}^{-m}(\Omega; \mathbf{C}^{r})$ satisfies $(C(\varepsilon_{n}))$.

Then for $\omega_n \to 0^+$ such that $c := \lim_n \frac{\varepsilon_n}{\omega_n} \in [0, \infty]$, the corresponding one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ω_n) satisfies

$$\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}^{ op} = \mathbf{0}$$

where

$$\mathbf{p}(\mathbf{x},\boldsymbol{\xi}) := \begin{cases} \sum_{|\boldsymbol{\alpha}|=l} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, \quad c = 0\\ \sum_{l \leq |\boldsymbol{\alpha}| \leq m} (2\pi i c)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, \quad c \in \langle 0, \infty \rangle\\ \sum_{|\boldsymbol{\alpha}|=m} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) &, \quad c = \infty \end{cases}$$

Moreover, if there exists $\varepsilon_0 > 0$ such that $\varepsilon_n > \varepsilon_0$, $n \in \mathbf{N}$, we can take

$$\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) := \sum_{|\boldsymbol{lpha}|=m} rac{\boldsymbol{\xi}^{\boldsymbol{lpha}}}{|\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{lpha}}(\mathbf{x}) \,.$$

As a corollary from the previous theorem we can derive localisation principles for H-measures and semiclassical measures.

Thank you for your attention.