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What are H-measures?

Mathematical objects introduced by:
◦ Luc Tartar, motivated by intended applications in homogenisation (H),

and

◦ Patrick Gérard, whose motivation were certain problems in kinetic theory
(and who called these objects microlocal defect measures).

Start from un −⇀ 0 in L2(Rd), ϕ ∈ Cc(R
d), and take the Fourier transform:

ϕ̂un(ξ) =

∫
Rd

e−2πix·ξ(ϕun)(x)dx

As ϕun is supported on a fixed compact set K, so |ϕ̂un(ξ)| 6 C.
Furthermore, un −⇀ 0, and from the definition ϕ̂un(ξ) −→ 0 pointwise.
By the Lebesgue dominated convergence theorem applied on bounded sets, we
get
ϕ̂un −→ 0 strong, i.e. strongly in L2

loc(Rd).

On the other hand, by the Plancherel theorem: ‖ϕ̂un‖L2(Rd) = ‖ϕun‖L2(Rd).

If ϕun 6⇀ 0 in L2(Rd), then ϕ̂un 6⇀ 0; some information must go to infinity.
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Limit is a measure
How does it go to infinity in various directions? Take ψ ∈ C(Sd−1), and
consider:

lim
n

∫
Rd

ψ(ξ/|ξ|)|ϕ̂un|2dξ =

∫
Sd−1

ψ(ξ)dνϕ(ξ) .

The limit is a linear functional in ψ, thus an integral over the sphere of some
nonnegative Radon measure (a bounded sequence of Radon measures has an
accumulation point), which depends on ϕ. How does it depend on ϕ?

Theorem. (un) a sequence in L2(Rd;Rr), un
L2

−−⇀ 0 (weakly), then there is

a subsequence (un
′
) and µ on Rd × Sd−1 such that:

lim
n′→∞

∫
Rd

F
(
ϕ1un

′)
⊗F

(
ϕ2un

′)
ψ

(
ξ

|ξ|

)
dξ = 〈µ, ϕ1ϕ̄2ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) .
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Why a parabolic variant?
Parabolic pde-s are:

well studied, and we have good theory for them
in some cases we even have explicit solutions (by formulae)

1 : 2 is certainly a good ratio to start with

Besides the immediate applications (which motivated this research), related to
the properties of parabolic equations, applications are possible to other
equations and problems involving the scaling 1 : 2.
Naturally, after understanding this ratio 1 : 2, other ratios should be considered
as well, as required by intended applications.

Terminology: classical as opposed to parabolic or variant H-measures.
The sphere we replace by:

σ4(τ, ξ) := (2πτ)2 + (2π|ξ|)4 = 1 , or

σ2
1(τ, ξ) := |τ |+ (2π|ξ|)2 = 1 .

finally we chose the ellipse

ρ2(τ, ξ) := |ξ/2|2 +
√

(ξ/2)4 + τ2 = 1 .

Notation.
For simplicity (2D): (t, x) = (x0, x1) = x and (τ, ξ) = (ξ0, ξ1) = ξ.

We use the Fourier transform in both space and time variables.
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Rough geometric idea
Take a sequence un −⇀ 0 in L2(R2), and integrate |ϕ̂un|2 along

rays and project onto S1

parabolas and project onto P 1

τ

ξ1

T

T0

τ

ξ

T

T0

√
2

1

O

In R2 we have a compact curve (a surface in higher dimensions):

S1 . . . r2(τ, ξ) := τ2 + ξ2 = 1

P 1 . . . ρ2(τ, ξ) := (ξ/2)2 +
√

(ξ/2)4 + τ2 = 1

and projection R2
∗ = R2 \ {0} onto the curve (surface):

p(τ, ξ) :=
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)

π(τ, ξ) :=
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
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Analytic picture

Multiplication by b ∈ L∞(R2), a bounded operator Mb on L2(R2):
(Mbu)(x) := b(x)u(x) ,

norm equal to ‖b‖L∞(R2).

Fourier multiplier Pa, for a ∈ L∞(R2): P̂au = aû.
The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1 or P 1.
We extend it by the projections, p or π: if α is a function defined on a
compact surface, we take a := α ◦ p or a := α ◦ π, i.e.

a(τ, ξ) := α
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)

a(τ, ξ) := α
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)

The precise scaling is contained in the projections, not the surface.

Now we can state the main theorem.
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Existence of H-measures

Theorem. If un −⇀ 0 in L2(Rd;Rr), then there exists its subsequence and a
complex matrix Radon measure µ on

Rd × Sd−1

Rd × P d−1

such that for any ϕ1, ϕ2 ∈ C0(Rd) and

ψ ∈ C(Sd−1)

ψ ∈ C(P d−1)

one has

lim
n′

∫
Rd

ϕ̂1un′ ⊗ ϕ̂2un′(ψ ◦ p

π

) dξ = 〈µ, (ϕ1ϕ̄2)� ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ)

=

∫
Rd×Pd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) .
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Oscillation (classical H-measures)

un(x) := v(nx) −⇀ 0

v ∈ L2
loc(Rd) periodic function (with the unit period in each of variables), with

the zero mean value.

The associated H-measure

µ(x, ξ) =
∑

k∈Zd\{0}

|vk|2λ(x) δ k
|k|

(ξ),

vk Fourier coefficients of v (v(x) =
∑

k∈Zd
vke

2πik·x).

Dual variable preserves information on the direction of propagation (of
oscillation).
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Oscillation (parabolic H-measures)

Let v ∈ L2(R1+d) be a periodic function

v(t,x) =
∑

(ω,k)∈Z1+d

v̂ω,k e
2πi(ωt+k·x) ,

where v̂ω,k denotes Fourier coefficients. Further, assume that v has mean value
zero, i.e. v̂0,0 = 0.

For α, β ∈ R+, we have a sequence of periodic functions with period tending
to zero:

un(t,x) := v(nαt, nβx) =
∑

(ω,k)∈Z1+d

v̂ω,k e
2πi(nαωt+nβk·x) .

Their Fourier transforms are:

ûn(τ, ξ) =
∑

(ω,k)∈Z1+d

v̂ω,k δnαω(τ)δnβk(ξ) .
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Oscillation (cont.)

(un) is a pure sequence, and the corresponding parabolic H-measure
µ(t,x, τ, ξ) is

λ(t,x)



∑
(ω,k)∈Z1+d

ω 6=0

|v̂ω,k|2δ( ω
|ω| ,0)

(τ, ξ) +
∑
k∈Zd

|v̂0,k|2δ(0, k
|k| )

(τ, ξ), α > 2β

∑
(ω,k)∈Z1+d

k 6=0

|v̂ω,k|2δ(0, k
|k| )

(τ, ξ) +
∑
ω∈Z

|v̂ω,0|2δ( ω
|ω| ,0)

(τ, ξ), α < 2β

∑
(ω,k)∈Z1+d

|v̂ω,k|2δ( ω
ρ2(ω,k)

, k
ρ(ω,k)

)(τ, ξ), α = 2β,

where λ denotes the Lebesgue measure.
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Concentration (classical H-measures)

un(x) := n
d
2 v (nx) ,

(
v ∈ L2(Rd)

)
.

The associated H-measure is of the form δ0(x)ν(ξ), where ν is measure on
Sd−1 with surface density

ν(ξ) =

∫ ∞
0

|v̂(tξ)|2td−1dt,

i.e.

µ(x, ξ) =

∫
Rd
|v̂(η)|2δ η

|η|
(ξ)δ0(x) dη,

where v̂ denotes the Fourier transformation of v.
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Concentration (parabolic H-measures)

For v ∈ L2(R1+d) and α, β ∈ R+

un(t,x) := nα+βdv(n2αt, n2βx),

is bounded in L2(R1+d) with the norm ‖un‖L2(R1+d) = ‖v‖L2(R1+d) which
does not depend on n, and weakly converges to zero.

(un) is a pure sequence, with the parabolic H-measure 〈µ, φ� ψ〉 =

φ(0, 0)



∫
R1+d

|v̂(σ,η)|2ψ(
σ

|σ| , 0)dσdη +

∫
Rd
|v̂(0,η)|2ψ(0,

η

|η| ) dη, α > 2β∫
R1+d

|v̂(σ,η)|2ψ(0,
η

|η| )dσdη +

∫
R

|v̂(σ, 0)|2ψ(
σ

|σ| , 0) dσ, α < 2β∫
R1+d

|v̂(σ,η)|2ψ
(

σ

ρ2(σ,η)
,

η

ρ(σ,η)

)
dσdη, α = 2β.
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From examples we learn . . .

Actually, any non-negative Radon measure on Ω× P d−1, of total mass A2, can
be described as a parabolic H-measure of some sequence un −⇀ 0, with
‖un‖L2 6 A+ ε.

Both for oscillation and concentration, for α > 2β the measure µ is supported
in poles, while for α < 2β on the equator of the surface Pd, regardless of the
choice of v.

When α = 2β the parabolic H-measure can be supported in any point of the
surface Pd.

Other research in this direction:
Panov (IHP:AN, 2011): ultraparabolic H-measures
Ivec & Mitrović (CPAA, 2011)
Lazar & Mitrović (MathComm, 2011):
Erceg & Ivec (2017): fractional H-measures
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Symmetric systems — localisation principle

∂k(Aku) + Bu = f , Ak ∈ Cb(R
d; Mr×r) Hermitian

Assume:

un
L2

−−⇀ 0 , and defines µ

fn
H−1

loc−−→ 0 .

Theorem. (localisation principle) If un satisfies:

∂k
(
Akun

)
−→ 0 in space H−1

loc(Rd)r ,

then for P(x, ξ) := ξkA
k(x) on Ω× Sd−1 one has:

P(x, ξ)µ̄ = 0 .

Thus, the support of H-measure µ is contained in the set{
(x, ξ) ∈ Ω× Sd−1 : detP(x, ξ) = 0

}
of points where P is a singular matrix.

The localisation principle is behind the applications to the small-amplitude
homogenisation, which can be used in optimal design.

It is a generalisation of compactness by compensation to variable coefficients.
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Localisation principle for parabolic H-measures
In the parabolic case the details become more involved.

Anisotropic Sobolev spaces (s ∈ R; kp(τ, ξ) := (1 + σ4(τ, ξ))1/4) )

H
s
2
,s(R1+d) :=

{
u ∈ S ′ : kspû ∈ L2(R1+d)

}
.

Theorem. (localisation principle) Let un −⇀ 0 in L2(R1+d;Cr), uniformly
compactly supported in t, satisfy (s ∈ N)

√
∂t
s
(un · b) +

∑
|α|=s

∂α
x (un · aα) −→ 0 in H

− s
2
,−s

loc (R1+d) ,

where b, aα ∈ Cb(R
1+d;Cr), while

√
∂t is a pseudodifferential operator with

polyhomogeneous symbol
√

2πiτ , i.e.

√
∂tu = F

(√
2πiτ û(τ)

)
.

For parabolic H-measure µ associated to sequence (un) one has

µ

(
(
√

2πiτ)sb +
∑
|α|=s

(2πiξ)α aα

)
= 0.
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How to use such a relation? — the heat equation

{
∂tun − div (A∇un) = div fn

un(0) = γn ,

fn −⇀ 0 in L2
loc(R1+d;Rd), γn ⇀ 0 in L2(Rd)

continuous, bounded and positive definite: A(t,x) v · v > αv · v

Localise in time: take θun, for θ ∈ C1
c(R

+), . . .
Now we can apply the localisation principle (we still denote the localised
solutions by un).

Furthermore,
√
∂t (un) :=

(√
2πiτ ûn

)∨
−⇀ 0 in L2(R1+d).
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The heat equation (cont.)

Take
ṽn = (v0

n, vn, fn) := (
√
∂tun,∇un, fn) −⇀ 0

in L2(R1+d;R1+2d), which (on a subsequence) defines H-measure

µ̃ =

 µ0 µ01 µ02

µ10 µ µ12

µ20 µ21 µf

 .

The localisation principle gives us:

µ0

√
2πiτ − 2πiµ01 ·A

>ξ − 2πiµ02 · ξ = 0

µ10

√
2πiτ − 2πiµA>ξ − 2πiµ12 ξ = 0

µ20

√
2πiτ − 2πiµ21 A

>ξ − 2πiµfξ = 0.

After some calculation (linear algebra) . . .
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Expression for H-measure — from given data

trµ =
(2πξ)2

τ2 + (2πAξ · ξ)2
µfξ · ξ,

µ =
(2π)2

τ2 + (2πAξ · ξ)2
(µfξ · ξ)ξ ⊗ ξ.

µ0 =
|2πτ |

τ2 + (2πAξ · ξ)2
µfξ · ξ.

Thus, from the H-measures for the right hand side term f one can calculate
the H-measure of the solution.

However, the oscillation in initial data dies out (the equation is hypoelliptic).
Only the right hand side affects the H-measure of solutions.

The situation is different for the Schrödinger equation and for the vibrating
plate equation.
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Small amplitude homogenisation: setting of the problem

A sequence of parabolic problems

(∗)

{
∂tun − div (An∇un) = f

un(0, ·) = u0 .

where An is a perturbation of A0 ∈ C(Q; Md×d), which is bounded from
below; for small γ function An is analytic in γ:

An
γ (t,x) = A0 + γBn(t,x) + γ2Cn(t,x) + o(γ2) ,

where Bn,Cn ∗−−⇀ 0 in L∞(Q; Md×d)).

Then (after passing to a subsequence if needed)

An
γ

H−−−⇀A∞γ = A0 + γB0 + γ2C0 + o(γ2) ;

the limit being measurable in t,x, and analytic in γ.
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No first-order term on the limit

Theorem. The effective conductivity matrix A∞γ admits the expansion

A∞γ (t,x) = A0(t,x) + γ2C0(t,x) + o(γ2) .

Indeed, take u ∈ L2([0, T ]; H1
0(Ω)) ∩H1(〈0, T 〉; H−1(Ω)), and define

fγ := ∂tu− div (A∞γ ∇u), and u0 := u(0, ·) ∈ L2(Ω).

Next, solve (∗) with An
γ , fγ and u0, the solution unγ .

Of course, fγ and unγ analytically depend on γ.

Because of H-convergence, we have the weak convergences in L2(Q):

(†)
Enγ := ∇unγ −⇀ ∇u
Dnγ := An

γEnγ −⇀ A∞γ ∇u .

Expansions in Taylor serieses (similarly for fγ and unγ ):

Enγ = En0 + γEn1 + γ2En2 + o(γ2)

Dnγ = Dn0 + γDn1 + γ2Dn2 + o(γ2) .
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No first-order term on the limit (cont.)

Inserting (†) and equating the terms with equal powers of γ:

En0 = ∇u , Dn0 = A0∇u

Dn1 = A0En1 + Bn∇u −⇀ 0 in L2(Q) .

Also, Dn1 converges to B0∇u (the term in expansion with γ1)

Dnγ −⇀ A∞γ ∇u = A0∇u+ γB0∇u+ γ2C0∇u+ o(γ2) .

Thus B0∇u = 0, and as u ∈ L2([0, T ]; H1
0(Ω)) ∩H1(〈0, T 〉; H−1(Ω)) was

arbitrary, we conclude that B0 = 0.
For the quadratic term we have:

Dn2 = A0En2 + BnEn1 + Cn∇u −⇀ limBnEn1 = C0∇u ,

and this is the limit we still have to compute.
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Periodic homogenisation — an example

In the periodic case the explicit formulae for the homogenisation limit are
known [BLP].
Together with Fourier analysis:
leading terms in expansion for the small amplitude homogenisation limit.

Periodic functions—functions defined on T := S1 = R/Z, Y := Rd/Zd and
Z := R1+d/Z1+d

We implicitly assume projections of x 7→ y ∈ Y , etc.
For given ρ ∈ 〈0,∞〉 we define the sequence An by

An(t,x) = A(nρt, nx) .

Then An H-converges to a constant A∞ defined by

A∞h =

∫
Z

A(τ,y)(h +∇w(τ,y)) dτdy .

For given h, w is a solution of some BVP, depending on ρ.
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Three different cases depending on ρ

ρ ∈ 〈0, 2〉: w(τ, ·) is the unique solution of

−div (A(τ, ·)(h +∇w(τ, ·))) = 0

w(τ, ·) ∈ H1(Y ) ,

∫
Y

w(τ,y) dy = 0 ,

ρ = 2: w is defined by

∂tw − div (A(h +∇w)) = 0

w ∈ L2(T ; H1(Y )) , ∂tw ∈ L2(T ; H−1(Y )) ,

∫
Z

w dτdy = 0 .

ρ ∈ 〈2,∞〉: define Ã(y) =
∫ 1

0
A(τ,y) dτ and w as the solution of

−div (Ã(h +∇w)) = 0

w ∈ H1(Y ) ,

∫
Y

w dy = 0 .
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Periodic small-amplitude homogenisation

A sequence of small perturbations of a constant coercive matrix A0 ∈ Md×d:

An
γ (t,x) = A0 + γBn(t,x) ,

where Bn(t,x) = B(nρt, nx), B is Z-periodic L∞ matrix function satisfying∫
Z
B dτdy = 0.

For γ small enough, (eventually passing to a subsequence) we have
H-convergence to a limit depending analytically on γ:

An
γ

H−−⇀ A∞γ = A0 + γB0 + γ2C0 + o(γ2)

and a formula for A∞γ :

A∞γ h =

∫
Z

(A0 + γB))(h +∇wγ) dτdy

= A0h +

∫
Z

A0∇wγ + γ

∫
Z

Bh + γ

∫
Z

B∇wγ = A0h + γ

∫
Z

B∇wγ .
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Periodic small-amplitude homogenisation (cont.)

In the last equality the second term equals zero by Gauss’ theorem, as wγ is a
periodic function. Similarly for the third term.

Since wγ is a solution of some (initial–)boundary value problem, depending on
ρ, it also depends analytically on γ:

wγ = w0 + γw1 + o(γ) .

The first order term vanishes, as A0 is constant.

A∞γ h = A0h + γ2

∫
Z

B∇w1 + o(γ2) ,

so we conclude that B0 = 0 and C0h =
∫
Z
B∇w1.

From this formula, using the Fourier series, one can calculate the second-term
approximation C0. Off course, we must treat separately each one of the above
three cases for ρ.
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The case ρ ∈ 〈0, 2〉 on the limit

Fix τ ∈ [0, 1]; the BVP with coefficient A0 + γB instead of A and the above
expression for w, we see that w1 solves

(‡) −div (A0∇w1(τ, ·)) = div (Bh) , w1(τ, ·) ∈ H1(Y ) ,

∫
Y

w1(τ,y) dy = 0

Expanding w1 in the Fourier series gives us (J = Z× (Zd \ {0}))

w1 =
∑

(l,k)∈J

alke
2πi(lτ+k·y) ,

because of
∫
Y
w1(τ,y) dy = 0.

Straightforward calculation gives us

∇w1 =
∑
J

2πik alke
2πi(lτ+k·y) ,

divA0∇w1 =
∑
J

(2πi)2A0k · k alke2πi(lτ+k·y) .
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The case ρ ∈ 〈0, 2〉 on the limit (cont.)
For B denote I := Zd+1 \ {0}

B =
∑
I

Blke
2πi(lτ+k·y) ,

divBh =
∑
I

2πiBlkh · k e2πi(lτ+k·y) .

(‡) leads to a relation among corresponding Fourier coefficients

2πiA0k · k alk = −Blkh · k , (l, k) ∈ Zd+1 ,

i.e. alk =

−
Blkh · k

2πiA0k · k , (l, k) ∈ J

0 , otherwise .

Finally, we obtain

C0h =

∫
Z

B∇w1 dτdy

=

∫
Z

(∑
I

Blke
2πi(lτ+k·y)

)(∑
J

(2πik′)al′k′e
2πi(l′τ+k′·y)

)
dτdy
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The case ρ ∈ 〈0, 2〉 on the limit (cont.)

Due to orthogonality, for the non-vanishing terms in the above product of two
series we have l′ = −l and k′ = −k. Therefore,

C0h = −2πi
∑
J

Blkka−l,−k

= −
∑
J

Blkk
B−l,−kh · k
A0k · k = −

∑
J

Blkk⊗Blkk

A0k · k h ,

where the last equality holds since B is a real matrix function i.e.
Blk = B−l,−k.

We conclude

C0 = −
∑
J

Blkk⊗Blkk

A0k · k .

31



The case ρ ∈ 〈0, 2〉 on the limit (cont.)

Due to orthogonality, for the non-vanishing terms in the above product of two
series we have l′ = −l and k′ = −k. Therefore,

C0h = −2πi
∑
J

Blkka−l,−k

= −
∑
J

Blkk
B−l,−kh · k
A0k · k = −

∑
J

Blkk⊗Blkk

A0k · k h ,

where the last equality holds since B is a real matrix function i.e.
Blk = B−l,−k. We conclude

C0 = −
∑
J

Blkk⊗Blkk

A0k · k .

31



The case ρ = 2 on the limit

The calculation is similar to the first case. The only difference appears in the

equation for w1 =
∑

(l,k)∈I

alke
2πi(lτ+k·y):

∂τw1 − div (A0∇w1(τ, ·)) = div (Bh) ,

implying the following relation for the Fourier coefficients

(l − 2πiA0k · kalk) = Blkh · k , (l, k) ∈ I ,

and the formula for the second order approximation of the H-limit:

C0 = −
∑
J

Blkk⊗Blkk
l

2πi
+ A0k · k

.

32



The case ρ = 2 on the limit

The calculation is similar to the first case. The only difference appears in the

equation for w1 =
∑

(l,k)∈I

alke
2πi(lτ+k·y):

∂τw1 − div (A0∇w1(τ, ·)) = div (Bh) ,

implying the following relation for the Fourier coefficients

(l − 2πiA0k · kalk) = Blkh · k , (l, k) ∈ I ,

and the formula for the second order approximation of the H-limit:

C0 = −
∑
J

Blkk⊗Blkk
l

2πi
+ A0k · k

.

32



The case ρ = 2 on the limit

The calculation is similar to the first case. The only difference appears in the

equation for w1 =
∑

(l,k)∈I

alke
2πi(lτ+k·y):

∂τw1 − div (A0∇w1(τ, ·)) = div (Bh) ,

implying the following relation for the Fourier coefficients

(l − 2πiA0k · kalk) = Blkh · k , (l, k) ∈ I ,

and the formula for the second order approximation of the H-limit:

C0 = −
∑
J

Blkk⊗Blkk
l

2πi
+ A0k · k

.

32



The case ρ ∈ 〈2,∞〉 on the limit

In this case w1 does not depend on τ . Introducing

B̃(y) :=

∫ 1

0

B(τ,y) dτ

this case actually has the same behaviour as the one in elliptic setting, giving
the formula

C0 = −
∑

Zd\{0}

B̃kk⊗ B̃kk

A0k · k .
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Parabolic small-amplitude homogenisation—general case

Let us continue what we were doing before . . .

For the quadratic term we have:

Dn2 = A0En2 + BnEn1 + Cn∇u −⇀ limBnEn1 = C0∇u ,

and this is the limit we shall express using only the parabolic variant H-measure
µ.

un1 satisfies the equation (∗) with coefficients A0, div (Bn∇u) on the right
hand side and the homogeneous innitial condition.

By applying the Fourier transform (as if the equation were valid in the whole
space), and multiplying by 2πiξ, for (τ, ξ) 6= (0, 0) we get

∇̂un1 (τ, ξ) = − (2π)2 (ξ ⊗ ξ) ̂(Bn∇u)(τ, ξ)

2πiτ + (2π)2A0ξ · ξ
.

(the precise argument involves localisation principle and some calculations . . . )
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Expression for the quadratic correction

As (ξ ⊗ ξ)/(2πiτ + (2π)2A0ξ · ξ) is constant along branches of paraboloids
τ = cξ2, c ∈ R, we have (ϕ ∈ C∞c (Q))

lim
n

〈
ϕBn | ∇un1

〉
= − lim

n

〈
ϕ̂Bn | (2π)2 (ξ ⊗ ξ) ̂(Bn∇u)

2πiτ + (2π)2A0ξ · ξ

〉
= −

〈
µ, ϕ

(2π)2ξ ⊗ ξ ⊗∇u
−2πiτ + (2π)2A0ξ · ξ

〉
,

where µ is the parabolic variant H-measure associated to (Bn), a measure with
four indices (the first two of them not being contracted above).
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Expression for the quadratic correction (cont.)

By varying function u ∈ C1(Q) (e.g. choosing ∇u constant on 〈0, T 〉 × ω,
where ω ⊆ Ω) we get∫

〈0,T 〉×ω
Cij0 (t,x)φ(t,x)dtdx = −

〈
µij , φ

(2π)2ξ ⊗ ξ

−2πiτ + (2π)2A0ξ · ξ

〉
,

where µij denotes the matrix measure with components
(
µij
)
kl

= µiklj .

For the periodic example of small-amplitude homogenisation, we get the same
results by applying the variant H-measures, as with direct calculations
performed above.
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Homogenisation of a model based on the Stokes equation: stationary case

(Tartar, 1976 and 1984)
Ω ⊆ R3 open set, un −⇀ u0 in H1

loc(Ω;R3){
−ν4un + un × rot (v0 + λvn) +∇pn = fn

div un = 0 .

Not a realistic model, but contains the terms: u× rot A
resulting from the Lorentz force q(u× B) in electrostatics, or

in fluids (∇u)u = u× rot (−u) +∇ |u|
2

2
.

Theorem. There is a subsequence and M > 0, depending on the choice of
the subsequence, such that the limit u0 satisfies:{

−ν4u0 + u0 × rot v0 + λ2Mu0 +∇p0 = f0

div u0 = 0 ,

and it holds:

ν|∇un|2 −⇀ ν|∇u0|2 + λ2Mu0 · u0 in D′(Ω) .
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Explicit formula via H-measures

Can M be computed directly from vn −⇀ 0 in L2(Ω;R3)
(also bounded in L3(Ω;R3))?

Yes! (Tartar, 1990)

M =
1

ν

〈〈
µ, (v2 − (v · ξ)2)ξ ⊗ ξ

〉〉
.

Note. The meaning of the formula: (∀ϕ ∈ C∞c (Ω))∫
Ω

M(x)ϕ(x) dx =
1

ν
[〈trµ, ϕ� (ξ ⊗ ξ)〉 − 〈µ, ϕ� (ξ ⊗ ξ)⊗ (ξ ⊗ ξ)〉] .

M is not only a measure, but a function.
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What in the time-dependent case?

Stationary model motivated the introduction of H-measures.
Time-dependent led to a variant.

Tartar with Chun Liu and Konstantina Trevisa some twenty years ago; only
written record in Multiscales 2000.
M. Lazar and myself — wrote it down (technical difference in the scaling).
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Time dependent case

On R3 (we need good estimates for the pressure).

Tartar’s model from 1985:{
∂tun − ν4un + un × rot (v0 + λvn) +∇pn = fn

div un = 0 .

Assume that
un −−⇀ u0 in L2([0, T ]; H1(R3;R3)) ,

un
∗−−⇀ u0 in L∞([0, T ]; L2(R3;R3)) .

and (pn) is bounded in L2([0, T ]×R3).
Oscillation in (vn) generates oscillation in (∇un), which dissipates energy via
viscosity.
This should be visible from macroscopic equation (equation satisfied by u0).
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Sufficient assumptions on vn and fn

fn = divGn, with Gn −→ G0 in L2([0, T ]×R3; M3×3)

v0 ∈ L2([0, T ]; L∞(R3;R3)) + L∞([0, T ]; L3(R3;R3))

vn = an + bn, where

an
∗−−⇀ 0 in Lq([0, T ]; L∞(R3;R3)), for some q > 2,

bn
∗−−⇀ 0 in L∞([0, T ]; Lr(R3;R3)), for some r > 3.
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Homogenised equation

Theorem. There is a subsequence and a function M > 0 such that the limit
u0 satisfies: {

∂tu0 − ν4u0 + u0 × rot v0 + λ2Mu0 +∇p0 = f0

div u0 = 0 ,

and that we have the convergence

ν|∇un|2 −⇀ ν|∇u0|2 + λ2Mu0 · u0 in D′(R1+3) .

There is a new term, M, in the macroscopic equation.
How can it be computed?
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Oscillating test functions

{
−∂twn − ν4wn + k× rot vn +∇rn = 0

div wn = 0 ,

supplemented by requirements:

wn −−⇀ 0 in L2([0, T ]; H1(R3;R3)), and
wn

∗−−⇀ 0 in L∞([0, T ]; L2(R3;R3)).

Sufficient to take homogeneous condition at t = T ,
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Can we avoid wn?

Theorem. Let µ be a variant H-measure associated to a subsequence of (vn).∫
R1+3

M(t,x)φ(t,x)dtdx =

= 4π2ν
〈(

trµ|ξ|2 − µ · (ξ ⊗ ξ)
) (ξ ⊗ ξ)

τ2 + ν24π2|ξ|4 , φ� 1
〉
,

with φ ∈ C∞c (〈0, T 〉 ×R3).
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Proof.

For wn we have (with 0 6M ∈ L2([0, T ]; H−1(R3; M3×3))):

ν

∫
R1+3

ϕ|∇wn|2 dy −→
∫
R1+3

ϕMk · k dy .

From estimates on rn and vn we get w′n −⇀ 0 in L2(0, T ; H−1
loc(R3)), and

compactness lemma gives us wn → 0 in L2
loc([0, T ]×R3).

Therefore:

lim
n

∫
R1+3

|ϕ∇wn|2 dy = lim
n

∫
R1+3

|∇(ϕwn)|2 dy .
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Localise . . .

Localise by multiplying the auxilliary problem by ϕ ∈ C∞c (〈0, T 〉 ×R3)

−∂t(ϕwn)− ν4(ϕwn) + k× rot (ϕvn) = −∇(ϕrn) + qn ,

qn = −(∂tϕ)wn − ν(4ϕ)wn − 2ν(∇wn)∇ϕ+ k× (∇ϕ× vn) + rn∇ϕ ,

qn −⇀ 0 in L2(R1+3) (and also strongly in H−
1
2
,−1(R1+3)).

As wn −⇀ 0 in L2([0, T ]; H1(R3)), so localised wn and ∇wn converge weakly
in L2.

Of course, localised vn and rn converge weakly in L2 as well.
From boundedness of the support of ϕ, we have strong convergence in

H−
1
2
,−1.
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The Fourier transform

(−2πiτ + ν4π2ξ2)ϕ̂wn = −k×
(

(2πiξ)× ϕ̂vn
)
− 2πiϕ̂rnξ + q̂n ,

and dividing by (−2πiτ + ν4π2ξ2) we get

ϕ̂wn =
−k×

(
(2πiξ)× ϕ̂vn

)
− 2πiϕ̂rnξ + q̂n

−2πiτ + ν4π2ξ2 .

The penultimate term disappears if we project it to the plane ⊥ ξ (projection
Pξ).

div wn = 0, so ξ · ŵn = 0; which does not hold for div (ϕwn) = ∇ϕ · wn.
However, the RHS converges strongly in L2 to 0, so in the Fourier space:

2πξ · ϕ̂wn −→ 0 .
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Projection by Pξ

After projection

ϕ̂wn =
−Pξ

(
k×

(
(2πiξ)× ϕ̂vn

))
+ Pξq̂n

−2πiτ + ν4π2ξ2 + dn ,

with dn −→ 0 in L2.

By Plancherel

lim
n

∫
Ω

ν|∇(ϕwn)|2 dx = lim
n

∫ 1+d

R

ν4π2|(̂ϕwn)|2dτdξ

= lim
n

∫ 1+d

R

ν4π2ξ2

∣∣∣∣Pξ

(
k×

(
(2πiξ)× ϕ̂vn

)
+ q̂n

)
−2πiτ + ν4π2ξ2

∣∣∣∣2dτdξ
= lim

n

∫ 1+d

R

νξ2

∣∣∣Pξ

(
k×

(
(2πiξ)× ϕ̂vn

)
+ q̂n

)∣∣∣2
τ2 + ν4π2ξ4 dτdξ
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Applying the Lemma (analysis)

|ξ|q̂n√
τ2 + ν4π2ξ4

→ 0 in L2(R1+3) .

By Pη ∣∣∣Pη

(
k× (η × a)

)∣∣∣2 = (k · η)2
(
|a|2 − |a · η0|

2
)

where η0 is the unit vector in the direction of η.
Note that k and η are real, while only a is complex. Therefore:

lim
n

∫
Ω

ν|∇(ϕwn)|2 dx

= lim
n

∫
R3

ξ2

(
k · 2πiξ

)2(
|ϕ̂vn|2 −

∣∣∣ϕ̂vn · ξ
|ξ|

∣∣∣2)
τ2 + ν4π2ξ4 dξ .
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Finally (after some algebra)

lim
n

∫
R3

ξ2
0

(
k · 2πiξ0

)2(
|ϕ̂vn|2 −

∣∣∣ϕ̂vn · ξ0
|ξ0|

∣∣∣2)
τ2
0 + ν4π2ξ4

0

dξ =

=
1

ν
〈trµ, (

ξ0 · k
τ2
0 + ν4π2ξ4

0

)2ϕϕ〉

− 1

ν
〈µ, ( ξ0 · k

τ2
0 + ν4π2ξ4

0

)2ϕϕξ ⊗ ξ〉 .
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Introduction to H-measures
What are H-measures?
First examples

Localisation principle
Symmetric systems — compactness by compensation again
Localisation principle for parabolic H-measures

Applications in homogenisation
Small-amplitude homogenisation of heat equation
Periodic small-amplitude homogenisation
Homogenisation of a model based on the Stokes equation
Model based on time-dependent Stokes

H-distributions
Existence
Localisation principle
Other variants

One-scale H-measures
Semiclassical measures
One-scale H-measures
Localisation principle
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Good bounds in the Lp case: the Hörmander-Mihlin theorem

ψ : Rd → C is a Fourier multiplier on Lp(Rd) if

F̄(ψF(θ)) ∈ Lp(Rd) , for θ ∈ S(Rd),

and
S(Rd) 3 θ 7→ F̄(ψF(θ)) ∈ Lp(Rd)

can be extended to a continuous mapping Aψ : Lp(Rd)→ Lp(Rd).

Theorem. [Hörmander-Mihlin] Let ψ ∈ L∞(Rd) have partial derivatives of
order less than or equal to κ = [ d

2
] + 1. If for some k > 0

(∀r > 0)(∀α ∈ Nd
0) |α| 6 κ =⇒

∫
r
2
6|ξ|6r

|∂αψ(ξ)|2dξ 6 k2rd−2|α| ,

then for any p ∈ 〈1,∞〉 and the associated multiplier operator Aψ there exists
a Cd (depending only on the dimension d) such that

‖Aψ‖Lp→Lp 6 Cd max

{
p,

1

p− 1

}
(k + ‖ψ‖∞) .

For ψ ∈ Cκ(Sd−1), extended by homogeneity to Rd
∗, we can take k = ‖ψ‖Cκ .

52



Good bounds in the Lp case: the Hörmander-Mihlin theorem
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The main theorem

Theorem. [N.A. & D. Mitrović (2011)] If un −⇀ 0 in Lp(Rd) and
vn

∗−−⇀ v in Lq(Rd) for some q > max{p′, 2}, then there exist subsequences
(un′), (vn′) and a complex valued distribution µ ∈ D′(Rd × Sd−1), such that
for every ϕ1, ϕ2 ∈ C∞c (Rd) and ψ ∈ Cκ(Sd−1) we have:

lim
n′

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2ψ〉 .

µ is the H-distribution corresponding to (a subsequence of) (un) and (vn).

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µ is supported on Cl Ω× Sd−1.

We distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). For p > 2, p′ 6 2 and we can
take q > 2; this covers the L2 case (including un = vn).
The assumptions imply un, vn −⇀ 0 in L2

loc(Rd), resulting in a distribution µ
of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for p < 2.

For vector-valued un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix
valued distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

The H-distribution would correspond to a non-diagonal block for an H-measure.
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The novelty in Theorem is for p < 2.

For vector-valued un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix
valued distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

The H-distribution would correspond to a non-diagonal block for an H-measure.

53



Localisation principle

Theorem. Take un ⇀ 0 in Lp(Rd), fn → 0 in W−1,q
loc (Rd), for some

q ∈ 〈1, d〉, such that
div (a(x)un(x)) = fn(x) .

Take an arbitrary (vn) bounded in L∞(Rd), and by µ denote the
H-distribution corresponding to a subsequence of (un) and (vn). Then

(a(x) · ξ)µ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.
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Localisation principle

Theorem. Take un ⇀ 0 in Lp(Rd), fn → 0 in W−1,q
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Take an arbitrary (vn) bounded in L∞(Rd), and by µ denote the
H-distribution corresponding to a subsequence of (un) and (vn). Then

(a(x) · ξ)µ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.

In order to prove the theorem, we need a particular multiplier, the so called
(Marcel) Riesz potential I1 := A|2πξ|−1 , and the Riesz transforms Rj := A ξj

i|ξ|
.

Note that ∫
I1(φ)∂jg =

∫
(Rjφ)g, g ∈ S(Rd).

Using the density argument and that Rj is bounded from Lp(Rd) to itself, we
conclude ∂jI1(φ) = −Rj(φ), for φ ∈ Lp(Rd).
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Localisation principle

Theorem. Take un ⇀ 0 in Lp(Rd), fn → 0 in W−1,q
loc (Rd), for some

q ∈ 〈1, d〉, such that
div (a(x)un(x)) = fn(x) .

Take an arbitrary (vn) bounded in L∞(Rd), and by µ denote the
H-distribution corresponding to a subsequence of (un) and (vn). Then

(a(x) · ξ)µ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.

(an application suggested by Darko Mitrović) For scalar conservation law
with discontinuous flux, the most up to date existence result for the equation

ut + div f(t,x, u) = 0

is obtained under the assumptions

max
λ∈R
|f(t,x, λ)| ∈ L2+ε(Rd

+) .

Using the H-distributions, it is poossible to prove an existence result for the
given equation under the assumption

max
λ∈R
|f(t,x, λ)| ∈ L1+ε(Rd

+) .
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Further variants

N.A. & I. Ivec (JMAA, 2016): extension to Lebesgue spaces with mixed norm

M. Lazar & D. Mitrović (DynPDE, 2012): applications to velocity averaging

M. Mǐsur & D. Mitrović (JFA, 2015): a form of compactness by compensation

J. Aleksić, S. Pilipović, I. Vojnović (Mediter. J. Maths, 2017): in S −S ′ setting

F. Rindler (ARMA, 2015): microlocal compactness forms
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Semiclassical measures

Theorem. If un ⇀ 0 in L2(Ω;Cr), ωn → 0+, then there exist a subsequence
(un′) and µ(ωn)

sc ∈Mb(Ω×Rd; Mr(C)) such that for any ϕ1, ϕ2 ∈ C∞c (Ω)
and ψ ∈ S(Rd)

lim
n′

∫
Rd

(
ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)

)
ψ(ωn′ξ) dξ =

〈
µ(ωn)
sc , ϕ1ϕ̄2 � ψ

〉
.

Measure µ(ωn)
sc we call the semiclassical measure with characteristic length

(ωn) corresponding to the (sub)sequence (un).

Definition (un) is (ωn)-oscillatory if
(∀ϕ ∈ C∞c (Ω)) limR→∞ lim supn

∫
|ξ|> R

ωn

|ϕ̂un(ξ)|2 dξ = 0 .

Theorem.

un
L2
loc−→ 0 ⇐⇒ µ(ωn)

sc = 0 & (un) is (ωn)− oscillatory .
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Localisation principle for semiclassical measures

Let Ω ⊆ Rd open, m ∈ N, un ⇀ 0 in L2
loc(Ω;Cr) and

Pnun :=
∑
|α|6m

ε|α|n ∂α(Aαun) = fn in Ω ,

where
• εn → 0+

• Aα ∈ C(Ω; Mr(C))
• fn −→ 0 in L2

loc(Ω;Cr).
Then we have

pµ>sc = 0 ,

where p(x, ξ) =
∑
|α|6m ξαAα(x), and µsc is semiclassical measure with

characteristic length (εn), corresponding to (un).

Problem: µsc = 0 is not enough for the strong convergence!
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Compatification of Rd \ {0}

∞e

e0e

Rd

Σ∞

Σ0

Σ0 := {0e : e ∈ Sd−1}

Σ∞ := {∞e : e ∈ Sd−1}

K0,∞(Rd) := Rd \ {0} ∪ Σ0 ∪ Σ∞

Corollary. a) C0(Rd) ⊆ C(K0,∞(Rd)).
b) ψ ∈ C(Sd−1), ψ ◦ π ∈ C(K0,∞(Rd)), where π(ξ) = ξ/|ξ|.
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One-scale H-measures

Theorem. If un ⇀ 0 in L2(Ω;Cr), ωn → 0+, then there exists a
subsequence (un′) and µ(ωn)

sc ∈Mb(Ω×Rd; Mr(C)) such that for any
ϕ1, ϕ2 ∈ C∞c (Ω) and ψ ∈ S(Rd)

lim
n′

∫
Rd

(
̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)

)
ψ(ωn′ξ) dξ =

〈
µsc, ϕ1ϕ̄2 � ψ

〉
.

Measure µ(ωn)
sc is called the semiclassical measure with characteristic length

(ωn) corresponding to the (sub)sequence (un).

Luc Tartar: The general theory of homogenization: A personalized
introduction, Springer, 2009.
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical
Systems, S 8 (2015) 77–90.
N. A., Marko Erceg, Martin Lazar: Localisation principle for one-scale
H-measures, submitted (arXiv).
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Idea of the proof

Tartar’s approach:

• vn(x, xd+1) := un(x)e
2πixd+1

ωn ⇀ 0 in L2
loc(Ω×R;Cr)

• νH ∈M(Ω×R× Sd; Mr(C))

• µ
(ωn)
K0,∞

is obtained from νH (suitable projection in xd+1 and ξd+1)

Our approach:
• First commutation lemma:

Lemma. Let ψ ∈ C(K0,∞(Rd)), ϕ ∈ C0(Rd), ωn → 0+, and denote
ψn(ξ) := ψ(ωnξ). Then the commutator can be expressed as a sum

Cn := [Bϕ,Aψn ] = C̃n +K ,

where K is a compact operator on L2(Rd), while C̃n −→ 0 in the operator
norm on L(L2(Rd)).

• standard procedure: (a variant of) the kernel theorem, separability, . . .

60



Idea of the proof

Tartar’s approach:

• vn(x, xd+1) := un(x)e
2πixd+1

ωn ⇀ 0 in L2
loc(Ω×R;Cr)

• νH ∈M(Ω×R× Sd; Mr(C))

• µ
(ωn)
K0,∞

is obtained from νH (suitable projection in xd+1 and ξd+1)

Our approach:
• First commutation lemma:

Lemma. Let ψ ∈ C(K0,∞(Rd)), ϕ ∈ C0(Rd), ωn → 0+, and denote
ψn(ξ) := ψ(ωnξ). Then the commutator can be expressed as a sum

Cn := [Bϕ,Aψn ] = C̃n +K ,

where K is a compact operator on L2(Rd), while C̃n −→ 0 in the operator
norm on L(L2(Rd)).

• standard procedure: (a variant of) the kernel theorem, separability, . . .

60



Some properties of µK0,∞

Theorem.

a) µ∗K0,∞ = µK0,∞ , µK0,∞ > 0

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) trµK0,∞(Ω× Σ∞) = 0 ⇐⇒ (un) is (ωn)− oscillatory

Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ C0(Rd), ψ̃ ∈ C(Sd−1), ωn → 0+,

a) 〈µ(ωn)
K0,∞

, ϕ1ϕ̄2 � ψ〉 = 〈µ(ωn)
sc , ϕ1ϕ̄2 � ψ〉 ,

b) 〈µ(ωn)
K0,∞

, ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 ,

where π(ξ) = ξ/|ξ|.
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Localisation principle

Let Ω ⊆ Rd open, m ∈ N, un ⇀ 0 in L2
loc(Ω;Cr) and∑

l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

where
• l ∈ 0..m
• εn → 0+

• Aα ∈ C(Ω; Mr(C))
• fn ∈ H−mloc (Ω;Cr) such that

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 +
∑m
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd;Cr) (C(εn))

Lemma. a) (C(εn)) is equivalent to

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 + |ξ|l + εm−ln |ξ|m
−→ 0 in L2(Rd;Cr) .

b) (∃ k ∈ l..m) fn −→ 0 in H−kloc (Ω;Cr) =⇒ (εk−ln fn) satisfies (C(εn)).
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Localisation principle
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l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 +
∑m
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd;Cr) . (C(εn))

Theorem. [Tartar (2009)] Under previous assumptions and l = 1, one-scale
H-measure µK0,∞ with characteristic length (εn) corresponding to (un) satisfies

supp (pµ>K0,∞) ⊆ Ω× Σ0 ,

where

p(x, ξ) :=
∑

16|α|6m

(2πi)|α|
ξα

|ξ|+ |ξ|mAα(x) .
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Localisation principle

∑
l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 +
∑m
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd;Cr) . (C(εn))

Theorem. [N.A., Erceg, Lazar (2015)] Under previous assumptions,
one-scale H-measure µK0,∞ with characteristic length (εn) corresponding to

(un) satisfies
pµ>K0,∞ = 0 ,

where

p(x, ξ) :=
∑

l6|α|6m

(2πi)|α|
ξα

|ξ|l + |ξ|mAα(x) .
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Localisation principle - final generalisation

Theorem. Take εn > 0 bounded, un ⇀ 0 in L2
loc(Ω;Cr) and∑

l6|α|6m

ε|α|−ln ∂α(Aα
n un) = fn ,

where Aα
n ∈ C(Ω; Mr(C)), Aα

n −→ Aα uniformly on compact sets, and
fn ∈ H−mloc (Ω;Cr) satisfies (C(εn)).
Then for ωn → 0+ such that c := limn

εn
ωn
∈ [0,∞], the corresponding

one-scale H-measure µK0,∞ with characteristic length (ωn) satisfies

pµ>K0,∞ = 0 ,

where

p(x, ξ) :=


∑
|α|=l

ξα

|ξ|l+|ξ|mAα(x) , c = 0∑
l6|α|6m(2πic)|α| ξα

|ξ|l+|ξ|mAα(x) , c ∈ 〈0,∞〉∑
|α|=m

ξα

|ξ|l+|ξ|mAα(x) , c =∞
Moreover, if there exists ε0 > 0 such that εn > ε0, n ∈ N, we can take

p(x, ξ) :=
∑
|α|=m

ξα

|ξ|mAα(x) .

As a corollary from the previous theorem we can derive localisation principles
for H-measures and semiclassical measures.
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Localisation principle - final generalisation

Theorem. Take εn > 0 bounded, un ⇀ 0 in L2
loc(Ω;Cr) and∑

l6|α|6m

ε|α|−ln ∂α(Aα
n un) = fn ,

where Aα
n ∈ C(Ω; Mr(C)), Aα

n −→ Aα uniformly on compact sets, and
fn ∈ H−mloc (Ω;Cr) satisfies (C(εn)).
Then for ωn → 0+ such that c := limn

εn
ωn
∈ [0,∞], the corresponding

one-scale H-measure µK0,∞ with characteristic length (ωn) satisfies

pµ>K0,∞ = 0 ,

where

p(x, ξ) :=


∑
|α|=l

ξα

|ξ|l+|ξ|mAα(x) , c = 0∑
l6|α|6m(2πic)|α| ξα

|ξ|l+|ξ|mAα(x) , c ∈ 〈0,∞〉∑
|α|=m

ξα

|ξ|l+|ξ|mAα(x) , c =∞
Moreover, if there exists ε0 > 0 such that εn > ε0, n ∈ N, we can take

p(x, ξ) :=
∑
|α|=m

ξα

|ξ|mAα(x) .

As a corollary from the previous theorem we can derive localisation principles
for H-measures and semiclassical measures.
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Thank you for your attention.
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