H-measures, H-distributions and applications

Nenad Antonić

Department of Mathematics
Faculty of Science
University of Zagreb

Modern challenges in continuum mechanics

$$
\text { Zagreb, 3-6 April } 2016
$$

http://riemann.math.hr/weconmapp/

Introduction to H -measures
What are H -measures?
First examples
Localisation principle
Symmetric systems - compactness by compensation again
Localisation principle for parabolic H -measures
Applications in homogenisation
Small-amplitude homogenisation of heat equation
Periodic small-amplitude homogenisation
Homogenisation of a model based on the Stokes equation
Model based on time-dependent Stokes
H-distributions
Existence
Localisation principle
Other variants
One-scale H-measures
Semiclassical measures
One-scale H-measures
Localisation principle

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H),

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects microlocal defect measures).

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects microlocal defect measures).
Start from $u_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{c}\left(\mathbf{R}^{d}\right)$, and take the Fourier transform:

$$
\widehat{\varphi u_{n}}(\boldsymbol{\xi})=\int_{\mathbf{R}^{d}} e^{-2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}}\left(\varphi u_{n}\right)(\mathbf{x}) d \mathbf{x}
$$

As φu_{n} is supported on a fixed compact set K, so $\left|\widehat{\varphi u_{n}}(\boldsymbol{\xi})\right| \leqslant C$. Furthermore, $u_{n} \longrightarrow 0$, and from the definition $\widehat{\varphi u_{n}}(\boldsymbol{\xi}) \longrightarrow 0$ pointwise. By the Lebesgue dominated convergence theorem applied on bounded sets, we get
$\widehat{\varphi u_{n}} \longrightarrow 0$ strong, i.e. strongly in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$.
On the other hand, by the Plancherel theorem: $\left\|\widehat{\varphi u_{n}}\right\|_{\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)}=\left\|\varphi u_{n}\right\|_{\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)}$.
If $\varphi u_{n} \nrightarrow 0$ in $L^{2}\left(\mathbf{R}^{d}\right)$, then $\widehat{\varphi u_{n}} \not \neg 0$; some information must go to infinity.

Limit is a measure

How does it go to infinity in various directions? Take $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$, and consider:

$$
\lim _{n} \int_{\mathbf{R}^{d}} \psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)\left|\widehat{\varphi u_{n}}\right|^{2} d \boldsymbol{\xi}=\int_{\mathrm{S}^{d-1}} \psi(\boldsymbol{\xi}) d \nu_{\varphi}(\boldsymbol{\xi})
$$

The limit is a linear functional in ψ, thus an integral over the sphere of some nonnegative Radon measure (a bounded sequence of Radon measures has an accumulation point), which depends on φ. How does it depend on φ ?

Limit is a measure

How does it go to infinity in various directions? Take $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$, and consider:

$$
\lim _{n} \int_{\mathbf{R}^{d}} \psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)\left|\widehat{\varphi u_{n}}\right|^{2} d \boldsymbol{\xi}=\int_{\mathrm{S}^{d-1}} \psi(\boldsymbol{\xi}) d \nu_{\varphi}(\boldsymbol{\xi}) .
$$

The limit is a linear functional in ψ, thus an integral over the sphere of some nonnegative Radon measure (a bounded sequence of Radon measures has an accumulation point), which depends on φ. How does it depend on φ ?

Theorem. (u^{n}) a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right), \mathrm{u}^{n} \xrightarrow{\mathrm{~L}^{2}} 0$ (weakly), then there is a subsequence ($\mathrm{u}^{n^{\prime}}$) and $\boldsymbol{\mu}$ on $\mathbf{R}^{d} \times \mathrm{S}^{d-1}$ such that:

$$
\begin{aligned}
\lim _{n^{\prime} \rightarrow \infty} \int_{\mathbf{R}^{d}} \mathcal{F}\left(\varphi_{1} \mathbf{u}^{n^{\prime}}\right) & \otimes \mathcal{F}\left(\varphi_{2} \mathbf{u}^{n^{\prime}}\right) \psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle \\
= & \int_{\mathbf{R}^{d} \times \text { S }^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Why a parabolic variant?

Parabolic pde-s are:
well studied, and we have good theory for them
in some cases we even have explicit solutions (by formulae)
$1: 2$ is certainly a good ratio to start with

Why a parabolic variant?

Parabolic pde-s are:
well studied, and we have good theory for them
in some cases we even have explicit solutions (by formulae)
$1: 2$ is certainly a good ratio to start with
Besides the immediate applications (which motivated this research), related to the properties of parabolic equations, applications are possible to other equations and problems involving the scaling $1: 2$.
Naturally, after understanding this ratio $1: 2$, other ratios should be considered as well, as required by intended applications.

Why a parabolic variant?

Parabolic pde-s are:
well studied, and we have good theory for them
in some cases we even have explicit solutions (by formulae)
$1: 2$ is certainly a good ratio to start with
Besides the immediate applications (which motivated this research), related to the properties of parabolic equations, applications are possible to other equations and problems involving the scaling $1: 2$.
Naturally, after understanding this ratio $1: 2$, other ratios should be considered as well, as required by intended applications.
Terminology: classical as opposed to parabolic or variant H -measures. The sphere we replace by:

$$
\begin{aligned}
\sigma^{4}(\tau, \boldsymbol{\xi}) & :=(2 \pi \tau)^{2}+(2 \pi|\boldsymbol{\xi}|)^{4}=1, \text { or } \\
\sigma_{1}^{2}(\tau, \boldsymbol{\xi}) & :=|\tau|+(2 \pi|\boldsymbol{\xi}|)^{2}=1 .
\end{aligned}
$$

Why a parabolic variant?

Parabolic pde-s are:
well studied, and we have good theory for them
in some cases we even have explicit solutions (by formulae)
$1: 2$ is certainly a good ratio to start with
Besides the immediate applications (which motivated this research), related to the properties of parabolic equations, applications are possible to other equations and problems involving the scaling $1: 2$.
Naturally, after understanding this ratio $1: 2$, other ratios should be considered as well, as required by intended applications.
Terminology: classical as opposed to parabolic or variant H -measures.
The sphere we replace by:

$$
\begin{aligned}
& \sigma^{4}(\tau, \boldsymbol{\xi}):=(2 \pi \tau)^{2}+(2 \pi|\boldsymbol{\xi}|)^{4}=1, \text { or } \\
& \sigma_{1}^{2}(\tau, \boldsymbol{\xi}):=|\tau|+(2 \pi|\boldsymbol{\xi}|)^{2}=1
\end{aligned}
$$

finally we chose the ellipse

$$
\rho^{2}(\tau, \boldsymbol{\xi}):=|\boldsymbol{\xi} / 2|^{2}+\sqrt{(\boldsymbol{\xi} / 2)^{4}+\tau^{2}}=1
$$

Notation.
For simplicity (2D): $(t, x)=\left(x^{0}, x^{1}\right)=\mathbf{x}$ and $(\tau, \xi)=\left(\xi_{0}, \xi_{1}\right)=\boldsymbol{\xi}$.
We use the Fourier transform in both space and time variables.

Rough geometric idea

Take a sequence $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathrm{u}_{n}}\right|^{2}$ along rays and project onto S^{1}

Rough geometric idea

Take a sequence $\mathbf{u}_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto S^{1} parabolas and project onto P^{1}

Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto S^{1} parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):
$S^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1$

Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto S^{1} parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):

$$
S^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1 \quad P^{1} \ldots \rho^{2}(\tau, \xi):=(\xi / 2)^{2}+\sqrt{(\xi / 2)^{4}+\tau^{2}}=1
$$

Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto S^{1} parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):
$S^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1 \quad P^{1} \ldots \rho^{2}(\tau, \xi):=(\xi / 2)^{2}+\sqrt{(\xi / 2)^{4}+\tau^{2}}=1$
and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

Rough geometric idea

Take a sequence $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto S^{1} parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):
$S^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1 \quad P^{1} \ldots \rho^{2}(\tau, \xi):=(\xi / 2)^{2}+\sqrt{(\xi / 2)^{4}+\tau^{2}}=1$
and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad \pi(\tau, \xi):=\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$,

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$, norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier P_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{P_{a} u}=a \hat{u}$.

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$, norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier P_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{P_{a} u}=a \hat{u}$. The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$, norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier P_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{P_{a} u}=a \hat{u}$. The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π :

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier P_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$: $\quad \widehat{P_{a} u}=a \hat{u}$. The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$, norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier P_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$: $\quad \widehat{P_{a} u}=a \hat{u}$. The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad a(\tau, \xi):=\alpha\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$, norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier P_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$: $\quad \widehat{P_{a} u}=a \hat{u}$. The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad a(\tau, \xi):=\alpha\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

The precise scaling is contained in the projections, not the surface.

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$, norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier P_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$: $\quad \widehat{P_{a} u}=a \hat{u}$. The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad a(\tau, \xi):=\alpha\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

The precise scaling is contained in the projections, not the surface.
Now we can state the main theorem.

Existence of H-measures

Theorem. If $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, then there exists its subsequence and a complex matrix Radon measure $\boldsymbol{\mu}$ on

$$
\mathbf{R}^{d} \times S^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(S^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ p) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& =\int_{\mathbf{R}^{d} \times S^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Existence of H-measures

Theorem. If $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, then there exists its subsequence and a complex matrix Radon measure $\boldsymbol{\mu}$ on

$$
\mathbf{R}^{d} \times P^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(P^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ \pi) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
&=\int_{\mathbf{R}^{d} \times P^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Existence of H -measures

Theorem. If $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, then there exists its subsequence and a complex matrix Radon measure $\boldsymbol{\mu}$ on

$$
\mathbf{R}^{d} \times S^{d-1} \quad \mathbf{R}^{d} \times P^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(S^{d-1}\right) \quad \psi \in \mathrm{C}\left(P^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ \pi) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& \quad=\int_{\mathbf{R}^{d} \times S^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) \quad=\int_{\mathbf{R}^{d} \times P^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Oscillation (classical H-measures)

$$
u_{n}(\mathbf{x}):=v(n \mathbf{x}) \longrightarrow 0
$$

$v \in \mathrm{~L}_{\text {loc }}^{2}\left(\mathbf{R}^{d}\right)$ periodic function (with the unit period in each of variables), with the zero mean value.

Oscillation (classical H-measures)

$$
u_{n}(\mathbf{x}):=v(n \mathbf{x}) \longrightarrow 0
$$

$v \in \mathrm{~L}_{\text {loc }}^{2}\left(\mathbf{R}^{d}\right)$ periodic function (with the unit period in each of variables), with the zero mean value.
The associated H -measure

$$
\mu(\mathbf{x}, \boldsymbol{\xi})=\sum_{\mathrm{k} \in \mathbf{Z}^{d} \backslash\{0\}}\left|v_{\mathrm{k}}\right|^{2} \lambda(\mathbf{x}) \delta_{\frac{\mathrm{k}}{}}(\boldsymbol{\xi}),
$$

v_{k} Fourier coefficients of $v\left(v(\mathbf{x})=\sum_{\mathrm{k} \in \mathbf{Z}^{d}} v_{\mathrm{k}} e^{2 \pi i \mathrm{k} \cdot \mathbf{x}}\right)$.
Dual variable preserves information on the direction of propagation (of oscillation).

Oscillation (parabolic H-measures)

Let $v \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)$ be a periodic function

$$
v(t, \mathbf{x})=\sum_{(\omega, \mathrm{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathrm{k}} e^{2 \pi i(\omega t+\mathrm{k} \cdot \mathbf{x})}
$$

where $\hat{v}_{\omega, k}$ denotes Fourier coefficients. Further, assume that v has mean value zero, i.e. $\hat{v}_{0,0}=0$.

Oscillation (parabolic H-measures)

Let $v \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)$ be a periodic function

$$
v(t, \mathbf{x})=\sum_{(\omega, \mathrm{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathrm{k}} e^{2 \pi i(\omega t+\mathrm{k} \cdot \mathbf{x})}
$$

where $\hat{v}_{\omega, k}$ denotes Fourier coefficients. Further, assume that v has mean value zero, i.e. $\hat{v}_{0,0}=0$.
For $\alpha, \beta \in \mathbf{R}^{+}$, we have a sequence of periodic functions with period tending to zero:

$$
u_{n}(t, \mathbf{x}):=v\left(n^{\alpha} t, n^{\beta} \mathbf{x}\right)=\sum_{(\omega, \mathrm{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathrm{k}} e^{2 \pi i\left(n^{\alpha} \omega t+n^{\beta} \mathrm{k} \cdot \mathbf{x}\right)}
$$

Oscillation (parabolic H-measures)

Let $v \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)$ be a periodic function

$$
v(t, \mathbf{x})=\sum_{(\omega, \mathrm{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathrm{k}} e^{2 \pi i(\omega t+\mathrm{k} \cdot \mathbf{x})}
$$

where $\hat{v}_{\omega, k}$ denotes Fourier coefficients. Further, assume that v has mean value zero, i.e. $\hat{v}_{0,0}=0$.
For $\alpha, \beta \in \mathbf{R}^{+}$, we have a sequence of periodic functions with period tending to zero:

$$
u_{n}(t, \mathbf{x}):=v\left(n^{\alpha} t, n^{\beta} \mathbf{x}\right)=\sum_{(\omega, \mathbf{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathrm{k}} e^{2 \pi i\left(n^{\alpha} \omega t+n^{\beta} \mathrm{k} \cdot \mathbf{x}\right)}
$$

Their Fourier transforms are:

$$
\hat{u}_{n}(\tau, \boldsymbol{\xi})=\sum_{(\omega, \mathrm{k}) \in \mathbf{Z}^{1+d}} \hat{v}_{\omega, \mathrm{k}} \delta_{n^{\alpha} \omega}(\tau) \delta_{n^{\beta} \mathrm{k}}(\boldsymbol{\xi})
$$

Oscillation (cont.)

$\left(u_{n}\right)$ is a pure sequence, and the corresponding parabolic H -measure $\mu(t, \mathbf{x}, \tau, \boldsymbol{\xi})$ is
$\lambda(t, \mathbf{x}) \begin{cases}\sum_{\substack{(\omega, \mathrm{k}) \in \mathbf{Z}^{1+d} \\ \omega \neq 0}}\left|\hat{v}_{\omega, \mathrm{k}}\right|^{2} \delta_{\left(\frac{\omega}{|\omega|}, 0\right)}(\tau, \boldsymbol{\xi})+\sum_{\substack{\mathrm{k} \in \mathbf{Z}^{d}}}\left|\hat{v}_{0, \mathrm{k}}\right|^{2} \delta_{\left(0, \frac{\mathrm{k}}{|\mathrm{k}|}\right)}(\tau, \boldsymbol{\xi}), & \alpha>2 \beta \\ \sum_{\substack{(\omega, \mathrm{k}) \in \mathbf{Z}^{1+d} \\ \mathrm{k} \neq 0}}\left|\hat{v}_{\omega, \mathrm{k}}\right|^{2} \delta_{\left(0, \frac{\mathrm{k}}{|\mathrm{k}|}\right)}(\tau, \boldsymbol{\xi})+\sum_{\omega \in \mathbf{Z}}\left|\hat{v}_{\omega, 0}\right|^{2} \delta_{\left(\frac{\omega}{|\omega|}, 0\right)}(\tau, \boldsymbol{\xi}), & \alpha<2 \beta \\ \sum_{(\omega, \mathrm{k}) \in \mathbf{Z}^{1+d}}\left|\hat{v}_{\omega, \mathrm{k}}\right|^{2} \delta{\underset{\left(\frac{\omega}{\rho^{2}(\omega, \mathrm{k})}, \frac{\mathrm{k}}{\rho(\omega, \mathrm{k})}\right)}{ }(\tau, \boldsymbol{\xi}),} \quad \alpha=2 \beta,\end{cases}$
where λ denotes the Lebesgue measure.

Concentration (classical H-measures)

$$
u_{n}(\mathbf{x}):=n^{\frac{d}{2}} v(n \mathbf{x}), \quad\left(v \in \mathrm{~L}^{2}\left(\mathbf{R}^{d}\right)\right)
$$

Concentration (classical H-measures)

$$
u_{n}(\mathbf{x}):=n^{\frac{d}{2}} v(n \mathbf{x}), \quad\left(v \in \mathrm{~L}^{2}\left(\mathbf{R}^{d}\right)\right)
$$

The associated H -measure is of the form $\delta_{0}(\mathbf{x}) \nu(\boldsymbol{\xi})$, where ν is measure on S^{d-1} with surface density

$$
\nu(\boldsymbol{\xi})=\int_{0}^{\infty}|\hat{v}(t \boldsymbol{\xi})|^{2} t^{d-1} d t
$$

i.e.

$$
\mu(\mathbf{x}, \boldsymbol{\xi})=\int_{\mathbf{R}^{d}}|\hat{v}(\boldsymbol{\eta})|^{2} \delta_{\frac{\eta}{\eta \mid}}(\boldsymbol{\xi}) \delta_{0}(\mathbf{x}) d \boldsymbol{\eta}
$$

where \hat{v} denotes the Fourier transformation of v.

Concentration (parabolic H-measures)

For $v \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)$ and $\alpha, \beta \in \mathbf{R}^{+}$

$$
u_{n}(t, \mathbf{x}):=n^{\alpha+\beta d} v\left(n^{2 \alpha} t, n^{2 \beta} \mathbf{x}\right)
$$

is bounded in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d}\right)$ with the norm $\left\|u_{n}\right\|_{\mathrm{L}^{2}\left(\mathbf{R}^{1+d}\right)}=\|v\|_{\mathrm{L}^{2}\left(\mathbf{R}^{1+d}\right)}$ which does not depend on n, and weakly converges to zero.

Concentration (parabolic H-measures)

For $v \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)$ and $\alpha, \beta \in \mathbf{R}^{+}$

$$
u_{n}(t, \mathbf{x}):=n^{\alpha+\beta d} v\left(n^{2 \alpha} t, n^{2 \beta} \mathbf{x}\right)
$$

is bounded in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d}\right)$ with the norm $\left\|u_{n}\right\|_{\mathrm{L}^{2}\left(\mathbf{R}^{1+d}\right)}=\|v\|_{\mathrm{L}^{2}\left(\mathbf{R}^{1+d}\right)}$ which does not depend on n, and weakly converges to zero.
$\left(u_{n}\right)$ is a pure sequence, with the parabolic H -measure $\langle\boldsymbol{\mu}, \phi \boxtimes \psi\rangle=$
$\phi(0,0)\left\{\begin{array}{cc}\int_{\mathbf{R}^{1+d}}|\hat{v}(\sigma, \boldsymbol{\eta})|^{2} \psi\left(\frac{\sigma}{|\sigma|}, 0\right) d \sigma d \boldsymbol{\eta}+\int_{\mathbf{R}^{d}}|\hat{v}(0, \boldsymbol{\eta})|^{2} \psi\left(0, \frac{\boldsymbol{\eta}}{|\boldsymbol{\eta}|}\right) d \boldsymbol{\eta}, & \alpha>2 \beta \\ \int_{\mathbf{R}^{1+d}}|\hat{v}(\sigma, \boldsymbol{\eta})|^{2} \psi\left(0, \frac{\boldsymbol{\eta}}{|\boldsymbol{\eta}|}\right) d \sigma d \boldsymbol{\eta}+\int_{\mathbf{R}}|\hat{v}(\sigma, 0)|^{2} \psi\left(\frac{\sigma}{|\sigma|}, 0\right) d \sigma, & \alpha<2 \beta \\ \int_{\mathbf{R}^{1+d}}|\hat{v}(\sigma, \boldsymbol{\eta})|^{2} \psi\left(\frac{\sigma}{\rho^{2}(\sigma, \boldsymbol{\eta})}, \frac{\boldsymbol{\eta}}{\rho(\sigma, \boldsymbol{\eta})}\right) d \sigma d \boldsymbol{\eta}, & \alpha=2 \beta .\end{array}\right.$

From examples we learn ...

Actually, any non-negative Radon measure on $\Omega \times P^{d-1}$, of total mass A^{2}, can be described as a parabolic H -measure of some sequence $u_{n} \longrightarrow 0$, with $\left\|u_{n}\right\|_{L^{2}} \leqslant A+\varepsilon$.

From examples we learn ...

Actually, any non-negative Radon measure on $\Omega \times P^{d-1}$, of total mass A^{2}, can be described as a parabolic H -measure of some sequence $u_{n} \longrightarrow 0$, with $\left\|u_{n}\right\|_{\mathrm{L}^{2}} \leqslant A+\varepsilon$.
Both for oscillation and concentration, for $\alpha>2 \beta$ the measure μ is supported in poles, while for $\alpha<2 \beta$ on the equator of the surface P^{d}, regardless of the choice of v.

From examples we learn ...

Actually, any non-negative Radon measure on $\Omega \times P^{d-1}$, of total mass A^{2}, can be described as a parabolic H -measure of some sequence $u_{n} \longrightarrow 0$, with $\left\|u_{n}\right\|_{\mathrm{L}^{2}} \leqslant A+\varepsilon$.
Both for oscillation and concentration, for $\alpha>2 \beta$ the measure μ is supported in poles, while for $\alpha<2 \beta$ on the equator of the surface P^{d}, regardless of the choice of v.
When $\alpha=2 \beta$ the parabolic H -measure can be supported in any point of the surface P^{d}.

From examples we learn ...

Actually, any non-negative Radon measure on $\Omega \times P^{d-1}$, of total mass A^{2}, can be described as a parabolic H -measure of some sequence $u_{n} \longrightarrow 0$, with $\left\|u_{n}\right\|_{L^{2}} \leqslant A+\varepsilon$.
Both for oscillation and concentration, for $\alpha>2 \beta$ the measure μ is supported in poles, while for $\alpha<2 \beta$ on the equator of the surface P^{d}, regardless of the choice of v.
When $\alpha=2 \beta$ the parabolic H -measure can be supported in any point of the surface P^{d}.

Other research in this direction:
Panov (IHP:AN, 2011): ultraparabolic H-measures
Ivec \& Mitrović (CPAA, 2011)
Lazar \& Mitrović (MathComm, 2011):
Erceg \& Ivec (2017): fractional H-measures

Introduction to H -measures
What are H -measures?
First examples
Localisation principle
Symmetric systems - compactness by compensation again
Localisation principle for parabolic H -measures
Applications in homogenisation
Small-amplitude homogenisation of heat equation
Periodic small-amplitude homogenisation
Homogenisation of a model based on the Stokes equation
Model based on time-dependent Stokes
H-distributions
Existence
Localisation principle
Other variants
One-scale H-measures
Semiclassical measures
One-scale H-measures
Localisation principle

Symmetric systems - localisation principle

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\mathbf{B u}=\mathbf{f}, \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{r \times r}\right) \text { Hermitian }
$$

Symmetric systems - localisation principle

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\mathbf{B u}=\mathbf{f}, \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{r \times r}\right) \text { Hermitian }
$$

Assume:

$$
\begin{aligned}
& \mathrm{u}^{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}^{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0 .
\end{aligned}
$$

Symmetric systems - localisation principle

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\mathbf{B u}=\mathrm{f}, \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{r \times r}\right) \text { Hermitian }
$$

Assume:

$$
\begin{aligned}
& \mathrm{u}^{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}^{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0
\end{aligned}
$$

Theorem. (localisation principle) If u^{n} satisfies:

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}^{n}\right) \longrightarrow 0 \text { in space } \mathrm{H}_{\mathrm{loc}}^{-1}\left(\mathbf{R}^{d}\right)^{r}
$$

then for $\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}):=\xi_{k} \mathbf{A}^{k}(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$
\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) \overline{\boldsymbol{\mu}}=\mathbf{0}
$$

Symmetric systems - localisation principle

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\mathbf{B u}=\mathrm{f}, \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{r \times r}\right) \text { Hermitian }
$$

Assume:

$$
\begin{aligned}
& \mathrm{u}^{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}^{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0
\end{aligned}
$$

Theorem. (localisation principle) If u^{n} satisfies:

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}^{n}\right) \longrightarrow 0 \text { in space } \mathrm{H}_{\mathrm{loc}}^{-1}\left(\mathbf{R}^{d}\right)^{r}
$$

then for $\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}):=\xi_{k} \mathbf{A}^{k}(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$
\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) \overline{\boldsymbol{\mu}}=\mathbf{0}
$$

Thus, the support of H -measure $\boldsymbol{\mu}$ is contained in the set $\left\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times S^{d-1}: \operatorname{det} \mathbf{P}(\mathbf{x}, \boldsymbol{\xi})=0\right\}$ of points where \mathbf{P} is a singular matrix.

Symmetric systems - localisation principle

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\mathbf{B u}=\mathbf{f}, \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{r \times r}\right) \text { Hermitian }
$$

Assume:

$$
\begin{aligned}
& \mathrm{u}^{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}^{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0
\end{aligned}
$$

Theorem. (localisation principle) If u^{n} satisfies:

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}^{n}\right) \longrightarrow 0 \text { in space } \mathrm{H}_{\mathrm{loc}}^{-1}\left(\mathbf{R}^{d}\right)^{r}
$$

then for $\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}):=\xi_{k} \mathbf{A}^{k}(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$
\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) \overline{\boldsymbol{\mu}}=\mathbf{0}
$$

Thus, the support of H -measure $\boldsymbol{\mu}$ is contained in the set $\left\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times S^{d-1}: \operatorname{det} \mathbf{P}(\mathbf{x}, \boldsymbol{\xi})=0\right\}$ of points where \mathbf{P} is a singular matrix.
The localisation principle is behind the applications to the small-amplitude homogenisation, which can be used in optimal design.

Symmetric systems - localisation principle

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\mathbf{B u}=\mathbf{f}, \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{r \times r}\right) \text { Hermitian }
$$

Assume:

$$
\begin{aligned}
& \mathrm{u}^{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}^{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0
\end{aligned}
$$

Theorem. (localisation principle) If u^{n} satisfies:

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}^{n}\right) \longrightarrow 0 \text { in space } \mathrm{H}_{\mathrm{loc}}^{-1}\left(\mathbf{R}^{d}\right)^{r}
$$

then for $\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}):=\xi_{k} \mathbf{A}^{k}(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$
\mathbf{P}(\mathbf{x}, \boldsymbol{\xi}) \overline{\boldsymbol{\mu}}=\mathbf{0}
$$

Thus, the support of H -measure $\boldsymbol{\mu}$ is contained in the set $\left\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times S^{d-1}: \operatorname{det} \mathbf{P}(\mathbf{x}, \boldsymbol{\xi})=0\right\}$ of points where \mathbf{P} is a singular matrix.
The localisation principle is behind the applications to the small-amplitude homogenisation, which can be used in optimal design.
It is a generalisation of compactness by compensation to variable coefficients.

Localisation principle for parabolic H -measures
In the parabolic case the details become more involved.

Localisation principle for parabolic H-measures
In the parabolic case the details become more involved.
Anisotropic Sobolev spaces $\left.\left(s \in \mathbf{R} ; k_{p}(\tau, \boldsymbol{\xi}):=\left(1+\sigma^{4}(\tau, \boldsymbol{\xi})\right)^{1 / 4}\right)\right)$

$$
\mathrm{H}^{\frac{s}{2}, s}\left(\mathbf{R}^{1+d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{p}^{s} \hat{u} \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)\right\}
$$

Localisation principle for parabolic H-measures

In the parabolic case the details become more involved.
Anisotropic Sobolev spaces $\left.\left(s \in \mathbf{R} ; k_{p}(\tau, \boldsymbol{\xi}):=\left(1+\sigma^{4}(\tau, \boldsymbol{\xi})\right)^{1 / 4}\right)\right)$

$$
\mathrm{H}^{\frac{s}{2}, s}\left(\mathbf{R}^{1+d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{p}^{s} \hat{u} \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)\right\}
$$

Theorem. (localisation principle) Let $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$, uniformly compactly supported in t, satisfy $(s \in \mathbf{N})$

$$
\sqrt{\partial_{t}^{s}}\left(\mathbf{u}_{n} \cdot \mathbf{b}\right)+\sum_{|\boldsymbol{\alpha}|=s} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}}\left(\mathbf{u}_{n} \cdot \mathbf{a}_{\boldsymbol{\alpha}}\right) \longrightarrow 0 \quad \text { in } \quad \mathrm{H}_{\mathrm{loc}}^{-\frac{s}{2},-s}\left(\mathbf{R}^{1+d}\right)
$$

where $\mathrm{b}, \mathrm{a}_{\boldsymbol{\alpha}} \in \mathrm{C}_{b}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$,

Localisation principle for parabolic H-measures

In the parabolic case the details become more involved.
Anisotropic Sobolev spaces $\left.\left(s \in \mathbf{R} ; k_{p}(\tau, \boldsymbol{\xi}):=\left(1+\sigma^{4}(\tau, \boldsymbol{\xi})\right)^{1 / 4}\right)\right)$

$$
\mathrm{H}^{\frac{s}{2}, s}\left(\mathbf{R}^{1+d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{p}^{s} \hat{u} \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)\right\}
$$

Theorem. (localisation principle) Let $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$, uniformly compactly supported in t, satisfy $(s \in \mathbf{N})$

$$
{\sqrt{\partial_{t}}}^{s}\left(\mathbf{u}_{n} \cdot \mathbf{b}\right)+\sum_{|\boldsymbol{\alpha}|=s} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}}\left(\mathbf{u}_{n} \cdot \mathbf{a}_{\boldsymbol{\alpha}}\right) \longrightarrow 0 \quad \text { in } \quad \mathrm{H}_{\mathrm{loc}}^{-\frac{s}{2},-s}\left(\mathbf{R}^{1+d}\right)
$$

where $\mathrm{b}, \mathrm{a}_{\boldsymbol{\alpha}} \in \mathrm{C}_{b}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$, while $\sqrt{\partial}_{t}$ is a pseudodifferential operator with polyhomogeneous symbol $\sqrt{2 \pi i \tau}$, i.e.

$$
\sqrt{\partial}_{t} u=\overline{\mathcal{F}}(\sqrt{2 \pi i \tau} \hat{u}(\tau))
$$

Localisation principle for parabolic H-measures

In the parabolic case the details become more involved.
Anisotropic Sobolev spaces $\left.\left(s \in \mathbf{R} ; k_{p}(\tau, \boldsymbol{\xi}):=\left(1+\sigma^{4}(\tau, \boldsymbol{\xi})\right)^{1 / 4}\right)\right)$

$$
\mathrm{H}^{\frac{s}{2}, s}\left(\mathbf{R}^{1+d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{p}^{s} \hat{u} \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)\right\}
$$

Theorem. (localisation principle) Let $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$, uniformly compactly supported in t, satisfy $(s \in \mathbf{N})$

$$
{\sqrt{\partial_{t}}}^{s}\left(\mathbf{u}_{n} \cdot \mathbf{b}\right)+\sum_{|\boldsymbol{\alpha}|=s} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}}\left(\mathbf{u}_{n} \cdot \mathbf{a}_{\boldsymbol{\alpha}}\right) \longrightarrow 0 \quad \text { in } \quad \mathrm{H}_{\mathrm{loc}}^{-\frac{s}{2},-s}\left(\mathbf{R}^{1+d}\right)
$$

where $\mathrm{b}, \mathrm{a}_{\boldsymbol{\alpha}} \in \mathrm{C}_{b}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$, while $\sqrt{\partial}_{t}$ is a pseudodifferential operator with polyhomogeneous symbol $\sqrt{2 \pi i \tau}$, i.e.

$$
\sqrt{\partial}_{t} u=\overline{\mathcal{F}}(\sqrt{2 \pi i \tau} \hat{u}(\tau))
$$

For parabolic H -measure $\boldsymbol{\mu}$ associated to sequence (u_{n}) one has

$$
\boldsymbol{\mu}\left((\sqrt{2 \pi i \tau})^{s} \overline{\mathrm{~b}}+\sum_{|\boldsymbol{\alpha}|=s}(2 \pi i \boldsymbol{\xi})^{\boldsymbol{\alpha}} \overline{\mathrm{a}}_{\boldsymbol{\alpha}}\right)=0
$$

How to use such a relation? - the heat equation

$$
\left\{\begin{aligned}
\partial_{t} u_{n}-\operatorname{div}\left(\mathbf{A} \nabla u_{n}\right) & =\operatorname{div} \mathrm{f}_{n} \\
u_{n}(0) & =\gamma_{n}
\end{aligned}\right.
$$

$\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{R}^{d}\right), \gamma_{n} \rightharpoonup 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$
continuous, bounded and positive definite: $\mathbf{A}(t, \mathbf{x}) \mathrm{v} \cdot \mathrm{v} \geqslant \alpha \mathrm{v} \cdot \mathrm{v}$

How to use such a relation? - the heat equation

$$
\left\{\begin{aligned}
\partial_{t} u_{n}-\operatorname{div}\left(\mathbf{A} \nabla u_{n}\right) & =\operatorname{div} f_{n} \\
u_{n}(0) & =\gamma_{n}
\end{aligned}\right.
$$

$\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{R}^{d}\right), \gamma_{n} \rightharpoonup 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$
continuous, bounded and positive definite: $\mathbf{A}(t, \mathbf{x}) \mathrm{v} \cdot \mathrm{v} \geqslant \alpha \mathrm{v} \cdot \mathrm{v}$
Localise in time: take θu_{n}, for $\theta \in \mathrm{C}_{c}^{1}\left(\mathbf{R}^{+}\right), \ldots$ Now we can apply the localisation principle (we still denote the localised solutions by u_{n}).

How to use such a relation? - the heat equation

$$
\left\{\begin{aligned}
\partial_{t} u_{n}-\operatorname{div}\left(\mathbf{A} \nabla u_{n}\right) & =\operatorname{div} \mathrm{f}_{n} \\
u_{n}(0) & =\gamma_{n}
\end{aligned}\right.
$$

$\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{R}^{d}\right), \gamma_{n} \rightharpoonup 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$
continuous, bounded and positive definite: $\mathbf{A}(t, \mathbf{x}) \mathrm{v} \cdot \mathrm{v} \geqslant \alpha \mathrm{v} \cdot \mathrm{v}$
Localise in time: take θu_{n}, for $\theta \in \mathrm{C}_{c}^{1}\left(\mathbf{R}^{+}\right), \ldots$ Now we can apply the localisation principle (we still denote the localised solutions by u_{n}).

Furthermore, $\sqrt{\partial_{t}}\left(u_{n}\right):=\left(\sqrt{2 \pi i \tau} \widehat{u_{n}}\right)^{\vee} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d}\right)$.

The heat equation (cont.)

Take

$$
\tilde{\mathbf{v}}_{n}=\left(v_{n}^{0}, \mathrm{v}_{n}, \mathrm{f}_{n}\right):=\left(\sqrt{\partial_{t}} u_{n}, \nabla u_{n}, \mathrm{f}_{n}\right) \longrightarrow 0
$$

in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{R}^{1+2 d}\right)$, which (on a subsequence) defines H -measure

$$
\tilde{\boldsymbol{\mu}}=\left[\begin{array}{ccc}
\mu_{0} & \boldsymbol{\mu}_{01} & \boldsymbol{\mu}_{02} \\
\boldsymbol{\mu}_{10} & \boldsymbol{\mu} & \boldsymbol{\mu}_{12} \\
\boldsymbol{\mu}_{20} & \boldsymbol{\mu}_{21} & \boldsymbol{\mu}_{f}
\end{array}\right] .
$$

The heat equation (cont.)

Take

$$
\tilde{\mathbf{v}}_{n}=\left(v_{n}^{0}, \mathrm{v}_{n}, \mathrm{f}_{n}\right):=\left(\sqrt{\partial_{t}} u_{n}, \nabla u_{n}, \mathrm{f}_{n}\right) \longrightarrow 0
$$

in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{R}^{1+2 d}\right)$, which (on a subsequence) defines H -measure

$$
\tilde{\boldsymbol{\mu}}=\left[\begin{array}{ccc}
\mu_{0} & \boldsymbol{\mu}_{01} & \boldsymbol{\mu}_{02} \\
\boldsymbol{\mu}_{10} & \boldsymbol{\mu} & \boldsymbol{\mu}_{12} \\
\boldsymbol{\mu}_{20} & \boldsymbol{\mu}_{21} & \boldsymbol{\mu}_{f}
\end{array}\right] .
$$

The localisation principle gives us:

$$
\begin{array}{r}
\mu_{0} \sqrt{2 \pi i \tau}-2 \pi i \boldsymbol{\mu}_{01} \cdot \mathbf{A}^{\top} \boldsymbol{\xi}-2 \pi i \boldsymbol{\mu}_{02} \cdot \boldsymbol{\xi}=0 \\
\boldsymbol{\mu}_{10} \sqrt{2 \pi i \tau}-2 \pi i \boldsymbol{\mu} \mathbf{A}^{\top} \boldsymbol{\xi}-2 \pi i \boldsymbol{\mu}_{12} \boldsymbol{\xi}=0 \\
\boldsymbol{\mu}_{20} \sqrt{2 \pi i \tau}-2 \pi i \boldsymbol{\mu}_{21} \mathbf{A}^{\top} \boldsymbol{\xi}-2 \pi i \boldsymbol{\mu}_{f} \boldsymbol{\xi}=0
\end{array}
$$

The heat equation (cont.)

Take

$$
\tilde{\mathbf{v}}_{n}=\left(v_{n}^{0}, \mathrm{v}_{n}, \mathrm{f}_{n}\right):=\left(\sqrt{\partial_{t}} u_{n}, \nabla u_{n}, \mathrm{f}_{n}\right) \longrightarrow 0
$$

in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{R}^{1+2 d}\right)$, which (on a subsequence) defines H -measure

$$
\tilde{\boldsymbol{\mu}}=\left[\begin{array}{ccc}
\mu_{0} & \boldsymbol{\mu}_{01} & \boldsymbol{\mu}_{02} \\
\boldsymbol{\mu}_{10} & \boldsymbol{\mu} & \boldsymbol{\mu}_{12} \\
\boldsymbol{\mu}_{20} & \boldsymbol{\mu}_{21} & \boldsymbol{\mu}_{f}
\end{array}\right] .
$$

The localisation principle gives us:

$$
\begin{aligned}
\mu_{0} \sqrt{2 \pi i \tau}-2 \pi i \boldsymbol{\mu}_{01} \cdot \mathbf{A}^{\top} \boldsymbol{\xi}-2 \pi i \boldsymbol{\mu}_{02} \cdot \boldsymbol{\xi} & =0 \\
\boldsymbol{\mu}_{10} \sqrt{2 \pi i \tau}-2 \pi i \boldsymbol{\mu} \mathbf{A}^{\top} \boldsymbol{\xi}-2 \pi i \boldsymbol{\mu}_{12} \boldsymbol{\xi} & =0 \\
\boldsymbol{\mu}_{20} \sqrt{2 \pi i \tau}-2 \pi i \boldsymbol{\mu}_{21} \mathbf{A}^{\top} \boldsymbol{\xi}-2 \pi i \boldsymbol{\mu}_{f} \boldsymbol{\xi} & =0
\end{aligned}
$$

After some calculation (linear algebra) ...

Expression for H -measure - from given data

$$
\begin{gathered}
\operatorname{tr} \boldsymbol{\mu}=\frac{(2 \pi \boldsymbol{\xi})^{2}}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}} \boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \\
\boldsymbol{\mu}=\frac{(2 \pi)^{2}}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}}\left(\boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi}\right) \boldsymbol{\xi} \otimes \boldsymbol{\xi}
\end{gathered}
$$

Expression for H -measure - from given data

$$
\begin{gathered}
\operatorname{tr} \boldsymbol{\mu}=\frac{(2 \pi \boldsymbol{\xi})^{2}}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}} \boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi}, \\
\boldsymbol{\mu}=\frac{(2 \pi)^{2}}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}}\left(\boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi}\right) \boldsymbol{\xi} \otimes \boldsymbol{\xi} . \\
\mu_{0}=\frac{|2 \pi \tau|}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}} \boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi} .
\end{gathered}
$$

Expression for H -measure - from given data

$$
\begin{gathered}
\operatorname{tr} \boldsymbol{\mu}=\frac{(2 \pi \boldsymbol{\xi})^{2}}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}} \boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi}, \\
\boldsymbol{\mu}=\frac{(2 \pi)^{2}}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}}\left(\boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi}\right) \boldsymbol{\xi} \otimes \boldsymbol{\xi} . \\
\mu_{0}=\frac{|2 \pi \tau|}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}} \boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi} .
\end{gathered}
$$

Thus, from the H -measures for the right hand side term f one can calculate the H -measure of the solution.

Expression for H -measure - from given data

$$
\begin{gathered}
\operatorname{tr} \boldsymbol{\mu}=\frac{(2 \pi \boldsymbol{\xi})^{2}}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}} \boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \\
\boldsymbol{\mu}=\frac{(2 \pi)^{2}}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}}\left(\boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi}\right) \boldsymbol{\xi} \otimes \boldsymbol{\xi} \\
\mu_{0}=\frac{|2 \pi \tau|}{\tau^{2}+(2 \pi \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi})^{2}} \boldsymbol{\mu}_{f} \boldsymbol{\xi} \cdot \boldsymbol{\xi}
\end{gathered}
$$

Thus, from the H -measures for the right hand side term f one can calculate the H -measure of the solution.

However, the oscillation in initial data dies out (the equation is hypoelliptic). Only the right hand side affects the H -measure of solutions.

The situation is different for the Schrödinger equation and for the vibrating plate equation.

Introduction to H -measures
What are H -measures?
First examples
Localisation principle
Symmetric systems - compactness by compensation again
Localisation principle for parabolic H -measures
Applications in homogenisation
Small-amplitude homogenisation of heat equation
Periodic small-amplitude homogenisation
Homogenisation of a model based on the Stokes equation
Model based on time-dependent Stokes
H-distributions
Existence
Localisation principle
Other variants
One-scale H-measures
Semiclassical measures
One-scale H-measures
Localisation principle

Small amplitude homogenisation: setting of the problem

A sequence of parabolic problems
(*)

$$
\left\{\begin{aligned}
\partial_{t} u_{n}-\operatorname{div}\left(\mathbf{A}^{n} \nabla u_{n}\right) & =f \\
u_{n}(0, \cdot) & =u_{0} .
\end{aligned}\right.
$$

where \mathbf{A}^{n} is a perturbation of $\mathbf{A}_{0} \in \mathrm{C}\left(Q ; \mathrm{M}_{d \times d}\right)$, which is bounded from below; for small γ function \mathbf{A}^{n} is analytic in γ :

$$
\mathbf{A}_{\gamma}^{n}(t, \mathbf{x})=\mathbf{A}_{0}+\gamma \mathbf{B}^{n}(t, \mathbf{x})+\gamma^{2} \mathbf{C}^{n}(t, \mathbf{x})+o\left(\gamma^{2}\right),
$$

where $\mathbf{B}^{n}, \mathbf{C}^{n} \xrightarrow{*} \mathbf{0}$ in $\left.\mathrm{L}^{\infty}\left(Q ; \mathrm{M}_{d \times d}\right)\right)$.

Small amplitude homogenisation: setting of the problem

A sequence of parabolic problems
(*)

$$
\left\{\begin{aligned}
\partial_{t} u_{n}-\operatorname{div}\left(\mathbf{A}^{n} \nabla u_{n}\right) & =f \\
u_{n}(0, \cdot) & =u_{0} .
\end{aligned}\right.
$$

where \mathbf{A}^{n} is a perturbation of $\mathbf{A}_{0} \in \mathrm{C}\left(Q ; \mathrm{M}_{d \times d}\right)$, which is bounded from below; for small γ function \mathbf{A}^{n} is analytic in γ :

$$
\mathbf{A}_{\gamma}^{n}(t, \mathbf{x})=\mathbf{A}_{0}+\gamma \mathbf{B}^{n}(t, \mathbf{x})+\gamma^{2} \mathbf{C}^{n}(t, \mathbf{x})+o\left(\gamma^{2}\right),
$$

where $\mathbf{B}^{n}, \mathbf{C}^{n} \xrightarrow{*} \mathbf{0}$ in $\left.\mathrm{L}^{\infty}\left(Q ; \mathrm{M}_{d \times d}\right)\right)$.
Then (after passing to a subsequence if needed)

$$
\mathbf{A}_{\gamma}^{n} \xrightarrow{H} \mathbf{A}_{\gamma}^{\infty}=\mathbf{A}_{0}+\gamma \mathbf{B}_{0}+\gamma^{2} \mathbf{C}_{0}+o\left(\gamma^{2}\right) ;
$$

the limit being measurable in t, \mathbf{x}, and analytic in γ.

No first-order term on the limit

Theorem. The effective conductivity matrix $\mathbf{A}_{\gamma}^{\infty}$ admits the expansion

$$
\mathbf{A}_{\gamma}^{\infty}(t, \mathbf{x})=\mathbf{A}_{0}(t, \mathbf{x})+\gamma^{2} \mathbf{C}_{0}(t, \mathbf{x})+o\left(\gamma^{2}\right) .
$$

No first-order term on the limit

Theorem. The effective conductivity matrix $\mathbf{A}_{\gamma}^{\infty}$ admits the expansion

$$
\mathbf{A}_{\gamma}^{\infty}(t, \mathbf{x})=\mathbf{A}_{0}(t, \mathbf{x})+\gamma^{2} \mathbf{C}_{0}(t, \mathbf{x})+o\left(\gamma^{2}\right) .
$$

Indeed, take $u \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{H}_{0}^{1}(\Omega)\right) \cap \mathrm{H}^{1}\left(\langle 0, T\rangle ; \mathrm{H}^{-1}(\Omega)\right)$, and define $f_{\gamma}:=\partial_{t} u-\operatorname{div}\left(\mathbf{A}_{\gamma}^{\infty} \nabla u\right)$, and $u_{0}:=u(0, \cdot) \in \mathrm{L}^{2}(\Omega)$.

No first-order term on the limit

Theorem. The effective conductivity matrix $\mathbf{A}_{\gamma}^{\infty}$ admits the expansion

$$
\mathbf{A}_{\gamma}^{\infty}(t, \mathbf{x})=\mathbf{A}_{0}(t, \mathbf{x})+\gamma^{2} \mathbf{C}_{0}(t, \mathbf{x})+o\left(\gamma^{2}\right) .
$$

Indeed, take $u \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{H}_{0}^{1}(\Omega)\right) \cap \mathrm{H}^{1}\left(\langle 0, T\rangle ; \mathrm{H}^{-1}(\Omega)\right)$, and define $f_{\gamma}:=\partial_{t} u-\operatorname{div}\left(\mathbf{A}_{\gamma}^{\infty} \nabla u\right)$, and $u_{0}:=u(0, \cdot) \in \mathrm{L}^{2}(\Omega)$.
Next, solve (*) with $\mathbf{A}_{\gamma}^{n}, f_{\gamma}$ and u_{0}, the solution u_{γ}^{n}. Of course, f_{γ} and u_{γ}^{n} analytically depend on γ.

No first-order term on the limit

Theorem. The effective conductivity matrix $\mathbf{A}_{\gamma}^{\infty}$ admits the expansion

$$
\mathbf{A}_{\gamma}^{\infty}(t, \mathbf{x})=\mathbf{A}_{0}(t, \mathbf{x})+\gamma^{2} \mathbf{C}_{0}(t, \mathbf{x})+o\left(\gamma^{2}\right) .
$$

Indeed, take $u \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{H}_{0}^{1}(\Omega)\right) \cap \mathrm{H}^{1}\left(\langle 0, T\rangle ; \mathrm{H}^{-1}(\Omega)\right)$, and define $f_{\gamma}:=\partial_{t} u-\operatorname{div}\left(\mathbf{A}_{\gamma}^{\infty} \nabla u\right)$, and $u_{0}:=u(0, \cdot) \in \mathrm{L}^{2}(\Omega)$.
Next, solve (*) with $\mathbf{A}_{\gamma}^{n}, f_{\gamma}$ and u_{0}, the solution u_{γ}^{n}. Of course, f_{γ} and u_{γ}^{n} analytically depend on γ.
Because of H -convergence, we have the weak convergences in $\mathrm{L}^{2}(Q)$:

$$
\begin{align*}
& \mathrm{E}_{\gamma}^{n}:=\nabla u_{\gamma}^{n} \longrightarrow \nabla u \\
& \mathrm{D}_{\gamma}^{n}:=\mathbf{A}_{\gamma}^{n} \mathrm{E}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u .
\end{align*}
$$

No first-order term on the limit

Theorem. The effective conductivity matrix $\mathbf{A}_{\gamma}^{\infty}$ admits the expansion

$$
\mathbf{A}_{\gamma}^{\infty}(t, \mathbf{x})=\mathbf{A}_{0}(t, \mathbf{x})+\gamma^{2} \mathbf{C}_{0}(t, \mathbf{x})+o\left(\gamma^{2}\right) .
$$

Indeed, take $u \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{H}_{0}^{1}(\Omega)\right) \cap \mathrm{H}^{1}\left(\langle 0, T\rangle ; \mathrm{H}^{-1}(\Omega)\right)$, and define $f_{\gamma}:=\partial_{t} u-\operatorname{div}\left(\mathbf{A}_{\gamma}^{\infty} \nabla u\right)$, and $u_{0}:=u(0, \cdot) \in \mathrm{L}^{2}(\Omega)$.
Next, solve (*) with $\mathbf{A}_{\gamma}^{n}, f_{\gamma}$ and u_{0}, the solution u_{γ}^{n}. Of course, f_{γ} and u_{γ}^{n} analytically depend on γ.
Because of H -convergence, we have the weak convergences in $\mathrm{L}^{2}(Q)$:

$$
\begin{align*}
& \mathrm{E}_{\gamma}^{n}:=\nabla u_{\gamma}^{n} \longrightarrow \nabla u \\
& \mathrm{D}_{\gamma}^{n}:=\mathbf{A}_{\gamma}^{n} \mathrm{E}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u .
\end{align*}
$$

Expansions in Taylor serieses (similarly for f_{γ} and u_{γ}^{n}):

$$
\begin{aligned}
& \mathbf{E}_{\gamma}^{n}=\mathbf{E}_{0}^{n}+\gamma \mathbf{E}_{1}^{n}+\gamma^{2} \mathbf{E}_{2}^{n}+o\left(\gamma^{2}\right) \\
& \mathrm{D}_{\gamma}^{n}=\mathrm{D}_{0}^{n}+\gamma \mathrm{D}_{1}^{n}+\gamma^{2} \mathbf{D}_{2}^{n}+o\left(\gamma^{2}\right) .
\end{aligned}
$$

No first-order term on the limit (cont.)

Inserting (\dagger) and equating the terms with equal powers of γ :

$$
\begin{aligned}
& \mathrm{E}_{0}^{n}=\nabla u, \quad \mathrm{D}_{0}^{n}=\mathbf{A}_{0} \nabla u \\
& \mathrm{D}_{1}^{n}=\mathbf{A}_{0} \mathrm{E}_{1}^{n}+\mathbf{B}^{n} \nabla u \longrightarrow 0 \quad \text { in } \mathrm{L}^{2}(Q) .
\end{aligned}
$$

No first-order term on the limit (cont.)

Inserting (\dagger) and equating the terms with equal powers of γ :

$$
\begin{aligned}
& \mathrm{E}_{0}^{n}=\nabla u, \quad \mathrm{D}_{0}^{n}=\mathbf{A}_{0} \nabla u \\
& \mathrm{D}_{1}^{n}=\mathbf{A}_{0} \mathrm{E}_{1}^{n}+\mathbf{B}^{n} \nabla u \longrightarrow 0 \quad \text { in } \mathrm{L}^{2}(Q) .
\end{aligned}
$$

Also, D_{1}^{n} converges to $\mathbf{B}_{0} \nabla u$ (the term in expansion with γ^{1})

$$
\mathrm{D}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u=\mathbf{A}_{0} \nabla u+\gamma \mathbf{B}_{0} \nabla u+\gamma^{2} \mathbf{C}_{0} \nabla u+o\left(\gamma^{2}\right) .
$$

No first-order term on the limit (cont.)

Inserting (\dagger) and equating the terms with equal powers of γ :

$$
\begin{aligned}
& \mathrm{E}_{0}^{n}=\nabla u, \quad \mathrm{D}_{0}^{n}=\mathbf{A}_{0} \nabla u \\
& \mathrm{D}_{1}^{n}=\mathbf{A}_{0} \mathrm{E}_{1}^{n}+\mathbf{B}^{n} \nabla u \longrightarrow 0 \quad \text { in } \mathrm{L}^{2}(Q) .
\end{aligned}
$$

Also, D_{1}^{n} converges to $\mathbf{B}_{0} \nabla u$ (the term in expansion with γ^{1})

$$
\mathbf{D}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u=\mathbf{A}_{0} \nabla u+\gamma \mathbf{B}_{0} \nabla u+\gamma^{2} \mathbf{C}_{0} \nabla u+o\left(\gamma^{2}\right) .
$$

Thus $\mathbf{B}_{0} \nabla u=0$, and as $u \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{H}_{0}^{1}(\Omega)\right) \cap \mathrm{H}^{1}\left(\langle 0, T\rangle ; \mathrm{H}^{-1}(\Omega)\right)$ was arbitrary, we conclude that $\mathbf{B}_{0}=\mathbf{0}$.

No first-order term on the limit (cont.)

Inserting (\dagger) and equating the terms with equal powers of γ :

$$
\begin{aligned}
& \mathrm{E}_{0}^{n}=\nabla u, \quad \mathrm{D}_{0}^{n}=\mathbf{A}_{0} \nabla u \\
& \mathrm{D}_{1}^{n}=\mathbf{A}_{0} \mathrm{E}_{1}^{n}+\mathbf{B}^{n} \nabla u \longrightarrow 0 \quad \text { in } \mathrm{L}^{2}(Q) .
\end{aligned}
$$

Also, D_{1}^{n} converges to $\mathbf{B}_{0} \nabla u$ (the term in expansion with γ^{1})

$$
\mathrm{D}_{\gamma}^{n} \longrightarrow \mathbf{A}_{\gamma}^{\infty} \nabla u=\mathbf{A}_{0} \nabla u+\gamma \mathbf{B}_{0} \nabla u+\gamma^{2} \mathbf{C}_{0} \nabla u+o\left(\gamma^{2}\right) .
$$

Thus $\mathbf{B}_{0} \nabla u=0$, and as $u \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{H}_{0}^{1}(\Omega)\right) \cap \mathrm{H}^{1}\left(\langle 0, T\rangle ; \mathrm{H}^{-1}(\Omega)\right)$ was arbitrary, we conclude that $\mathbf{B}_{0}=\mathbf{0}$.
For the quadratic term we have:

$$
\mathrm{D}_{2}^{n}=\mathbf{A}_{0} \mathrm{E}_{2}^{n}+\mathbf{B}^{n} \mathrm{E}_{1}^{n}+\mathbf{C}^{n} \nabla u \longrightarrow \lim \mathbf{B}^{n} \mathrm{E}_{1}^{n}=\mathbf{C}_{0} \nabla u,
$$

and this is the limit we still have to compute.

Periodic homogenisation - an example

In the periodic case the explicit formulae for the homogenisation limit are known [BLP].
Together with Fourier analysis:
leading terms in expansion for the small amplitude homogenisation limit.

Periodic homogenisation - an example

In the periodic case the explicit formulae for the homogenisation limit are known [BLP].
Together with Fourier analysis:
leading terms in expansion for the small amplitude homogenisation limit.
Periodic functions-functions defined on $T:=S^{1}=\mathbf{R} / \mathbf{Z}, Y:=\mathbf{R}^{d} / \mathbf{Z}^{d}$ and $Z:=\mathbf{R}^{1+d} / \mathbf{Z}^{1+d}$
We implicitly assume projections of $\mathbf{x} \mapsto \mathbf{y} \in Y$, etc.

Periodic homogenisation - an example

In the periodic case the explicit formulae for the homogenisation limit are known [BLP].
Together with Fourier analysis:
leading terms in expansion for the small amplitude homogenisation limit.
Periodic functions-functions defined on $T:=S^{1}=\mathbf{R} / \mathbf{Z}, Y:=\mathbf{R}^{d} / \mathbf{Z}^{d}$ and $Z:=\mathbf{R}^{1+d} / \mathbf{Z}^{1+d}$
We implicitly assume projections of $\mathbf{x} \mapsto \mathbf{y} \in Y$, etc.
For given $\rho \in\langle 0, \infty\rangle$ we define the sequence \mathbf{A}_{n} by

$$
\mathbf{A}_{n}(t, \mathbf{x})=\mathbf{A}\left(n^{\rho} t, n \mathbf{x}\right)
$$

Periodic homogenisation - an example

In the periodic case the explicit formulae for the homogenisation limit are known [BLP].
Together with Fourier analysis:
leading terms in expansion for the small amplitude homogenisation limit.
Periodic functions-functions defined on $T:=S^{1}=\mathbf{R} / \mathbf{Z}, Y:=\mathbf{R}^{d} / \mathbf{Z}^{d}$ and $Z:=\mathbf{R}^{1+d} / \mathbf{Z}^{1+d}$
We implicitly assume projections of $\mathbf{x} \mapsto \mathbf{y} \in Y$, etc.
For given $\rho \in\langle 0, \infty\rangle$ we define the sequence \mathbf{A}_{n} by

$$
\mathbf{A}_{n}(t, \mathbf{x})=\mathbf{A}\left(n^{\rho} t, n \mathbf{x}\right)
$$

Then $\mathbf{A}_{n} H$-converges to a constant \mathbf{A}_{∞} defined by

$$
\mathbf{A}_{\infty} \mathrm{h}=\int_{Z} \mathbf{A}(\tau, \mathbf{y})(\mathrm{h}+\nabla w(\tau, \mathbf{y})) d \tau d \mathbf{y}
$$

For given h, w is a solution of some BVP, depending on ρ.

Three different cases depending on ρ
$\rho \in\langle 0,2\rangle: w(\tau, \cdot)$ is the unique solution of

$$
\begin{aligned}
& -\operatorname{div}(\mathbf{A}(\tau, \cdot)(\mathrm{h}+\nabla w(\tau, \cdot)))=0 \\
& \quad w(\tau, \cdot) \in \mathrm{H}^{1}(Y), \int_{Y} w(\tau, \mathbf{y}) d \mathbf{y}=0,
\end{aligned}
$$

Three different cases depending on ρ
$\rho \in\langle 0,2\rangle: w(\tau, \cdot)$ is the unique solution of

$$
\begin{aligned}
& -\operatorname{div}(\mathbf{A}(\tau, \cdot)(\mathrm{h}+\nabla w(\tau, \cdot)))=0 \\
& \quad w(\tau, \cdot) \in \mathrm{H}^{1}(Y), \int_{Y} w(\tau, \mathbf{y}) d \mathbf{y}=0,
\end{aligned}
$$

$\rho=2: w$ is defined by

$$
\begin{aligned}
& \partial_{t} w-\operatorname{div}(\mathbf{A}(\mathrm{h}+\nabla w))=0 \\
& w \in \mathrm{~L}^{2}\left(T ; \mathrm{H}^{1}(Y)\right), \partial_{t} w \in \mathrm{~L}^{2}\left(T ; \mathrm{H}^{-1}(Y)\right), \int_{Z} w d \tau d \mathbf{y}=0 .
\end{aligned}
$$

Three different cases depending on ρ

$\rho \in\langle 0,2\rangle: w(\tau, \cdot)$ is the unique solution of

$$
\begin{aligned}
& -\operatorname{div}(\mathbf{A}(\tau, \cdot)(\mathrm{h}+\nabla w(\tau, \cdot)))=0 \\
& \quad w(\tau, \cdot) \in \mathrm{H}^{1}(Y), \int_{Y} w(\tau, \mathbf{y}) d \mathbf{y}=0,
\end{aligned}
$$

$\rho=2: w$ is defined by

$$
\begin{aligned}
& \partial_{t} w-\operatorname{div}(\mathbf{A}(\mathrm{h}+\nabla w))=0 \\
& w \in \mathrm{~L}^{2}\left(T ; \mathrm{H}^{1}(Y)\right), \partial_{t} w \in \mathrm{~L}^{2}\left(T ; \mathrm{H}^{-1}(Y)\right), \int_{Z} w d \tau d \mathbf{y}=0 .
\end{aligned}
$$

$\rho \in\langle 2, \infty\rangle$: define $\widetilde{\mathbf{A}}(y)=\int_{0}^{1} \mathbf{A}(\tau, \mathbf{y}) d \tau$ and w as the solution of

$$
\begin{aligned}
& -\operatorname{div}(\widetilde{\mathbf{A}}(\mathrm{h}+\nabla w))=0 \\
& \quad w \in \mathrm{H}^{1}(Y), \int_{Y} w d \mathbf{y}=0 .
\end{aligned}
$$

Periodic small-amplitude homogenisation

A sequence of small perturbations of a constant coercive matrix $\mathbf{A}_{0} \in \mathrm{M}_{d \times d}$:

$$
\mathbf{A}_{\gamma}^{n}(t, \mathbf{x})=\mathbf{A}_{0}+\gamma \mathbf{B}^{n}(t, \mathbf{x}),
$$

where $\mathbf{B}^{n}(t, \mathbf{x})=\mathbf{B}\left(n^{\rho} t, n \mathbf{x}\right), \mathbf{B}$ is Z-periodic \mathbf{L}^{∞} matrix function satisfying $\int_{Z} \mathbf{B} d \tau d \mathbf{y}=0$.

Periodic small-amplitude homogenisation

A sequence of small perturbations of a constant coercive matrix $\mathbf{A}_{0} \in \mathrm{M}_{d \times d}$:

$$
\mathbf{A}_{\gamma}^{n}(t, \mathbf{x})=\mathbf{A}_{0}+\gamma \mathbf{B}^{n}(t, \mathbf{x}),
$$

where $\mathbf{B}^{n}(t, \mathbf{x})=\mathbf{B}\left(n^{\rho} t, n \mathbf{x}\right), \mathbf{B}$ is Z-periodic \mathbf{L}^{∞} matrix function satisfying $\int_{Z} \mathbf{B} d \tau d \mathbf{y}=0$.
For γ small enough, (eventually passing to a subsequence) we have H-convergence to a limit depending analytically on γ :

$$
\mathbf{A}_{\gamma}^{n} \xrightarrow{H} \mathbf{A}_{\gamma}^{\infty}=\mathbf{A}_{0}+\gamma \mathbf{B}_{0}+\gamma^{2} \mathbf{C}_{0}+o\left(\gamma^{2}\right)
$$

Periodic small-amplitude homogenisation

A sequence of small perturbations of a constant coercive matrix $\mathbf{A}_{0} \in \mathrm{M}_{d \times d}$:

$$
\mathbf{A}_{\gamma}^{n}(t, \mathbf{x})=\mathbf{A}_{0}+\gamma \mathbf{B}^{n}(t, \mathbf{x}),
$$

where $\mathbf{B}^{n}(t, \mathbf{x})=\mathbf{B}\left(n^{\rho} t, n \mathbf{x}\right), \mathbf{B}$ is Z-periodic \mathbf{L}^{∞} matrix function satisfying $\int_{Z} \mathbf{B} d \tau d \mathbf{y}=0$.
For γ small enough, (eventually passing to a subsequence) we have H-convergence to a limit depending analytically on γ :

$$
\mathbf{A}_{\gamma}^{n} \xrightarrow{H} \mathbf{A}_{\gamma}^{\infty}=\mathbf{A}_{0}+\gamma \mathbf{B}_{0}+\gamma^{2} \mathbf{C}_{0}+o\left(\gamma^{2}\right)
$$

and a formula for $\mathbf{A}_{\gamma}^{\infty}$:

$$
\begin{aligned}
\mathbf{A}_{\gamma}^{\infty} \mathbf{h} & \left.=\int_{Z}\left(\mathbf{A}_{0}+\gamma \mathbf{B}\right)\right)\left(\mathbf{h}+\nabla w_{\gamma}\right) d \tau d \mathbf{y} \\
& =\mathbf{A}_{0} \mathbf{h}+\int_{Z} \mathbf{A}_{0} \nabla w_{\gamma}+\gamma \int_{Z} \mathbf{B} \mathbf{h}+\gamma \int_{Z} \mathbf{B} \nabla w_{\gamma}=\mathbf{A}_{0} \mathbf{h}+\gamma \int_{Z} \mathbf{B} \nabla w_{\gamma} .
\end{aligned}
$$

Periodic small-amplitude homogenisation (cont.)

In the last equality the second term equals zero by Gauss' theorem, as w_{γ} is a periodic function. Similarly for the third term.

Periodic small-amplitude homogenisation (cont.)

In the last equality the second term equals zero by Gauss' theorem, as w_{γ} is a periodic function. Similarly for the third term.
Since w_{γ} is a solution of some (initial-)boundary value problem, depending on ρ, it also depends analytically on γ :

$$
w_{\gamma}=w_{0}+\gamma w_{1}+o(\gamma)
$$

Periodic small-amplitude homogenisation (cont.)

In the last equality the second term equals zero by Gauss' theorem, as w_{γ} is a periodic function. Similarly for the third term.
Since w_{γ} is a solution of some (initial-)boundary value problem, depending on ρ, it also depends analytically on γ :

$$
w_{\gamma}=w_{0}+\gamma w_{1}+o(\gamma)
$$

The first order term vanishes, as \mathbf{A}_{0} is constant.

$$
\mathbf{A}_{\gamma}^{\infty} \mathrm{h}=\mathbf{A}_{0} \mathrm{~h}+\gamma^{2} \int_{Z} \mathbf{B} \nabla w_{1}+o\left(\gamma^{2}\right),
$$

so we conclude that $\mathbf{B}_{0}=\mathbf{0}$ and $\mathbf{C}_{0} \mathbf{h}=\int_{Z} \mathbf{B} \nabla w_{1}$.

Periodic small-amplitude homogenisation (cont.)

In the last equality the second term equals zero by Gauss' theorem, as w_{γ} is a periodic function. Similarly for the third term.
Since w_{γ} is a solution of some (initial-)boundary value problem, depending on ρ, it also depends analytically on γ :

$$
w_{\gamma}=w_{0}+\gamma w_{1}+o(\gamma)
$$

The first order term vanishes, as \mathbf{A}_{0} is constant.

$$
\mathbf{A}_{\gamma}^{\infty} \mathrm{h}=\mathbf{A}_{0} \mathrm{~h}+\gamma^{2} \int_{Z} \mathbf{B} \nabla w_{1}+o\left(\gamma^{2}\right)
$$

so we conclude that $\mathbf{B}_{0}=\mathbf{0}$ and $\mathbf{C}_{0} \mathrm{~h}=\int_{Z} \mathbf{B} \nabla w_{1}$.
From this formula, using the Fourier series, one can calculate the second-term approximation \mathbf{C}_{0}. Off course, we must treat separately each one of the above three cases for ρ.

The case $\rho \in\langle 0,2\rangle$ on the limit

Fix $\tau \in[0,1]$; the BVP with coefficient $\mathbf{A}_{0}+\gamma \mathbf{B}$ instead of \mathbf{A} and the above expression for w, we see that w_{1} solves
$(\ddagger)-\operatorname{div}\left(\mathbf{A}_{0} \nabla w_{1}(\tau, \cdot)\right)=\operatorname{div}(\mathbf{B h}), w_{1}(\tau, \cdot) \in \mathrm{H}^{1}(Y), \int_{Y} w_{1}(\tau, \mathbf{y}) d \mathbf{y}=0$

The case $\rho \in\langle 0,2\rangle$ on the limit

Fix $\tau \in[0,1]$; the BVP with coefficient $\mathbf{A}_{0}+\gamma \mathbf{B}$ instead of \mathbf{A} and the above expression for w, we see that w_{1} solves
$(\ddagger)-\operatorname{div}\left(\mathbf{A}_{0} \nabla w_{1}(\tau, \cdot)\right)=\operatorname{div}(\mathbf{B h}), w_{1}(\tau, \cdot) \in \mathrm{H}^{1}(Y), \int_{Y} w_{1}(\tau, \mathbf{y}) d \mathbf{y}=0$
Expanding w_{1} in the Fourier series gives us $\left(J=\mathbf{Z} \times\left(\mathbf{Z}^{d} \backslash\{\mathbf{0}\}\right)\right)$

$$
w_{1}=\sum_{(l, \mathrm{k}) \in J} a_{l \mathrm{k}} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})}
$$

because of $\int_{Y} w_{1}(\tau, \mathbf{y}) d \mathbf{y}=0$.

The case $\rho \in\langle 0,2\rangle$ on the limit

Fix $\tau \in[0,1]$; the BVP with coefficient $\mathbf{A}_{0}+\gamma \mathbf{B}$ instead of \mathbf{A} and the above expression for w, we see that w_{1} solves
$(\ddagger)-\operatorname{div}\left(\mathbf{A}_{0} \nabla w_{1}(\tau, \cdot)\right)=\operatorname{div}(\mathbf{B h}), w_{1}(\tau, \cdot) \in \mathrm{H}^{1}(Y), \int_{Y} w_{1}(\tau, \mathbf{y}) d \mathbf{y}=0$
Expanding w_{1} in the Fourier series gives us $\left(J=\mathbf{Z} \times\left(\mathbf{Z}^{d} \backslash\{\mathbf{0}\}\right)\right)$

$$
w_{1}=\sum_{(l, \mathrm{k}) \in J} a_{l \mathrm{k}} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})}
$$

because of $\int_{Y} w_{1}(\tau, \mathbf{y}) d \mathbf{y}=0$.
Straightforward calculation gives us

$$
\begin{aligned}
\nabla w_{1} & =\sum_{J} 2 \pi i \mathrm{k} a_{l \mathrm{k}} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})} \\
\operatorname{div} \mathbf{A}_{0} \nabla w_{1} & =\sum_{J}(2 \pi i)^{2} \mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k} a_{l \mathrm{k}} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})} .
\end{aligned}
$$

The case $\rho \in\langle 0,2\rangle$ on the limit (cont.)
For \mathbf{B} denote $I:=\mathbf{Z}^{d+1} \backslash\{\mathbf{0}\}$

$$
\begin{aligned}
\mathbf{B} & =\sum_{I} \mathbf{B}_{l k} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})}, \\
\operatorname{div} \mathbf{B h} & =\sum_{I} 2 \pi i \mathbf{B}_{l k} \mathrm{~h} \cdot \mathrm{k} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})} .
\end{aligned}
$$

The case $\rho \in\langle 0,2\rangle$ on the limit (cont.)
For B denote $I:=\mathbf{Z}^{d+1} \backslash\{\mathbf{0}\}$

$$
\begin{aligned}
\mathbf{B} & =\sum_{I} \mathbf{B}_{l k} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})}, \\
\operatorname{div} \mathbf{B h} & =\sum_{I} 2 \pi i \mathbf{B}_{l \mathrm{k}} \mathrm{~h} \cdot \mathrm{k} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})} .
\end{aligned}
$$

(\ddagger) leads to a relation among corresponding Fourier coefficients

$$
\begin{gathered}
2 \pi i \mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k} a_{l \mathrm{k}}=-\mathbf{B}_{l \mathrm{k}} \mathrm{~h} \cdot \mathrm{k}, \\
\text { i.e. } \quad(l, \mathrm{k}) \in \mathbf{Z}_{l \mathrm{k}}=\left\{\begin{aligned}
-\frac{\mathbf{B}_{l \mathrm{k}} \mathrm{~h} \cdot \mathrm{k}}{2 \pi i \mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k}}, & (l, \mathrm{k}) \in J \\
0, & \text { otherwise }
\end{aligned}\right.
\end{gathered}
$$

The case $\rho \in\langle 0,2\rangle$ on the limit (cont.)

For B denote $I:=\mathbf{Z}^{d+1} \backslash\{\mathbf{0}\}$

$$
\begin{aligned}
\mathbf{B} & =\sum_{I} \mathbf{B}_{l \mathrm{k}} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})} \\
\operatorname{div} \mathbf{B h} & =\sum_{I} 2 \pi i \mathbf{B}_{l \mathrm{k}} \mathrm{~h} \cdot \mathrm{k} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})} .
\end{aligned}
$$

(\ddagger) leads to a relation among corresponding Fourier coefficients

$$
\begin{aligned}
& 2 \pi i \mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k} a_{l \mathrm{k}}=-\mathbf{B}_{l \mathrm{k}} \mathrm{~h} \cdot \mathrm{k}, \\
& \text { i.e. } \quad a_{l \mathrm{k}}=\left\{\begin{aligned}
-\frac{\mathbf{B}_{l \mathrm{k}} \mathrm{~h} \cdot \mathrm{k}}{2 \pi i \mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k}}, & (l, \mathrm{k}) \in \mathbf{Z}^{d+1} \\
0, & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

Finally, we obtain

$$
\begin{aligned}
\mathbf{C}_{0} \mathbf{h} & =\int_{Z} \mathbf{B} \nabla w_{1} d \tau d \mathbf{y} \\
& =\int_{Z}\left(\sum_{I} \mathbf{B}_{l \mathrm{k}} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})}\right)\left(\sum_{J}\left(2 \pi i \mathrm{k}^{\prime}\right) a_{l^{\prime} \mathbf{k}^{\prime}} e^{2 \pi i\left(l^{\prime} \tau+\mathrm{k}^{\prime} \cdot \mathbf{y}\right)}\right) d \tau d \mathbf{y}
\end{aligned}
$$

The case $\rho \in\langle 0,2\rangle$ on the limit (cont.)

Due to orthogonality, for the non-vanishing terms in the above product of two series we have $l^{\prime}=-l$ and $\mathrm{k}^{\prime}=-\mathrm{k}$. Therefore,

$$
\begin{aligned}
\mathbf{C}_{0} \mathrm{~h} & =-2 \pi i \sum_{J} \mathbf{B}_{l \mathrm{k}} \mathrm{k} a_{-l,-\mathrm{k}} \\
& =-\sum_{J} \mathbf{B}_{l \mathrm{k}} \mathrm{k} \frac{\mathbf{B}_{-l,-\mathrm{k}} \mathrm{~h} \cdot \mathrm{k}}{\mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k}}=-\sum_{J} \frac{\mathbf{B}_{l \mathrm{k}} \mathrm{k} \otimes \mathbf{B}_{l \mathrm{k}} \mathrm{k}}{\mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k}} \mathrm{~h},
\end{aligned}
$$

where the last equality holds since \mathbf{B} is a real matrix function i.e. $\overline{\mathbf{B}_{l \mathrm{k}}}=\mathbf{B}_{-l,-\mathrm{k}}$.

The case $\rho \in\langle 0,2\rangle$ on the limit (cont.)

Due to orthogonality, for the non-vanishing terms in the above product of two series we have $l^{\prime}=-l$ and $\mathrm{k}^{\prime}=-\mathrm{k}$. Therefore,

$$
\begin{aligned}
\mathbf{C}_{0} \mathrm{~h} & =-2 \pi i \sum_{J} \mathbf{B}_{l \mathrm{k}} \mathrm{k} a_{-l,-\mathrm{k}} \\
& =-\sum_{J} \mathbf{B}_{l \mathrm{k}} \mathrm{k} \frac{\mathbf{B}_{-l,-\mathrm{k}} \mathrm{~h} \cdot \mathrm{k}}{\mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k}}=-\sum_{J} \frac{\mathbf{B}_{l \mathrm{k}} \mathrm{k} \otimes \mathbf{B}_{l \mathrm{k}} \mathrm{k}}{\mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k}} \mathrm{~h},
\end{aligned}
$$

where the last equality holds since \mathbf{B} is a real matrix function i.e. $\overline{\mathbf{B}_{l \mathrm{k}}}=\mathbf{B}_{-l,-\mathrm{k}}$. We conclude

$$
\mathbf{C}_{0}=-\sum_{J} \frac{\mathbf{B}_{l \mathrm{k}} \mathrm{k} \otimes \mathbf{B}_{l \mathrm{k}} \mathrm{k}}{\mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k}}
$$

The case $\rho=2$ on the limit

The calculation is similar to the first case. The only difference appears in the equation for $w_{1}=\sum_{(l, \mathrm{k}) \in I} a_{l \mathrm{k}} e^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})}:$

$$
\partial_{\tau} w_{1}-\operatorname{div}\left(\mathbf{A}_{0} \nabla w_{1}(\tau, \cdot)\right)=\operatorname{div}(\mathbf{B h})
$$

The case $\rho=2$ on the limit

The calculation is similar to the first case. The only difference appears in the equation for $w_{1}=\sum_{(l, \mathrm{k}) \in I} a_{l \mathrm{k}} \mathrm{e}^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})}:$

$$
\partial_{\tau} w_{1}-\operatorname{div}\left(\mathbf{A}_{0} \nabla w_{1}(\tau, \cdot)\right)=\operatorname{div}(\mathbf{B h})
$$

implying the following relation for the Fourier coefficients

$$
\left(l-2 \pi i \mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k} a_{l \mathrm{k}}\right)=\mathbf{B}_{l \mathrm{k}} \mathrm{~h} \cdot \mathrm{k}, \quad(l, \mathrm{k}) \in I
$$

The case $\rho=2$ on the limit

The calculation is similar to the first case. The only difference appears in the equation for $w_{1}=\sum_{(l, \mathrm{k}) \in I} a_{l \mathrm{k}} \mathrm{e}^{2 \pi i(l \tau+\mathrm{k} \cdot \mathbf{y})}$:

$$
\partial_{\tau} w_{1}-\operatorname{div}\left(\mathbf{A}_{0} \nabla w_{1}(\tau, \cdot)\right)=\operatorname{div}(\mathbf{B h})
$$

implying the following relation for the Fourier coefficients

$$
\left(l-2 \pi i \mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k} a_{l \mathrm{k}}\right)=\mathbf{B}_{l \mathrm{k}} \mathrm{~h} \cdot \mathrm{k}, \quad(l, \mathrm{k}) \in I
$$

and the formula for the second order approximation of the H-limit:

$$
\mathbf{C}_{0}=-\sum_{J} \frac{\mathbf{B}_{l \mathrm{k}} \mathrm{k} \otimes \mathbf{B}_{l \mathrm{k}} \mathrm{k}}{\frac{l}{2 \pi i}+\mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k}}
$$

The case $\rho \in\langle 2, \infty\rangle$ on the limit

In this case w_{1} does not depend on τ. Introducing

$$
\widetilde{\mathbf{B}}(\mathbf{y}):=\int_{0}^{1} \mathbf{B}(\tau, \mathbf{y}) d \tau
$$

this case actually has the same behaviour as the one in elliptic setting, giving the formula

$$
\mathbf{C}_{0}=-\sum_{\mathbf{z}^{d} \backslash\{\mathbf{0}\}} \frac{\widetilde{\mathbf{B}}_{\mathrm{k}} \mathrm{k} \otimes \widetilde{\mathbf{B}}_{\mathrm{k}} \mathrm{k}}{\mathbf{A}_{0} \mathrm{k} \cdot \mathrm{k}} .
$$

Parabolic small-amplitude homogenisation-general case

Let us continue what we were doing before...

Parabolic small-amplitude homogenisation-general case

Let us continue what we were doing before...
For the quadratic term we have:

$$
\mathrm{D}_{2}^{n}=\mathbf{A}_{0} \mathrm{E}_{2}^{n}+\mathbf{B}^{n} \mathrm{E}_{1}^{n}+\mathbf{C}^{n} \nabla u \longrightarrow \lim \mathbf{B}^{n} \mathbf{E}_{1}^{n}=\mathbf{C}_{0} \nabla u,
$$

and this is the limit we shall express using only the parabolic variant H -measure μ.

Parabolic small-amplitude homogenisation-general case

Let us continue what we were doing before...
For the quadratic term we have:

$$
\mathrm{D}_{2}^{n}=\mathbf{A}_{0} \mathrm{E}_{2}^{n}+\mathbf{B}^{n} \mathrm{E}_{1}^{n}+\mathbf{C}^{n} \nabla u \longrightarrow \lim \mathbf{B}^{n} \mathbf{E}_{1}^{n}=\mathbf{C}_{0} \nabla u,
$$

and this is the limit we shall express using only the parabolic variant H -measure μ.
u_{1}^{n} satisfies the equation $(*)$ with coefficients $\mathbf{A}_{0}, \operatorname{div}\left(\mathbf{B}^{n} \nabla u\right)$ on the right hand side and the homogeneous innitial condition.

Parabolic small-amplitude homogenisation-general case

Let us continue what we were doing before...
For the quadratic term we have:

$$
\mathrm{D}_{2}^{n}=\mathbf{A}_{0} \mathrm{E}_{2}^{n}+\mathbf{B}^{n} \mathrm{E}_{1}^{n}+\mathbf{C}^{n} \nabla u \longrightarrow \lim \mathbf{B}^{n} \mathbf{E}_{1}^{n}=\mathbf{C}_{0} \nabla u,
$$

and this is the limit we shall express using only the parabolic variant H -measure $\boldsymbol{\mu}$.
u_{1}^{n} satisfies the equation $(*)$ with coefficients $\mathbf{A}_{0}, \operatorname{div}\left(\mathbf{B}^{n} \nabla u\right)$ on the right hand side and the homogeneous innitial condition.
By applying the Fourier transform (as if the equation were valid in the whole space), and multiplying by $2 \pi i \boldsymbol{\xi}$, for $(\tau, \boldsymbol{\xi}) \neq(0,0)$ we get

$$
\widehat{\nabla u_{1}^{n}}(\tau, \boldsymbol{\xi})=-\frac{(2 \pi)^{2}(\boldsymbol{\xi} \otimes \boldsymbol{\xi})\left(\widehat{\mathbf{B}^{n} \nabla u}\right)(\tau, \boldsymbol{\xi})}{2 \pi i \tau+(2 \pi)^{2} \mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}}
$$

Parabolic small-amplitude homogenisation-general case

Let us continue what we were doing before...
For the quadratic term we have:

$$
\mathrm{D}_{2}^{n}=\mathbf{A}_{0} \mathbf{E}_{2}^{n}+\mathbf{B}^{n} \mathbf{E}_{1}^{n}+\mathbf{C}^{n} \nabla u \longrightarrow \lim \mathbf{B}^{n} \mathbf{E}_{1}^{n}=\mathbf{C}_{0} \nabla u
$$

and this is the limit we shall express using only the parabolic variant H -measure $\boldsymbol{\mu}$.
u_{1}^{n} satisfies the equation $(*)$ with coefficients $\mathbf{A}_{0}, \operatorname{div}\left(\mathbf{B}^{n} \nabla u\right)$ on the right hand side and the homogeneous innitial condition.
By applying the Fourier transform (as if the equation were valid in the whole space), and multiplying by $2 \pi i \boldsymbol{\xi}$, for $(\tau, \boldsymbol{\xi}) \neq(0,0)$ we get

$$
\widehat{\nabla u_{1}^{n}}(\tau, \boldsymbol{\xi})=-\frac{(2 \pi)^{2}(\boldsymbol{\xi} \otimes \boldsymbol{\xi})\left(\widehat{\mathbf{B}^{n} \nabla u}\right)(\tau, \boldsymbol{\xi})}{2 \pi i \tau+(2 \pi)^{2} \mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}}
$$

(the precise argument involves localisation principle and some calculations...)

Expression for the quadratic correction

As $(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) /\left(2 \pi i \tau+(2 \pi)^{2} \mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}\right)$ is constant along branches of paraboloids $\tau=c \xi^{2}, c \in \overline{\mathbf{R}}$, we have $\left(\varphi \in \mathrm{C}_{c}^{\infty}(Q)\right)$

$$
\begin{aligned}
\lim _{n}\left\langle\varphi \mathbf{B}^{n} \mid \nabla u_{1}^{n}\right\rangle & =-\lim _{n}\left\langle\widehat{\varphi \mathbf{B}^{n}} \left\lvert\, \frac{(2 \pi)^{2}(\boldsymbol{\xi} \otimes \boldsymbol{\xi})\left(\widehat{\mathbf{B}^{n} \nabla u}\right)}{2 \pi i \tau+(2 \pi)^{2} \mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}}\right.\right\rangle \\
& =-\left\langle\boldsymbol{\mu}, \varphi \frac{(2 \pi)^{2} \boldsymbol{\xi} \otimes \boldsymbol{\xi} \otimes \nabla u}{-2 \pi i \tau+(2 \pi)^{2} \mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}}\right\rangle
\end{aligned}
$$

where $\boldsymbol{\mu}$ is the parabolic variant H -measure associated to $\left(\mathbf{B}^{n}\right)$, a measure with four indices (the first two of them not being contracted above).

Expression for the quadratic correction (cont.)

By varying function $u \in \mathrm{C}^{1}(Q)$ (e.g. choosing ∇u constant on $\langle 0, T\rangle \times \omega$, where $\omega \subseteq \Omega$) we get

$$
\int_{\langle 0, T\rangle \times \omega} C_{0}^{i j}(t, \mathbf{x}) \phi(t, \mathbf{x}) d t d \mathbf{x}=-\left\langle\boldsymbol{\mu}^{i j}, \phi \frac{(2 \pi)^{2} \boldsymbol{\xi} \otimes \boldsymbol{\xi}}{-2 \pi i \tau+(2 \pi)^{2} \mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}}\right\rangle,
$$

where $\boldsymbol{\mu}^{i j}$ denotes the matrix measure with components $\left(\boldsymbol{\mu}^{i j}\right)_{k l}=\mu_{i k l j}$.

Expression for the quadratic correction (cont.)

By varying function $u \in \mathrm{C}^{1}(Q)$ (e.g. choosing ∇u constant on $\langle 0, T\rangle \times \omega$, where $\omega \subseteq \Omega$) we get

$$
\int_{\langle 0, T\rangle \times \omega} C_{0}^{i j}(t, \mathbf{x}) \phi(t, \mathbf{x}) d t d \mathbf{x}=-\left\langle\boldsymbol{\mu}^{i j}, \phi \frac{(2 \pi)^{2} \boldsymbol{\xi} \otimes \boldsymbol{\xi}}{-2 \pi i \tau+(2 \pi)^{2} \mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}}\right\rangle,
$$

where $\boldsymbol{\mu}^{i j}$ denotes the matrix measure with components $\left(\boldsymbol{\mu}^{i j}\right)_{k l}=\mu_{i k l j}$.
For the periodic example of small-amplitude homogenisation, we get the same results by applying the variant H-measures, as with direct calculations performed above.

Homogenisation of a model based on the Stokes equation: stationary case
(Tartar, 1976 and 1984)
$\Omega \subseteq \mathbf{R}^{3}$ open set, $\mathrm{u}_{n} \longrightarrow \mathrm{u}_{0}$ in $\mathrm{H}_{\mathrm{loc}}^{1}\left(\Omega ; \mathbf{R}^{3}\right)$

$$
\left\{\begin{aligned}
-\nu \Delta \mathbf{u}_{n}+\mathbf{u}_{n} \times \operatorname{rot}\left(\mathrm{v}_{0}+\lambda \mathbf{v}_{n}\right)+\nabla p_{n} & =\mathrm{f}_{n} \\
\operatorname{div} \mathrm{u}_{n} & =0
\end{aligned}\right.
$$

Homogenisation of a model based on the Stokes equation: stationary case
(Tartar, 1976 and 1984)
$\Omega \subseteq \mathbf{R}^{3}$ open set, $\mathrm{u}_{n} \longrightarrow \mathrm{u}_{0}$ in $\mathrm{H}_{\mathrm{loc}}^{1}\left(\Omega ; \mathbf{R}^{3}\right)$

$$
\left\{\begin{aligned}
-\nu \triangle \mathbf{u}_{n}+\mathrm{u}_{n} \times \operatorname{rot}\left(\mathrm{v}_{0}+\lambda \mathrm{v}_{n}\right)+\nabla p_{n} & =\mathrm{f}_{n} \\
\operatorname{div} \mathrm{u}_{n} & =0
\end{aligned}\right.
$$

Not a realistic model, but contains the terms: $u \times \operatorname{rot} A$ resulting from the Lorentz force $q(\mathbf{u} \times \mathrm{B})$ in electrostatics, or in fluids $(\nabla \mathrm{u}) \mathrm{u}=\mathrm{u} \times \operatorname{rot}(-\mathrm{u})+\nabla \frac{|\mathrm{u}|^{2}}{2}$.

Homogenisation of a model based on the Stokes equation: stationary case
(Tartar, 1976 and 1984)
$\Omega \subseteq \mathbf{R}^{3}$ open set, $\mathrm{u}_{n} \longrightarrow \mathrm{u}_{0}$ in $\mathrm{H}_{\mathrm{loc}}^{1}\left(\Omega ; \mathbf{R}^{3}\right)$

$$
\left\{\begin{aligned}
-\nu \triangle \mathbf{u}_{n}+\mathbf{u}_{n} \times \operatorname{rot}\left(\mathrm{v}_{0}+\lambda \mathbf{v}_{n}\right)+\nabla p_{n} & =\mathrm{f}_{n} \\
\operatorname{div} \mathbf{u}_{n} & =0
\end{aligned}\right.
$$

Not a realistic model, but contains the terms: $u \times \operatorname{rot} A$ resulting from the Lorentz force $q(\mathbf{u} \times \mathrm{B})$ in electrostatics, or in fluids $(\nabla \mathrm{u}) \mathrm{u}=\mathrm{u} \times \operatorname{rot}(-\mathrm{u})+\nabla \frac{|\mathrm{u}|^{2}}{2}$.

Theorem. There is a subsequence and $\mathbf{M} \geqslant 0$, depending on the choice of the subsequence, such that the limit u_{0} satisfies:

$$
\left\{\begin{aligned}
-\nu \triangle \mathbf{u}_{0}+\mathbf{u}_{0} \times \operatorname{rot} \mathrm{v}_{0}+\lambda^{2} \mathbf{M} \mathbf{u}_{0}+\nabla p_{0} & =\mathrm{f}_{0} \\
\operatorname{div} \mathbf{u}_{0} & =0
\end{aligned}\right.
$$

and it holds:

$$
\nu\left|\nabla \mathbf{u}_{n}\right|^{2} \longrightarrow \nu\left|\nabla \mathbf{u}_{0}\right|^{2}+\lambda^{2} \mathbf{M} \mathbf{u}_{0} \cdot \mathbf{u}_{0} \quad \text { in } \mathcal{D}^{\prime}(\Omega)
$$

Explicit formula via H-measures

Can \mathbf{M} be computed directly from $\mathrm{v}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)$ (also bounded in $\mathrm{L}^{3}\left(\Omega ; \mathbf{R}^{3}\right)$)?

Explicit formula via H -measures

Can \mathbf{M} be computed directly from $\mathrm{v}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)$ (also bounded in $\mathrm{L}^{3}\left(\Omega ; \mathbf{R}^{3}\right)$)? Yes! (Tartar, 1990)

$$
\mathbf{M}=\frac{1}{\nu}\left\langle\left\langle\boldsymbol{\mu},\left(v^{2}-(v \cdot \boldsymbol{\xi})^{2}\right) \boldsymbol{\xi} \otimes \boldsymbol{\xi}\right\rangle\right\rangle .
$$

Explicit formula via H -measures

Can \mathbf{M} be computed directly from $\mathrm{v}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)$ (also bounded in $\mathrm{L}^{3}\left(\Omega ; \mathbf{R}^{3}\right)$)? Yes! (Tartar, 1990)

$$
\mathbf{M}=\frac{1}{\nu}\left\langle\left\langle\boldsymbol{\mu},\left(v^{2}-(v \cdot \boldsymbol{\xi})^{2}\right) \boldsymbol{\xi} \otimes \boldsymbol{\xi}\right\rangle\right\rangle .
$$

Note. The meaning of the formula: $\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right)$

$$
\int_{\Omega} \mathbf{M}(\mathbf{x}) \varphi(\mathbf{x}) d \mathbf{x}=\frac{1}{\nu}[\langle\operatorname{tr} \boldsymbol{\mu}, \varphi \boxtimes(\boldsymbol{\xi} \otimes \boldsymbol{\xi})\rangle-\langle\boldsymbol{\mu}, \varphi \boxtimes(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \otimes(\boldsymbol{\xi} \otimes \boldsymbol{\xi})\rangle] .
$$

Explicit formula via H-measures

Can \mathbf{M} be computed directly from $\mathrm{v}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)$ (also bounded in $\mathrm{L}^{3}\left(\Omega ; \mathbf{R}^{3}\right)$)? Yes! (Tartar, 1990)

$$
\mathbf{M}=\frac{1}{\nu}\left\langle\left\langle\boldsymbol{\mu},\left(v^{2}-(v \cdot \boldsymbol{\xi})^{2}\right) \boldsymbol{\xi} \otimes \boldsymbol{\xi}\right\rangle\right\rangle .
$$

Note. The meaning of the formula: $\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right)$

$$
\int_{\Omega} \mathbf{M}(\mathbf{x}) \varphi(\mathbf{x}) d \mathbf{x}=\frac{1}{\nu}[\langle\operatorname{tr} \boldsymbol{\mu}, \varphi \boxtimes(\boldsymbol{\xi} \otimes \boldsymbol{\xi})\rangle-\langle\boldsymbol{\mu}, \varphi \boxtimes(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) \otimes(\boldsymbol{\xi} \otimes \boldsymbol{\xi})\rangle] .
$$

M is not only a measure, but a function.

What in the time-dependent case?

Stationary model motivated the introduction of H -measures. Time-dependent led to a variant.

What in the time-dependent case?

Stationary model motivated the introduction of H-measures.
Time-dependent led to a variant.
Tartar with Chun Liu and Konstantina Trevisa some twenty years ago; only written record in Multiscales 2000.

What in the time-dependent case?

Stationary model motivated the introduction of H-measures.
Time-dependent led to a variant.
Tartar with Chun Liu and Konstantina Trevisa some twenty years ago; only written record in Multiscales 2000.
M. Lazar and myself - wrote it down (technical difference in the scaling).

Time dependent case

On \mathbf{R}^{3} (we need good estimates for the pressure).

Time dependent case

On \mathbf{R}^{3} (we need good estimates for the pressure).
Tartar's model from 1985:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{u}_{n}-\nu \triangle \mathbf{u}_{n}+\mathbf{u}_{n} \times \operatorname{rot}\left(\mathbf{v}_{0}+\lambda \mathbf{v}_{n}\right)+\nabla p_{n} & =\mathrm{f}_{n} \\
\operatorname{div} \mathbf{u}_{n} & =0
\end{aligned}\right.
$$

Assume that

$$
\begin{array}{ll}
\mathbf{u}_{n} \longrightarrow \mathbf{u}_{0} & \text { in } \mathrm{L}^{2}\left([0, T] ; \mathrm{H}^{1}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right) \\
\mathbf{u}_{n} \xrightarrow{*} \mathbf{u}_{0} \quad \text { in } \mathrm{L}^{\infty}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right)
\end{array}
$$

and $\left(p_{n}\right)$ is bounded in $\mathrm{L}^{2}\left([0, T] \times \mathbf{R}^{3}\right)$.

Time dependent case

On \mathbf{R}^{3} (we need good estimates for the pressure).
Tartar's model from 1985:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{u}_{n}-\nu \triangle \mathbf{u}_{n}+\mathbf{u}_{n} \times \operatorname{rot}\left(\mathbf{v}_{0}+\lambda \mathbf{v}_{n}\right)+\nabla p_{n} & =\mathrm{f}_{n} \\
\operatorname{div} \mathbf{u}_{n} & =0
\end{aligned}\right.
$$

Assume that

$$
\begin{array}{ll}
\mathbf{u}_{n} \longrightarrow \mathbf{u}_{0} & \text { in } \mathrm{L}^{2}\left([0, T] ; \mathrm{H}^{1}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right) \\
\mathbf{u}_{n} \xrightarrow{*} \mathbf{u}_{0} & \text { in } \mathrm{L}^{\infty}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right)
\end{array}
$$

and $\left(p_{n}\right)$ is bounded in $\mathrm{L}^{2}\left([0, T] \times \mathbf{R}^{3}\right)$.
Oscillation in $\left(v_{n}\right)$ generates oscillation in $\left(\nabla \mathbf{u}_{n}\right)$, which dissipates energy via viscosity.
This should be visible from macroscopic equation (equation satisfied by u_{0}).

Sufficient assumptions on v_{n} and f_{n}

$$
\mathbf{f}_{n}=\operatorname{div} \mathbf{G}_{n}, \text { with } \mathbf{G}_{n} \longrightarrow \mathbf{G}_{0} \text { in } \mathrm{L}^{2}\left([0, T] \times \mathbf{R}^{3} ; \mathrm{M}_{3 \times 3}\right)
$$

Sufficient assumptions on v_{n} and f_{n}

$$
\begin{aligned}
& \mathrm{f}_{n}=\operatorname{div} \mathbf{G}_{n}, \text { with } \mathbf{G}_{n} \longrightarrow \mathbf{G}_{0} \text { in } \mathrm{L}^{2}\left([0, T] \times \mathbf{R}^{3} ; \mathrm{M}_{3 \times 3}\right) \\
& \mathrm{v}_{0} \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{L}^{\infty}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right)+\mathrm{L}^{\infty}\left([0, T] ; \mathrm{L}^{3}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right)
\end{aligned}
$$

Sufficient assumptions on v_{n} and f_{n}

$$
\begin{aligned}
\mathrm{f}_{n}= & \operatorname{div} \mathbf{G}_{n}, \text { with } \mathbf{G}_{n} \longrightarrow \mathbf{G}_{0} \text { in } \mathrm{L}^{2}\left([0, T] \times \mathbf{R}^{3} ; \mathrm{M}_{3 \times 3}\right) \\
\mathrm{v}_{0} \in & \mathrm{~L}^{2}\left([0, T] ; \mathrm{L}^{\infty}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right)+\mathrm{L}^{\infty}\left([0, T] ; \mathrm{L}^{3}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right) \\
\mathrm{v}_{n}= & \mathrm{a}_{n}+\mathrm{b}_{n}, \text { where } \\
& \mathrm{a}_{n} \xrightarrow{*} 0 \text { in } \mathrm{L}^{q}\left([0, T] ; \mathrm{L}^{\infty}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right), \text { for some } q>2, \\
& \mathrm{~b}_{n}{ }^{*} 0 \text { in } \mathrm{L}^{\infty}\left([0, T] ; \mathrm{L}^{r}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right), \text { for some } r>3 .
\end{aligned}
$$

Homogenised equation

Theorem. There is a subsequence and a function $\mathbf{M} \geqslant \mathbf{0}$ such that the limit u_{0} satisfies:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{u}_{0}-\nu \Delta \mathbf{u}_{0}+\mathbf{u}_{0} \times \operatorname{rot} \mathrm{v}_{0}+\lambda^{2} \mathbf{M} \mathbf{u}_{0}+\nabla p_{0} & =\mathrm{f}_{0} \\
\operatorname{div} \mathrm{u}_{0} & =0,
\end{aligned}\right.
$$

Homogenised equation

Theorem. There is a subsequence and a function $\mathbf{M} \geqslant \mathbf{0}$ such that the limit u_{0} satisfies:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{u}_{0}-\nu \triangle \mathbf{u}_{0}+\mathbf{u}_{0} \times \operatorname{rot} \mathbf{v}_{0}+\lambda^{2} \mathbf{M} \mathbf{u}_{0}+\nabla p_{0} & =\mathrm{f}_{0} \\
\operatorname{div} \mathbf{u}_{0} & =0
\end{aligned}\right.
$$

and that we have the convergence

$$
\nu\left|\nabla \mathbf{u}_{n}\right|^{2} \longrightarrow \nu\left|\nabla \mathbf{u}_{0}\right|^{2}+\lambda^{2} \mathbf{M} \mathbf{u}_{0} \cdot \mathbf{u}_{0} \quad \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{1+3}\right) .
$$

Homogenised equation

Theorem. There is a subsequence and a function $\mathbf{M} \geqslant \mathbf{0}$ such that the limit u_{0} satisfies:

$$
\left\{\begin{aligned}
\partial_{t} \mathbf{u}_{0}-\nu \triangle \mathbf{u}_{0}+\mathbf{u}_{0} \times \operatorname{rot} \mathbf{v}_{0}+\lambda^{2} \mathbf{M} \mathbf{u}_{0}+\nabla p_{0} & =\mathrm{f}_{0} \\
\operatorname{div} \mathbf{u}_{0} & =0
\end{aligned}\right.
$$

and that we have the convergence

$$
\nu\left|\nabla \mathbf{u}_{n}\right|^{2} \longrightarrow \nu\left|\nabla \mathrm{u}_{0}\right|^{2}+\lambda^{2} \mathbf{M} \mathbf{u}_{0} \cdot \mathbf{u}_{0} \quad \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{1+3}\right) .
$$

There is a new term, \mathbf{M}, in the macroscopic equation. How can it be computed?

Oscillating test functions

$$
\left\{\begin{aligned}
-\partial_{t} \mathrm{w}_{n}-\nu \triangle \mathrm{w}_{n}+\mathrm{k} \times \operatorname{rot} \mathrm{v}_{n}+\nabla r_{n} & =0 \\
\operatorname{div} \mathrm{w}_{n} & =0
\end{aligned}\right.
$$

supplemented by requirements:

$$
\begin{aligned}
& \mathrm{w}_{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}\left([0, T] ; \mathrm{H}^{1}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right), \text { and } \\
& \mathrm{w}_{n} \longrightarrow 0 \text { in } \mathrm{L}^{\infty}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right) .
\end{aligned}
$$

Oscillating test functions

$$
\left\{\begin{aligned}
-\partial_{t} \mathrm{w}_{n}-\nu \Delta \mathrm{w}_{n}+\mathrm{k} \times \operatorname{rot} \mathrm{v}_{n}+\nabla r_{n} & =0 \\
\operatorname{div} \mathrm{w}_{n} & =0
\end{aligned}\right.
$$

supplemented by requirements:

$$
\begin{aligned}
& \mathrm{w}_{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}\left([0, T] ; \mathrm{H}^{1}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right), \text { and } \\
& \mathrm{w}_{n} \longrightarrow 0 \text { in } \mathrm{L}^{\infty}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right) .
\end{aligned}
$$

Sufficient to take homogeneous condition at $t=T$, and (additional assumption) v_{n} bounded in $\mathrm{L}^{2}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right)$.
This in particular gives r_{n} bounded in $\mathrm{L}^{2}\left([0, T] \times \mathbf{R}^{3}\right)$.

Oscillating test functions

$$
\left\{\begin{aligned}
-\partial_{t} \mathrm{w}_{n}-\nu \triangle \mathrm{w}_{n}+\mathrm{k} \times \operatorname{rot} \mathrm{v}_{n}+\nabla r_{n} & =0 \\
\operatorname{div} \mathrm{w}_{n} & =0
\end{aligned}\right.
$$

supplemented by requirements:

$$
\begin{aligned}
& \mathrm{w}_{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}\left([0, T] ; \mathrm{H}^{1}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right), \text { and } \\
& \mathrm{w}_{n} \longrightarrow 0 \text { in } \mathrm{L}^{\infty}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right) .
\end{aligned}
$$

Sufficient to take homogeneous condition at $t=T$,
and (additional assumption) v_{n} bounded in $\mathrm{L}^{2}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{3} ; \mathbf{R}^{3}\right)\right)$.
This in particular gives r_{n} bounded in $\mathrm{L}^{2}\left([0, T] \times \mathbf{R}^{3}\right)$.

$$
\nu \int_{\mathbf{R}^{1+3}} \varphi\left|\nabla \mathrm{w}_{n}\right|^{2} d \mathbf{y} \longrightarrow \int_{\mathbf{R}^{1+3}} \varphi \mathbf{M} \mathrm{k} \cdot \mathrm{k} d \mathbf{y}
$$

$\mathbf{M} \in \mathrm{L}^{2}\left([0, T] ; \mathrm{H}^{-1}\left(\mathbf{R}^{3} ; \mathrm{M}_{3 \times 3 \times}\right)\right.$ and $\langle\mathbf{M k} \mid \mathrm{k}\rangle \geqslant 0, \quad \mathrm{k} \in \mathbf{R}^{3}$.

Can we avoid w_{n} ?

Theorem. Let $\boldsymbol{\mu}$ be a variant H -measure associated to a subsequence of $\left(\mathrm{v}_{n}\right)$.

$$
\begin{aligned}
& \int_{\mathbf{R}^{1+3}} \mathbf{M}(t, \mathbf{x}) \phi(t, \mathbf{x}) d t d \mathbf{x}= \\
&=4 \pi^{2} \nu\left\langle\left(\operatorname{tr} \boldsymbol{\mu}|\boldsymbol{\xi}|^{2}-\boldsymbol{\mu} \cdot(\boldsymbol{\xi} \otimes \boldsymbol{\xi})\right) \frac{(\boldsymbol{\xi} \otimes \boldsymbol{\xi})}{\tau^{2}+\nu^{2} 4 \pi^{2}|\boldsymbol{\xi}|^{4}}, \phi \boxtimes 1\right\rangle
\end{aligned}
$$

with $\phi \in \mathrm{C}_{c}^{\infty}\left(\langle 0, T\rangle \times \mathbf{R}^{3}\right)$.

Proof.

For w_{n} we have (with $0 \leqslant M \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{H}^{-1}\left(\mathbf{R}^{3} ; \mathrm{M}_{3 \times 3}\right)\right)$):

$$
\nu \int_{\mathbf{R}^{1+3}} \varphi\left|\nabla \mathbf{w}_{n}\right|^{2} d \mathbf{y} \longrightarrow \int_{\mathbf{R}^{1+3}} \varphi \mathbf{M} \mathbf{k} \cdot \mathrm{k} d \mathbf{y} .
$$

Proof.

For w_{n} we have (with $0 \leqslant M \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{H}^{-1}\left(\mathbf{R}^{3} ; \mathrm{M}_{3 \times 3}\right)\right)$):

$$
\nu \int_{\mathbf{R}^{1+3}} \varphi\left|\nabla \mathrm{w}_{n}\right|^{2} d \mathbf{y} \longrightarrow \int_{\mathbf{R}^{1+3}} \varphi \mathbf{M} \mathrm{k} \cdot \mathrm{k} d \mathbf{y} .
$$

From estimates on r_{n} and v_{n} we get $\mathrm{w}_{n}^{\prime} \longrightarrow 0$ in $\mathrm{L}^{2}\left(0, T ; \mathrm{H}_{\text {loc }}^{-1}\left(\mathbf{R}^{3}\right)\right)$, and compactness lemma gives us $w_{n} \rightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left([0, T] \times \mathbf{R}^{3}\right)$.

Proof.

For w_{n} we have (with $0 \leqslant \mathbf{M} \in \mathrm{~L}^{2}\left([0, T] ; \mathrm{H}^{-1}\left(\mathbf{R}^{3} ; \mathrm{M}_{3 \times 3}\right)\right)$):

$$
\nu \int_{\mathbf{R}^{1+3}} \varphi\left|\nabla \mathbf{w}_{n}\right|^{2} d \mathbf{y} \longrightarrow \int_{\mathbf{R}^{1+3}} \varphi \mathbf{M k} \cdot \mathrm{k} d \mathbf{y}
$$

From estimates on r_{n} and v_{n} we get $\mathrm{w}_{n}^{\prime} \longrightarrow 0$ in $\mathrm{L}^{2}\left(0, T ; \mathrm{H}_{\mathrm{loc}}^{-1}\left(\mathbf{R}^{3}\right)\right)$, and compactness lemma gives us $\mathrm{w}_{n} \rightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left([0, T] \times \mathbf{R}^{3}\right)$.
Therefore:

$$
\lim _{n} \int_{\mathbf{R}^{1+3}}\left|\varphi \nabla \mathbf{w}_{n}\right|^{2} d \mathbf{y}=\lim _{n} \int_{\mathbf{R}^{1+3}}\left|\nabla\left(\varphi \mathbf{w}_{n}\right)\right|^{2} d \mathbf{y}
$$

Localise ...

Localise by multiplying the auxilliary problem by $\varphi \in \mathrm{C}_{c}^{\infty}\left(\langle 0, T\rangle \times \mathbf{R}^{3}\right)$

$$
-\partial_{t}\left(\varphi \mathbf{w}_{n}\right)-\nu \triangle\left(\varphi \mathbf{w}_{n}\right)+\mathrm{k} \times \operatorname{rot}\left(\varphi \mathbf{v}_{n}\right)=-\nabla\left(\varphi r_{n}\right)+\mathbf{q}_{n},
$$

Localise ...

Localise by multiplying the auxilliary problem by $\varphi \in \mathrm{C}_{c}^{\infty}\left(\langle 0, T\rangle \times \mathbf{R}^{3}\right)$

$$
\begin{gathered}
-\partial_{t}\left(\varphi \mathrm{w}_{n}\right)-\nu \triangle\left(\varphi \mathrm{w}_{n}\right)+\mathrm{k} \times \operatorname{rot}\left(\varphi \mathrm{v}_{n}\right)=-\nabla\left(\varphi r_{n}\right)+\mathrm{q}_{n}, \\
\mathbf{q}_{n}=-\left(\partial_{t} \varphi\right) \mathrm{w}_{n}-\nu(\Delta \varphi) \mathrm{w}_{n}-2 \nu\left(\nabla \mathrm{w}_{n}\right) \nabla \varphi+\mathrm{k} \times\left(\nabla \varphi \times \mathrm{v}_{n}\right)+r_{n} \nabla \varphi, \\
\left.\mathbf{q}_{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}\left(\mathbf{R}^{1+3}\right) \text { (and also strongly in } \mathrm{H}^{-\frac{1}{2},-1}\left(\mathbf{R}^{1+3}\right)\right) .
\end{gathered}
$$

As $\mathrm{w}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left([0, T] ; \mathrm{H}^{1}\left(\mathbf{R}^{3}\right)\right)$, so localised w_{n} and $\nabla \mathrm{w}_{n}$ converge weakly in L^{2}.
Of course, localised v_{n} and r_{n} converge weakly in L^{2} as well.
From boundedness of the support of φ, we have strong convergence in $\mathrm{H}^{-\frac{1}{2},-1}$.

The Fourier transform

$$
\left(-2 \pi i \tau+\nu 4 \pi^{2} \boldsymbol{\xi}^{2}\right) \widehat{\varphi \mathrm{W}_{n}}=-\mathrm{k} \times\left((2 \pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathrm{v}_{n}}\right)-2 \pi i \widehat{\varphi r_{n}} \boldsymbol{\xi}+\hat{\mathrm{q}}_{n},
$$

The Fourier transform

$$
\left(-2 \pi i \tau+\nu 4 \pi^{2} \boldsymbol{\xi}^{2}\right) \widehat{\varphi \mathrm{w}_{n}}=-\mathrm{k} \times\left((2 \pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathrm{v}_{n}}\right)-2 \pi i \widehat{\varphi r_{n}} \boldsymbol{\xi}+\hat{\mathrm{q}}_{n},
$$

and dividing by $\left(-2 \pi i \tau+\nu 4 \pi^{2} \xi^{2}\right)$ we get

$$
\widehat{\varphi \mathbf{w}_{n}}=\frac{-\mathrm{k} \times\left((2 \pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathrm{v}_{n}}\right)-2 \pi i \widehat{\varphi r_{n}} \boldsymbol{\xi}+\hat{\mathrm{q}}_{n}}{-2 \pi i \tau+\nu 4 \pi^{2} \boldsymbol{\xi}^{2}}
$$

The penultimate term disappears if we project it to the plane $\perp \boldsymbol{\xi}$ (projection P_{ξ}).

The Fourier transform

$$
\left(-2 \pi i \tau+\nu 4 \pi^{2} \boldsymbol{\xi}^{2}\right) \widehat{\varphi \mathrm{w}_{n}}=-\mathrm{k} \times\left((2 \pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathrm{v}_{n}}\right)-2 \pi i \widehat{\varphi r_{n}} \boldsymbol{\xi}+\hat{\mathrm{q}}_{n}
$$

and dividing by $\left(-2 \pi i \tau+\nu 4 \pi^{2} \xi^{2}\right)$ we get

$$
\widehat{\varphi \mathbf{w}_{n}}=\frac{-\mathrm{k} \times\left((2 \pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathrm{v}_{n}}\right)-2 \pi i \widehat{\varphi r_{n}} \boldsymbol{\xi}+\hat{\mathrm{q}}_{n}}{-2 \pi i \tau+\nu 4 \pi^{2} \boldsymbol{\xi}^{2}}
$$

The penultimate term disappears if we project it to the plane $\perp \boldsymbol{\xi}$ (projection $\left.P_{\xi}\right)$.
$\operatorname{div} \mathrm{w}_{n}=0$, so $\boldsymbol{\xi} \cdot \hat{\mathbf{w}}_{n}=0$; which does not hold for $\operatorname{div}\left(\varphi \mathrm{w}_{n}\right)=\nabla \varphi \cdot \mathrm{w}_{n}$. However, the RHS converges strongly in L^{2} to 0 , so in the Fourier space:

$$
2 \pi \boldsymbol{\xi} \cdot \widehat{\varphi \mathrm{w}_{n}} \longrightarrow 0
$$

Projection by P_{ξ}

After projection

$$
\widehat{\varphi \mathrm{w}_{n}}=\frac{-P_{\boldsymbol{\xi}}\left(\mathrm{k} \times\left((2 \pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathrm{v}_{n}}\right)\right)+P_{\boldsymbol{\xi}} \hat{\mathbf{q}}_{n}}{-2 \pi i \tau+\nu 4 \pi^{2} \boldsymbol{\xi}^{2}}+\mathrm{d}_{n}
$$

with $\mathrm{d}_{n} \longrightarrow 0$ in L^{2}.

Projection by P_{ξ}

After projection

$$
\widehat{\varphi \mathrm{w}_{n}}=\frac{-P_{\boldsymbol{\xi}}\left(\mathrm{k} \times\left((2 \pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathrm{v}_{n}}\right)\right)+P_{\boldsymbol{\xi}} \hat{\mathbf{q}}_{n}}{-2 \pi i \tau+\nu 4 \pi^{2} \boldsymbol{\xi}^{2}}+\mathrm{d}_{n}
$$

with $\mathrm{d}_{n} \longrightarrow 0$ in L^{2}.
By Plancherel

$$
\begin{aligned}
& \lim _{n} \int_{\Omega} \nu\left|\nabla\left(\varphi \mathrm{w}_{n}\right)\right|^{2} d \mathbf{x}=\lim _{n} \int_{\mathbf{R}}^{1+d} \nu 4 \pi^{2}\left|\widehat{\left(\varphi \mathbf{w}_{n}\right)}\right|^{2} d \tau d \boldsymbol{\xi} \\
&=\lim _{n} \int_{\mathbf{R}}^{1+d} \nu 4 \pi^{2} \boldsymbol{\xi}^{2}\left|\frac{P_{\boldsymbol{\xi}}\left(\mathrm{k} \times\left((2 \pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathbf{v}_{n}}\right)+\hat{\mathbf{q}}_{n}\right)}{-2 \pi i \tau+\nu 4 \pi^{2} \boldsymbol{\xi}^{2}}\right|^{2} d \tau d \boldsymbol{\xi} \\
&=\lim _{n} \int_{\mathbf{R}}^{1+d} \nu \boldsymbol{\xi}^{2} \frac{\left|P_{\boldsymbol{\xi}}\left(\mathrm{k} \times\left((2 \pi i \boldsymbol{\xi}) \times \widehat{\varphi \mathbf{v}_{n}}\right)+\hat{\mathbf{q}}_{n}\right)\right|^{2}}{\tau^{2}+\nu 4 \pi^{2} \boldsymbol{\xi}^{4}} d \tau d \boldsymbol{\xi}
\end{aligned}
$$

Applying the Lemma (analysis)

$$
\frac{|\boldsymbol{\xi}| \hat{\mathrm{q}}_{n}}{\sqrt{\tau^{2}+\nu 4 \pi^{2} \boldsymbol{\xi}^{4}}} \rightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{1+3}\right)
$$

Applying the Lemma (analysis)

$$
\frac{|\boldsymbol{\xi}| \hat{\mathbf{q}}_{n}}{\sqrt{\tau^{2}+\nu 4 \pi^{2} \boldsymbol{\xi}^{4}}} \rightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{1+3}\right)
$$

By P_{η}

$$
\left|P_{\boldsymbol{\eta}}(\mathrm{k} \times(\boldsymbol{\eta} \times \mathbf{a}))\right|^{2}=(\mathrm{k} \cdot \boldsymbol{\eta})^{2}\left(|\mathrm{a}|^{2}-\left|\mathrm{a} \cdot \boldsymbol{\eta}_{0}\right|^{2}\right)
$$

where $\boldsymbol{\eta}_{0}$ is the unit vector in the direction of $\boldsymbol{\eta}$.

Applying the Lemma (analysis)

$$
\frac{|\boldsymbol{\xi}| \hat{\mathbf{q}}_{n}}{\sqrt{\tau^{2}+\nu 4 \pi^{2} \boldsymbol{\xi}^{4}}} \rightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{1+3}\right)
$$

By P_{η}

$$
\left|P_{\boldsymbol{\eta}}(\mathrm{k} \times(\boldsymbol{\eta} \times \mathbf{a}))\right|^{2}=(\mathrm{k} \cdot \boldsymbol{\eta})^{2}\left(|\mathrm{a}|^{2}-\left|\mathrm{a} \cdot \boldsymbol{\eta}_{0}\right|^{2}\right)
$$

where $\boldsymbol{\eta}_{0}$ is the unit vector in the direction of $\boldsymbol{\eta}$.
Note that k and $\boldsymbol{\eta}$ are real, while only a is complex. Therefore:

$$
\begin{aligned}
& \lim _{n} \int_{\Omega} \nu\left|\nabla\left(\varphi \mathrm{w}_{n}\right)\right|^{2} d \mathbf{x} \\
&=\lim _{n} \int_{\mathbf{R}^{3}} \boldsymbol{\xi}^{2} \frac{(\mathrm{k} \cdot 2 \pi i \boldsymbol{\xi})^{2}\left(\left|\widehat{\varphi \mathrm{v}_{n}}\right|^{2}-\left|\widehat{\varphi \mathrm{v}_{n}} \cdot \frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right|^{2}\right)}{\tau^{2}+\nu 4 \pi^{2} \boldsymbol{\xi}^{4}} d \boldsymbol{\xi}
\end{aligned}
$$

Finally (after some algebra)

$$
\begin{aligned}
& \lim _{n} \int_{\mathbf{R}^{3}} \boldsymbol{\xi}_{0}^{2} \frac{\left(\mathrm{k} \cdot 2 \pi i \boldsymbol{\xi}_{0}\right)^{2}\left(\left|\widehat{\varphi \mathrm{v}_{n}}\right|^{2}-\left|\widehat{\varphi \mathrm{v}_{n}} \cdot \frac{\boldsymbol{\xi}_{0}}{\left|\boldsymbol{\xi}_{0}\right|}\right|^{2}\right)}{\tau_{0}^{2}+\nu 4 \pi^{2} \boldsymbol{\xi}_{0}^{4}} d \boldsymbol{\xi}= \\
&= \frac{1}{\nu}\left\langle\operatorname{tr} \boldsymbol{\mu},\left(\frac{\boldsymbol{\xi}_{0} \cdot \mathrm{k}}{\tau_{0}^{2}+\nu 4 \pi^{2} \boldsymbol{\xi}_{0}^{4}}\right)^{2} \varphi \bar{\varphi}\right\rangle \\
&-\frac{1}{\nu}\left\langle\boldsymbol{\mu},\left(\frac{\boldsymbol{\xi}_{0} \cdot \mathrm{k}}{\tau_{0}^{2}+\nu 4 \pi^{2} \boldsymbol{\xi}_{0}^{4}}\right)^{2} \varphi \bar{\varphi} \boldsymbol{\xi} \otimes \boldsymbol{\xi}\right\rangle
\end{aligned}
$$

Introduction to H -measures
What are H -measures?
First examples
Localisation principle
Symmetric systems - compactness by compensation again
Localisation principle for parabolic H -measures
Applications in homogenisation
Small-amplitude homogenisation of heat equation
Periodic small-amplitude homogenisation
Homogenisation of a model based on the Stokes equation
Model based on time-dependent Stokes
H-distributions
Existence
Localisation principle
Other variants
One-scale H-measures
Semiclassical measures
One-scale H-measures
Localisation principle

Good bounds in the L^{p} case: the Hörmander-Mihlin theorem
$\psi: \mathbf{R}^{d} \rightarrow \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ if

$$
\overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right), \quad \text { for } \theta \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

and

$$
\mathcal{S}\left(\mathbf{R}^{d}\right) \ni \theta \mapsto \overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.

Good bounds in the L^{p} case: the Hörmander-Mihlin theorem

$\psi: \mathbf{R}^{d} \rightarrow \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ if

$$
\overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right), \quad \text { for } \theta \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

and

$$
\mathcal{S}\left(\mathbf{R}^{d}\right) \ni \theta \mapsto \overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.
Theorem. [Hörmander-Mihlin] Let $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ have partial derivatives of order less than or equal to $\kappa=\left[\frac{d}{2}\right]+1$. If for some $k>0$

$$
(\forall r>0)\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}\right) \quad|\boldsymbol{\alpha}| \leqslant \kappa \Longrightarrow \int_{\frac{r}{2} \leqslant|\boldsymbol{\xi}| \leqslant r}\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant k^{2} r^{d-2|\boldsymbol{\alpha}|}
$$

then for any $p \in\langle 1, \infty\rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_{d} (depending only on the dimension d) such that

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathrm{L}^{p} \rightarrow \mathrm{~L}^{p}} \leqslant C_{d} \max \left\{p, \frac{1}{p-1}\right\}\left(k+\|\psi\|_{\infty}\right) .
$$

Good bounds in the L^{p} case: the Hörmander-Mihlin theorem

$\psi: \mathbf{R}^{d} \rightarrow \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ if

$$
\overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right), \quad \text { for } \theta \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

and

$$
\mathcal{S}\left(\mathbf{R}^{d}\right) \ni \theta \mapsto \overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.
Theorem. [Hörmander-Mihlin] Let $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ have partial derivatives of order less than or equal to $\kappa=\left[\frac{d}{2}\right]+1$. If for some $k>0$

$$
(\forall r>0)\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}\right) \quad|\boldsymbol{\alpha}| \leqslant \kappa \Longrightarrow \int_{\frac{r}{2} \leqslant|\boldsymbol{\xi}| \leqslant r}\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant k^{2} r^{d-2|\boldsymbol{\alpha}|}
$$

then for any $p \in\langle 1, \infty\rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_{d} (depending only on the dimension d) such that

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathrm{L}^{p} \rightarrow \mathrm{~L}^{p}} \leqslant C_{d} \max \left\{p, \frac{1}{p-1}\right\}\left(k+\|\psi\|_{\infty}\right) .
$$

For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$, extended by homogeneity to \mathbf{R}_{*}^{d}, we can take $k=\|\psi\|_{\mathrm{C}^{\kappa}}$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \xrightarrow{*}^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}).

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{k}\left(\mathrm{~S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If $\left(u_{n}\right),\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{k}\left(\mathrm{~S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If $\left(u_{n}\right),\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d}\right)$. For $p \geqslant 2, p^{\prime} \leqslant 2$ and we can take $q \geqslant 2$; this covers the L^{2} case (including $u_{n}=v_{n}$).
The assumptions imply $u_{n}, v_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for $p<2$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{k}\left(\mathrm{~S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If $\left(u_{n}\right),\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d}\right)$. For $p \geqslant 2, p^{\prime} \leqslant 2$ and we can take $q \geqslant 2$; this covers the L^{2} case (including $u_{n}=v_{n}$).
The assumptions imply $u_{n}, v_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for $p<2$.
For vector-valued $\mathrm{u}_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{k}\right)$ and $\mathrm{v}_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d} ; \mathbf{C}^{l}\right)$, the result is a matrix valued distribution $\boldsymbol{\mu}=\left[\mu^{i j}\right], i \in 1 . . k$ and $j \in 1 . . l$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{k}\left(\mathrm{~S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If $\left(u_{n}\right),\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d}\right)$. For $p \geqslant 2, p^{\prime} \leqslant 2$ and we can take $q \geqslant 2$; this covers the L^{2} case (including $u_{n}=v_{n}$).
The assumptions imply $u_{n}, v_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for $p<2$.
For vector-valued $\mathrm{u}_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{k}\right)$ and $\mathrm{v}_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d} ; \mathbf{C}^{l}\right)$, the result is a matrix valued distribution $\boldsymbol{\mu}=\left[\mu^{i j}\right], i \in 1 . . k$ and $j \in 1 . . l$.
The H-distribution would correspond to a non-diagonal block for an H-measure.

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x})
$$

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x}) .
$$

Take an arbitrary (v_{n}) bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$, and by μ denote the H-distribution corresponding to a subsequence of $\left(u_{n}\right)$ and $\left(v_{n}\right)$. Then

$$
(\mathrm{a}(\mathrm{x}) \cdot \boldsymbol{\xi}) \mu(\mathbf{x}, \boldsymbol{\xi})=0
$$

in the sense of distributions on $\mathbf{R}^{d} \times \mathrm{S}^{d-1},(\mathrm{x}, \boldsymbol{\xi}) \mapsto \mathrm{a}(\mathrm{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_{0}^{κ} coefficients.

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x})
$$

Take an arbitrary $\left(v_{n}\right)$ bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$, and by μ denote the H-distribution corresponding to a subsequence of $\left(u_{n}\right)$ and $\left(v_{n}\right)$. Then

$$
(\mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}) \mu(\mathbf{x}, \boldsymbol{\xi})=0
$$

in the sense of distributions on $\mathbf{R}^{d} \times \mathrm{S}^{d-1},(\mathbf{x}, \boldsymbol{\xi}) \mapsto \mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_{0}^{κ} coefficients.

In order to prove the theorem, we need a particular multiplier, the so called (Marcel) Riesz potential $I_{1}:=\mathcal{A}_{|2 \pi \xi|^{-1}}$, and the Riesz transforms $R_{j}:=\mathcal{A}_{\frac{\xi_{j}}{i \xi \mid}}$. Note that

$$
\int I_{1}(\phi) \partial_{j} g=\int\left(R_{j} \phi\right) g, \quad g \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

Using the density argument and that R_{j} is bounded from $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ to itself, we conclude $\partial_{j} I_{1}(\phi)=-R_{j}(\phi)$, for $\phi \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x})
$$

Take an arbitrary $\left(v_{n}\right)$ bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$, and by μ denote the H-distribution corresponding to a subsequence of $\left(u_{n}\right)$ and $\left(v_{n}\right)$. Then

$$
(\mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}) \mu(\mathbf{x}, \boldsymbol{\xi})=0
$$

in the sense of distributions on $\mathbf{R}^{d} \times \mathrm{S}^{d-1},(\mathbf{x}, \boldsymbol{\xi}) \mapsto \mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_{0}^{κ} coefficients.
(an application suggested by Darko Mitrović) For scalar conservation law with discontinuous flux, the most up to date existence result for the equation

$$
u_{t}+\operatorname{div} f(t, \mathbf{x}, u)=0
$$

is obtained under the assumptions

$$
\max _{\lambda \in \mathbf{R}}|\mathbf{f}(t, \mathbf{x}, \lambda)| \in L^{2+\varepsilon}\left(\mathbf{R}_{+}^{d}\right)
$$

Using the H -distributions, it is poossible to prove an existence result for the given equation under the assumption

$$
\max _{\lambda \in \mathbf{R}}|\mathbf{f}(t, \mathbf{x}, \lambda)| \in L^{1+\varepsilon}\left(\mathbf{R}_{+}^{d}\right)
$$

Further variants

N.A. \& I. Ivec (JMAA, 2016): extension to Lebesgue spaces with mixed norm M. Lazar \& D. Mitrović (DynPDE, 2012): applications to velocity averaging
M. Mišur \& D. Mitrović (JFA, 2015): a form of compactness by compensation
J. Aleksić, S. Pilipović, I. Vojnović (Mediter. J. Maths, 2017): in $\mathcal{S}-\mathcal{S}^{\prime}$ setting
F. Rindler (ARMA, 2015): microlocal compactness forms

Semiclassical measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}_{\mathrm{b}}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

Measure $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub) sequence $\left(\mathrm{u}_{n}\right)$.

Semiclassical measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution of the zero order $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(u_{n}\right)$.

Semiclassical measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution of the zero order $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(u_{n}\right)$.

Theorem.

$$
\mathrm{u}_{n} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0 \Longleftrightarrow \boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}=\mathbf{0} \quad \& \quad\left(\mathbf{u}_{n}\right) \text { is }\left(\omega_{n}\right) \text {-oscillatory }
$$

Semiclassical measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution of the zero order $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(u_{n}\right)$.

Definition $\left(\mathbf{u}_{n}\right)$ is $\left(\omega_{n}\right)$-oscillatory if $\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\boldsymbol{\xi}| \geqslant \frac{R}{\omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.

Theorem.

$$
\mathbf{u}_{n} \xrightarrow{\mathrm{~L}_{\text {loc }}^{2}} 0 \Longleftrightarrow \boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}=\mathbf{0} \quad \& \quad\left(\mathbf{u}_{n}\right) \text { is }\left(\omega_{n}\right) \text {-oscillatory }
$$

Localisation principle for semiclassical measures

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}$, $\mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\mathbf{P}_{n} \mathbf{u}_{n}:=\sum_{|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$.

Then we have

$$
\mathbf{p} \boldsymbol{\mu}_{s c}^{\top}=\mathbf{0}
$$

where $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=\sum_{|\boldsymbol{\alpha}| \leqslant m} \boldsymbol{\xi}^{\alpha} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})$, and $\boldsymbol{\mu}_{s c}$ is semiclassical measure with characteristic length $\left(\varepsilon_{n}\right)$, corresponding to $\left(\mathbf{u}_{n}\right)$.

Localisation principle for semiclassical measures

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\mathbf{P}_{n} \mathbf{u}_{n}:=\sum_{|\alpha| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega,
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$.

Then we have

$$
\operatorname{supp} \boldsymbol{\mu}_{s c} \subseteq\left\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathbf{R}^{d}: \operatorname{det} \mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=0\right\}
$$

where $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=\sum_{|\boldsymbol{\alpha}| \leqslant m} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})$, and $\boldsymbol{\mu}_{s c}$ is semiclassical measure with characteristic length $\left(\varepsilon_{n}\right)$, corresponding to $\left(\mathbf{u}_{n}\right)$.

Localisation principle for semiclassical measures

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\mathbf{P}_{n} \mathbf{u}_{n}:=\sum_{|\alpha| \leqslant m} \varepsilon_{n}^{|\alpha|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega,
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$.

Then we have

$$
\operatorname{supp} \boldsymbol{\mu}_{s c} \subseteq\left\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathbf{R}^{d}: \operatorname{det} \mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=0\right\}
$$

where $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=\sum_{|\boldsymbol{\alpha}| \leqslant m} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})$, and $\boldsymbol{\mu}_{s c}$ is semiclassical measure with characteristic length $\left(\varepsilon_{n}\right)$, corresponding to $\left(\mathbf{u}_{n}\right)$.

Problem: $\boldsymbol{\mu}_{s c}=\mathbf{0}$ is not enough for the strong convergence!

Compatification of $\mathbf{R}^{d} \backslash\{0\}$

Corollary. a) $\mathrm{C}_{0}\left(\mathbf{R}^{d}\right) \subseteq \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.
b) $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right), \psi \circ \boldsymbol{\pi} \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, where $\boldsymbol{\pi}(\boldsymbol{\xi})=\boldsymbol{\xi} /|\boldsymbol{\xi}|$.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightarrow 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}_{\mathrm{b}}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\left.\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes \widehat{\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

Measure $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ is called the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(\mathrm{u}_{n}\right)$.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)} \in \mathcal{M}_{\mathrm{b}}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes \widehat{\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

Measure $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(\mathbf{u}_{n}\right)$.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)} \in \mathcal{M}_{\mathrm{b}}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes \widehat{\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

Measure $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(\mathbf{u}_{n}\right)$.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{\mathrm{c}}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes\left(\widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The distribution of the zero order $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H -measure with characteristic length (ω_{n}) corresponding to the (sub)sequence (u_{n}).

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{\mathrm{c}}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes\left(\widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The distribution of the zero order $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H -measure with characteristic length (ω_{n}) corresponding to the (sub)sequence (u_{n}).

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{\mathrm{c}}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes\left(\widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The distribution of the zero order $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H -measure with characteristic length (ω_{n}) corresponding to the (sub)sequence (u_{n}).

Luc Tartar: The general theory of homogenization: A personalized introduction, Springer, 2009.
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77-90.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{\mathrm{c}}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.\right.}\right)(\boldsymbol{\xi}) \otimes \widehat{\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The distribution of the zero order $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H -measure with characteristic length (ω_{n}) corresponding to the (sub)sequence (u_{n}).

Luc Tartar: The general theory of homogenization: A personalized introduction, Springer, 2009.
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77-90.
N. A., Marko Erceg, Martin Lazar: Localisation principle for one-scale H-measures, submitted (arXiv).

Idea of the proof

Tartar's approach:

- $\mathrm{v}_{n}\left(\mathbf{x}, x^{d+1}\right):=\mathrm{u}_{n}(\mathbf{x}) e^{\frac{2 \pi i x^{d+1}}{\omega_{n}}} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega \times \mathbf{R} ; \mathbf{C}^{r}\right)$
- $\nu_{H} \in \mathcal{M}\left(\Omega \times \mathbf{R} \times \mathrm{S}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is obtained from $\boldsymbol{\nu}_{H}$ (suitable projection in x^{d+1} and ξ_{d+1})

Idea of the proof

Tartar's approach:

- $\mathrm{v}_{n}\left(\mathbf{x}, x^{d+1}\right):=\mathrm{u}_{n}(\mathbf{x}) e^{\frac{2 \pi i x^{d+1}}{\omega_{n}}} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega \times \mathbf{R} ; \mathbf{C}^{r}\right)$
- $\boldsymbol{\nu}_{H} \in \mathcal{M}\left(\Omega \times \mathbf{R} \times \mathrm{S}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)}$ is obtained from $\boldsymbol{\nu}_{H}$ (suitable projection in x^{d+1} and ξ_{d+1})

Our approach:

- First commutation lemma:

Lemma. Let $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right), \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator can be expressed as a sum

$$
C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=\tilde{C}_{n}+K
$$

where K is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$, while $\tilde{C}_{n} \longrightarrow 0$ in the operator norm on $\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$.

- standard procedure: (a variant of) the kernel theorem, separability, ...

Some properties of $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$

Theorem.
a)

$$
\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{*}=\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \quad \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}} \geqslant \mathbf{0}
$$

b)
$\mathrm{u}_{n} \xrightarrow{\mathrm{~L}_{\text {loo }}^{2}} 0$
\Longleftrightarrow
$\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}=\mathbf{0}$
$\left(\mathrm{u}_{n}\right)$ is $\left(\omega_{n}\right)$-oscillatory

Some properties of $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$

Theorem.
a) $\quad \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{*}=\mu_{\mathrm{K}_{0, \infty}}, \quad \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}} \geqslant \mathbf{0}$
b) $\quad \mathrm{u}_{n} \xrightarrow{\mathrm{~L}_{\text {log }}^{2}} 0$

$\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}=\mathbf{0}$
c) $\quad \operatorname{tr} \mu_{\mathrm{K}_{0, \infty}}\left(\Omega \times \Sigma_{\infty}\right)=0$
$\Longleftrightarrow \quad\left(\mathrm{u}_{n}\right)$ is $\left(\omega_{n}\right)$ - oscillatory

Theorem. $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega), \psi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \tilde{\psi} \in \mathrm{C}\left(\mathrm{S}^{d-1}\right), \omega_{n} \rightarrow 0^{+}$,
a) $\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \psi\right\rangle \quad=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \psi\right\rangle$,
b) $\quad\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \tilde{\psi} \circ \boldsymbol{\pi}\right\rangle \quad=\left\langle\boldsymbol{\mu}_{H}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \tilde{\psi}\right\rangle$,
where $\boldsymbol{\pi}(\boldsymbol{\xi})=\boldsymbol{\xi} /|\boldsymbol{\xi}|$.

Localisation principle

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

where

- $l \in 0 . . m$
- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\text {loc }}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \mathrm{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) \quad\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)
$$

Localisation principle
Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

where

- $l \in 0 . . m$
- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \mathrm{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) \quad\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)
$$

Lemma. a) $\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)$ is equivalent to

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \mathrm{f}_{n}}}{1+|\boldsymbol{\xi}|^{l}+\varepsilon_{n}^{m-l}|\boldsymbol{\xi}|^{m}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)
$$

b) $(\exists k \in l . . m) \mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{H}_{\mathrm{loc}}^{-k}\left(\Omega ; \mathbf{C}^{r}\right) \quad \Longrightarrow \quad\left(\varepsilon_{n}^{k-l} \mathrm{f}_{n}\right)$ satisfies $\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)$.

Localisation principle

$$
\begin{aligned}
& \sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega \\
& \frac{\widehat{\varphi \mathbf{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) . \quad\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)
\end{aligned}
$$

Theorem. [Tartar (2009)] Under previous assumptions and $l=1$, one-scale H-measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length (ε_{n}) corresponding to $\left(\mathrm{u}_{n}\right)$ satisfies

$$
\operatorname{supp}\left(\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}\right) \subseteq \Omega \times \Sigma_{0},
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{1 \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x}) .
$$

Localisation principle

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \boldsymbol{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) . \quad\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)
$$

Theorem. [N.A., Erceg, Lazar (2015)] Under previous assumptions, one-scale H -measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length (ε_{n}) corresponding to $\left(\mathrm{u}_{n}\right)$ satisfies

$$
\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})
$$

Localisation principle - final generalisation

Theorem. Take $\varepsilon_{n}>0$ bounded, $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n}
$$

where $\mathbf{A}_{n}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right), \mathbf{A}_{n}^{\alpha} \longrightarrow \mathbf{A}^{\boldsymbol{\alpha}}$ uniformly on compact sets, and $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ satisfies $\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)$.
Then for $\omega_{n} \rightarrow 0^{+}$such that $c:=\lim _{n} \frac{\varepsilon_{n}}{\omega_{n}} \in[0, \infty]$, the corresponding one-scale H-measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\omega_{n}\right)$ satisfies

$$
\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\left\{\begin{array}{ccc}
\sum_{|\boldsymbol{\alpha}|=l} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , & c=0 \\
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i c)^{|\boldsymbol{\alpha}|} \frac{\xi^{\alpha}}{\left|\underline{\boldsymbol{\xi}}+|\boldsymbol{\xi}|^{m}\right.} \mathbf{A}^{\alpha}(\mathbf{x}) & , \quad c \in\langle 0, \infty\rangle \\
\sum_{|\boldsymbol{\alpha}|=m} \frac{\xi^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x}) & , & c=\infty
\end{array}\right.
$$

Moreover, if there exists $\varepsilon_{0}>0$ such that $\varepsilon_{n}>\varepsilon_{0}, n \in \mathbf{N}$, we can take

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{|\alpha|=m} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x})
$$

Localisation principle - final generalisation

Theorem. Take $\varepsilon_{n}>0$ bounded, $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n}
$$

where $\mathbf{A}_{n}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right), \mathbf{A}_{n}^{\alpha} \longrightarrow \mathbf{A}^{\boldsymbol{\alpha}}$ uniformly on compact sets, and $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ satisfies $\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)$.
Then for $\omega_{n} \rightarrow 0^{+}$such that $c:=\lim _{n} \frac{\varepsilon_{n}}{\omega_{n}} \in[0, \infty]$, the corresponding one-scale H-measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\omega_{n}\right)$ satisfies

$$
\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\left\{\begin{array}{ccc}
\sum_{|\boldsymbol{\alpha}|=l} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , & c=0 \\
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i c)^{|\boldsymbol{\alpha}|} \frac{\xi^{\alpha}}{\left|\underline{\boldsymbol{\xi}}+|\boldsymbol{\xi}|^{m}\right.} \mathbf{A}^{\alpha}(\mathbf{x}) & , \quad c \in\langle 0, \infty\rangle \\
\sum_{|\boldsymbol{\alpha}|=m} \frac{\xi^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x}) & , & c=\infty
\end{array}\right.
$$

Moreover, if there exists $\varepsilon_{0}>0$ such that $\varepsilon_{n}>\varepsilon_{0}, n \in \mathbf{N}$, we can take

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{|\boldsymbol{\alpha}|=m} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x})
$$

As a corollary from the previous theorem we can derive localisation principles for H -measures and semiclassical measures.

Thank you for your attention.

