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Friedrichs’ system (KOF1958)

Assumptions:
d, r ∈ N, Ω ⊆ Rd open and bounded with Lipschitz boundary Γ;

Ak ∈W1,∞(Ω; Mr(C)), k ∈ 1..d, and C ∈ L∞(Ω; Mr(C))

satisfying

(F1) matrix functionsAk are hermitian:Ak = A∗k ;

(F2) (∃µ0 > 0) C + C∗ +

d∑
k=1

∂kAk > 2µ0I (ae on Ω) .

The operator L : L2(Ω;Cr) −→ D′(Ω;Cr)

Lu :=

d∑
k=1

∂k(Aku) + Cu

is called the symmetric positive operator or the Friedrichs operator, and

Lu = f

the symmetric positive system or the Friedrichs system.
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Symmetric hyperbolic systems (KOF1954)

d∑
k=1

Ak∂ku + Bu = f

In divergence form:

d∑
k=1

∂k(Aku) + (B− ∂kAk)u = f

It is symmetric if all matrices Ak are real and symmetric; and uniformly
hyperbolic if there is a ξ ∈ Rd such that for any x ∈ Cl Ω the matrix ξkA

k(x)
is positive definite.

Such systems can easily be transformed into Friedrichs’ systems.

It is known that the wave equation and the Maxwell system can be written as
an equivalent hyperbolic system.
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Friedrichs systems

Introduced in:
K. O. Friedrichs: Symmetric positive linear differential equations,
Communications on Pure and Applied Mathematics 11 (1958), 333–418.

Goals:

– treating the equations of mixed type, such as the Tricomi equation:

y
∂2u

∂x2
+
∂2u

∂y2
= 0 ;

– unified treatment of equations and systems of different type.

All of Gårding’s theory of general elliptic equations, or Lerray’s of general
hyperbolic equations, is not covered.

The development of theory is nowadays mostly motivated by the needs in
development of numerical methods.
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An example – scalar elliptic equation

Ω ⊆ R2, µ > 0 and f ∈ L2(Ω) given.

−4u+ µu = f

can be written as a first-order system{
p +∇u = 0

µu+ divp = f
,

which is a Friedrichs system with the choice of

A1 =

 0 0 1
0 0 0
1 0 0

 , A2 =

 0 0 0
0 0 1
0 1 0

 , C =

 1 0 0
0 1 0
0 0 µ

 .
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Example – heat equation

. . . with zero initial and Dirichlet boundary condition:
∂tu−div x(A∇xu) + b · ∇xu+ cu = f in ΩT

u = 0 on 〈0, T 〉 × Γ

u(0, ·) = 0 on Ω

...as a Friedrichs system:{
∇xud+1 + A−1ud = 0

∂tud+1 + div xud + cud+1 −A−1b · ud = f
,

(note that we use u = (ud, ud+1)>, where ud = −A∇u, and ud+1 = u). Indeed

[
0 0

0> 1

]
∂t

[
ud
u

]
+

d∑
i=1


0 · · · 0 · · · 0
...

. . . 0 · · · 0
0 · · · 0 · · · 1
... · · · 0 · · · 0
0 · · · 1 · · · 1

 ∂xi
[

ud
u

]
+

[
A−1 0

−(A−1b)> c

] [
ud
u

]
=

[
0
f

]
.

The condition (F1) holds. The positivity condition C + C> > 2µ0I is fulfilled
if and only if c− 1

4
A−1b · b is uniformly positive.
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Boundary conditions

Boundary conditions are enforced via matrix valued boundary field:

Aν :=

d∑
k=1

νkAk ∈ L∞(Γ; Mr(C)) ,

where ν = (ν1, ν2, · · · , νd) is the outward unit normal on Γ, and

M ∈ L∞(Γ; Mr(C)).

Boundary condition
(Aν −M)u|Γ = 0

is sufficient for treatment of different types of usual boundary conditions.
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Assumptions on boundary matrix M

We assume (for ae x ∈ Γ) [KOF1958]

(FM1) (∀ ξ ∈ Cr) (M(x) + M(x)∗)ξ · ξ > 0 ,

(FM2) Cr = ker
(
Aν(x)−M(x)

)
+ ker

(
Aν(x) + M(x)

)
.

Such M is called the admissible boundary condition.

The boundary problem: for given f ∈ L2(Ω;Cr) find u such that{
Lu = f

(Aν −M)u|Γ = 0
.
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Elliptic equation – different boundary conditions

M Aν −M (Aν −M)

[
p
u

]
|Γ

= 0 0 0 −ν1

0 0 −ν2

ν1 ν2 0

  0 0 2ν1

0 0 2ν2

0 0 0


u|Γ = 0

 0 0 ν1

0 0 ν2

−ν1 −ν2 0

  0 0 0
0 0 0

2ν1 2ν2 0


ν · (∇u)|Γ = 0

 0 0 ν1

0 0 ν2

−ν1 −ν2 2α

  0 0 0
0 0 0

2ν1 2ν2 2α

 ν · (∇u)|Γ + αu|Γ = 0

All above matrices M satisfy (FM).

A1 =

[
0 0 1
0 0 0
1 0 0

]
, A2 =

[
0 0 0
0 0 1
0 1 0

]
, C =

[
1 0 0
0 1 0
0 0 µ

]
.
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Different ways to enforce boundary conditions

Instead of
(Aν −M)u = 0 on Γ ,

Lax proposed boundary conditions with

u(x) ∈ N(x) , x ∈ Γ ,

where N = {N(x) : x ∈ Γ} is a family of subspaces of Cr.

Boundary problem: {
Lu = f

u(x) ∈ N(x) , x ∈ Γ
.
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Assumptions on N

maximal boundary conditions: (for ae x ∈ Γ) [PDL]

(FX1)
N(x) is non-negative with respect to Aν(x):

(∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0 ;

(FX2)
there is no non-negative subspace with respect to

Aν(x), which (properly) contains N(x) ;

or [RSP&LS1966]

Let N(x) and Ñ(x) := (Aν(x)N(x))⊥ satisfy (for ae x ∈ Γ)

(FV1)
(∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0

(∀ ξ ∈ Ñ(x)) Aν(x)ξ · ξ 6 0

(FV2) Ñ(x) = (Aν(x)N(x))⊥ and N(x) = (Aν(x)Ñ(x))⊥ .

12



Assumptions on N

maximal boundary conditions: (for ae x ∈ Γ) [PDL]

(FX1)
N(x) is non-negative with respect to Aν(x):

(∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0 ;

(FX2)
there is no non-negative subspace with respect to

Aν(x), which (properly) contains N(x) ;

or [RSP&LS1966]
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Equivalence of different descriptions of boundary conditions

Theorem. It holds

(FM1)–(FM2) ⇐⇒ (FX1)–(FX2) ⇐⇒ (FV1)–(FV2) ,

with
N(x) := ker

(
Aν(x)−M(x)

)
.

In fact, for a weak existence result some additional assumptions are needed
[JR1994], [MJ2004].
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Classical results on well-posedness

Friedrichs:
– uniqueness of the classical solution
– existence of a weak solution (under some additional assumptions)

Contributions:
C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, . . .
– the meaning of traces for functions in the graph space
– weak well-posedness results under additional assumptions (on Aν)
– regularity of solution
– numerical treatment
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Classical theory
What are Friedrichs systems?
Examples
Boundary conditions for Friedrichs systems
Existence, uniqueness, well-posedness

Abstract formulation
Graph spaces
Cone formalism of Ern, Guermond and Caplain
Interdependence of different representations of boundary conditions
Krĕın spaces
Equivalence of boundary conditions

What can we say for the Friedrichs operator now?
Some examples
Two-field theory

Concluding remarks
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New approach...

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of
Hilbert operators related to Friedrichs’ systems, Comm. Partial Diff. Eq. 32
(2007) 317–341.

– abstract setting (operators on Hilbert spaces)

– intrinsic criterion for the bijectivity of Friedrichs’ operator

–avoiding the question of traces for functions in the graph space

–investigation of different formulations of boundary conditions

. . . and new open questions.

They considered only the real case.
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Assumptions

L — real (complex) Hilbert space (L′ is (anti)dual of L),
D ⊆ L — dense subspace,

T, T̃ : D −→ L — linear unbounded operators satisfying

(T1) (∀ϕ,ψ ∈ D) 〈Tϕ | ψ 〉L = 〈ϕ | T̃ψ 〉L ,

(T2) (∃ c > 0)(∀ϕ ∈ D) ‖(T + T̃ )ϕ‖L 6 c‖ϕ‖L ,

(T3) (∃µ0 > 0)(∀ϕ ∈ D) 〈 (T + T̃ )ϕ | ϕ 〉L > 2µ0‖ϕ‖2L .
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The Friedrichs operator

Let D := C∞c (Ω;Cr), L = L2(Ω;Cr) and T, T̃ : D −→ L be defined by

Tu :=
d∑
k=1

∂k(Aku) + Cu ,

T̃u :=−
d∑
k=1

∂k(Aku) + (C∗ +

d∑
k=1

∂kAk)u ,

where Ak and C are as above (they satisfy (F1)–(F2)).

Then T and T̃ satisfy (T1)–(T3)
. . . fits in this framework.
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Prolongations

(D, 〈 · | · 〉T ) is an inner product space, where

〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L .

‖ · ‖T is called the graph norm.

W0 — the completion of D in the graph norm

T, T̃ : D −→ L are continuous with respect to (‖ · ‖T , ‖ · ‖L)
. . . extension by density to L(W0;L).

The following embedding are dense and continuous:

W0 ↪→ L≡L′ ↪→W ′0 .

Let T̃ ∗ ∈ L(L;W ′0) be the adjoint operator of T̃ : W0 −→ L

(∀u ∈ L)(∀ v ∈W0) W ′0
〈 T̃ ∗u, v 〉W0 = 〈u | T̃ v 〉L .

Therefore T = T̃ ∗|W0

, and analogously T̃ = T ∗|W0

.

Abusing notation: T, T̃ ∈ L(L;W ′0) . . . (T1)–(T3)

19



Prolongations

(D, 〈 · | · 〉T ) is an inner product space, where

〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L .

‖ · ‖T is called the graph norm.
W0 — the completion of D in the graph norm

T, T̃ : D −→ L are continuous with respect to (‖ · ‖T , ‖ · ‖L)
. . . extension by density to L(W0;L).

The following embedding are dense and continuous:

W0 ↪→ L≡L′ ↪→W ′0 .

Let T̃ ∗ ∈ L(L;W ′0) be the adjoint operator of T̃ : W0 −→ L

(∀u ∈ L)(∀ v ∈W0) W ′0
〈 T̃ ∗u, v 〉W0 = 〈u | T̃ v 〉L .

Therefore T = T̃ ∗|W0

, and analogously T̃ = T ∗|W0

.

Abusing notation: T, T̃ ∈ L(L;W ′0) . . . (T1)–(T3)

19



Prolongations

(D, 〈 · | · 〉T ) is an inner product space, where

〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L .

‖ · ‖T is called the graph norm.
W0 — the completion of D in the graph norm

T, T̃ : D −→ L are continuous with respect to (‖ · ‖T , ‖ · ‖L)
. . . extension by density to L(W0;L).

The following embedding are dense and continuous:

W0 ↪→ L≡L′ ↪→W ′0 .

Let T̃ ∗ ∈ L(L;W ′0) be the adjoint operator of T̃ : W0 −→ L

(∀u ∈ L)(∀ v ∈W0) W ′0
〈 T̃ ∗u, v 〉W0 = 〈u | T̃ v 〉L .

Therefore T = T̃ ∗|W0

, and analogously T̃ = T ∗|W0

.

Abusing notation: T, T̃ ∈ L(L;W ′0) . . . (T1)–(T3)

19



Prolongations

(D, 〈 · | · 〉T ) is an inner product space, where

〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L .

‖ · ‖T is called the graph norm.
W0 — the completion of D in the graph norm

T, T̃ : D −→ L are continuous with respect to (‖ · ‖T , ‖ · ‖L)
. . . extension by density to L(W0;L).

The following embedding are dense and continuous:

W0 ↪→ L≡L′ ↪→W ′0 .

Let T̃ ∗ ∈ L(L;W ′0) be the adjoint operator of T̃ : W0 −→ L

(∀u ∈ L)(∀ v ∈W0) W ′0
〈 T̃ ∗u, v 〉W0 = 〈u | T̃ v 〉L .

Therefore T = T̃ ∗|W0

, and analogously T̃ = T ∗|W0

.

Abusing notation: T, T̃ ∈ L(L;W ′0) . . . (T1)–(T3)

19



Prolongations

(D, 〈 · | · 〉T ) is an inner product space, where

〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L .

‖ · ‖T is called the graph norm.
W0 — the completion of D in the graph norm

T, T̃ : D −→ L are continuous with respect to (‖ · ‖T , ‖ · ‖L)
. . . extension by density to L(W0;L).

The following embedding are dense and continuous:

W0 ↪→ L≡L′ ↪→W ′0 .

Let T̃ ∗ ∈ L(L;W ′0) be the adjoint operator of T̃ : W0 −→ L

(∀u ∈ L)(∀ v ∈W0) W ′0
〈 T̃ ∗u, v 〉W0 = 〈u | T̃ v 〉L .

Therefore T = T̃ ∗|W0

, and analogously T̃ = T ∗|W0

.

Abusing notation: T, T̃ ∈ L(L;W ′0) . . . (T1)–(T3)

19



Prolongations

(D, 〈 · | · 〉T ) is an inner product space, where

〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L .

‖ · ‖T is called the graph norm.
W0 — the completion of D in the graph norm

T, T̃ : D −→ L are continuous with respect to (‖ · ‖T , ‖ · ‖L)
. . . extension by density to L(W0;L).

The following embedding are dense and continuous:

W0 ↪→ L≡L′ ↪→W ′0 .

Let T̃ ∗ ∈ L(L;W ′0) be the adjoint operator of T̃ : W0 −→ L

(∀u ∈ L)(∀ v ∈W0) W ′0
〈 T̃ ∗u, v 〉W0 = 〈u | T̃ v 〉L .

Therefore T = T̃ ∗|W0

, and analogously T̃ = T ∗|W0

.

Abusing notation: T, T̃ ∈ L(L;W ′0) . . . (T1)–(T3)

19



Prolongations

(D, 〈 · | · 〉T ) is an inner product space, where

〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L .

‖ · ‖T is called the graph norm.
W0 — the completion of D in the graph norm

T, T̃ : D −→ L are continuous with respect to (‖ · ‖T , ‖ · ‖L)
. . . extension by density to L(W0;L).

The following embedding are dense and continuous:

W0 ↪→ L≡L′ ↪→W ′0 .

Let T̃ ∗ ∈ L(L;W ′0) be the adjoint operator of T̃ : W0 −→ L

(∀u ∈ L)(∀ v ∈W0) W ′0
〈 T̃ ∗u, v 〉W0 = 〈u | T̃ v 〉L .

Therefore T = T̃ ∗|W0

, and analogously T̃ = T ∗|W0

.

Abusing notation: T, T̃ ∈ L(L;W ′0) . . . (T1)–(T3)

19



Prolongations

(D, 〈 · | · 〉T ) is an inner product space, where

〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L .

‖ · ‖T is called the graph norm.
W0 — the completion of D in the graph norm

T, T̃ : D −→ L are continuous with respect to (‖ · ‖T , ‖ · ‖L)
. . . extension by density to L(W0;L).

The following embedding are dense and continuous:

W0 ↪→ L≡L′ ↪→W ′0 .

Let T̃ ∗ ∈ L(L;W ′0) be the adjoint operator of T̃ : W0 −→ L

(∀u ∈ L)(∀ v ∈W0) W ′0
〈 T̃ ∗u, v 〉W0 = 〈u | T̃ v 〉L .

Therefore T = T̃ ∗|W0

, and analogously T̃ = T ∗|W0

.

Abusing notation: T, T̃ ∈ L(L;W ′0) . . . (T1)–(T3)

19



Formulation of the problem

Lemma. The graph space

W := {u ∈ L : Tu ∈ L} = {u ∈ L : T̃ u ∈ L} ,

is a Hilbert space with respect to 〈 · | · 〉T .

Problem: for given f ∈ L find u ∈W such that Tu = f .

Find sufficient conditions on V 6W such that T|V : V −→ L is an

isomorphism.
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Boundary operator

Boundary operator D ∈ L(W ;W ′):

W ′〈Du, v 〉W := 〈Tu | v 〉L − 〈u | T̃ v 〉L , u, v ∈W .

Lemma. D is selfadjoint

W ′〈Du, v 〉W = W ′〈Dv, u 〉W

and satisfies

kerD = W0

imD = W 0
0 := {g ∈W ′ : (∀u ∈W0) W ′〈 g, u 〉W = 0} .

In particular, imD is closed in W ′.
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For classical Friedrichs operator

If T is the Friedrichs operator L, then for u, v ∈ C∞c (Rd;Cr) we have

W ′〈Du, v 〉W =

∫
Γ

Aν(x)u|Γ(x) · v|Γ(x)dS(x) .

With the assumptions:

(FV1)
(∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0 ,

(∀ ξ ∈ Ñ(x)) Aν(x)ξ · ξ 6 0 ,

(FV2) Ñ(x) = (Aν(x)N(x))⊥ and N(x) = (Aν(x)Ñ(x))⊥ ,

we are lead to consider subspaces V and Ṽ in the functional framework:

(V1)
(∀u ∈ V ) W ′〈Du, u 〉W > 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W 6 0 ,

(V2) V = D(Ṽ )0 , Ṽ = D(V )0 .
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Well-posedness theorem

[u | v ] := W ′〈Du, v 〉W = 〈Tu | v 〉L − 〈u | T̃ v 〉L , u, v ∈W

is an indefinite inner product on W , and we consider subspaces V and Ṽ
satisfying:

(V1)
(∀ v ∈ V ) [ v | v ] > 0 ,

(∀ v ∈ Ṽ ) [ v | v ] 6 0 ;

(V2) V = Ṽ [⊥] , Ṽ = V [⊥] .

([⊥] stands for [ · | · ]-orthogonal complement)

Theorem. Under assumptions (T1)− (T3) and (V 1)− (V 2), the operators
T|V : V −→ L and T̃|Ṽ : Ṽ −→ L are isomorphisms.

In the real case [AE&JLG&GC2007].

23



Well-posedness theorem

[u | v ] := W ′〈Du, v 〉W = 〈Tu | v 〉L − 〈u | T̃ v 〉L , u, v ∈W

is an indefinite inner product on W , and we consider subspaces V and Ṽ
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Correspondence — maximal b.c.

maximal boundary conditions: (for ae x ∈ Γ)

(FX1) (∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0 ,

(FX2)
there is no non-negative subspace with respect to

Aν(x), which contains N(x) ,

subspace V is maximal non-negative in (W, [ · | · ]):

(X1) V is non-negative in (W, [ · | · ]): (∀ v ∈ V ) [ v | v ] > 0 ,

(X2) there is no non-negative subspace in (W, [ · | · ]) containing V .
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Correspondence — admissible b.c.

admissible boundary condition: there exists a matrix function
M : Γ −→ Mr(C) such that (for ae x ∈ Γ)

(FM1) (∀ ξ ∈ Cr) (M(x) + M(x)∗)ξ · ξ > 0 ,

(FM2) Cr = ker
(
Aν(x)−M(x)

)
+ ker

(
Aν(x) + M(x)

)
.

abstract admissible boundary condition: there exists M ∈ L(W ;W ′) such that

(M1) (∀u ∈W ) W ′〈 (M +M∗)u, u 〉W > 0 ,

(M2) W = ker(D −M) + ker(D +M) .
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Equivalence of different descriptions of b.c.

Theorem. (classical) It holds

(FM1)–(FM2) ⇐⇒ (FV1)–(FV2) ⇐⇒ (FX1)–(FX2) ,

with
N(x) := ker

(
Aν(x)−M(x)

)
.

Theorem. (A. Ern, J.-L. Guermond, G. Caplain) It holds

(M1)–(M2)
=⇒
←− (V1)–(V2) =⇒ (X1)–(X2) ,

with
V := ker(D −M) .

This was obtained in the real case only.
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(M1)–(M2) ←− (V1)–(V2)

Theorem. Let V and Ṽ satisfy (V1)–(V2), and suppose that there exist
operators P ∈ L(W ;V ) and Q ∈ L(W ; Ṽ ) such that

(∀ v ∈ V ) D(v − Pv) = 0 ,

(∀ v ∈ Ṽ ) D(v −Qv) = 0 ,

DPQ = DQP .

Let us define M ∈ L(W ;W ′) (for u, v ∈W ) with

W ′〈Mu, v 〉W = W ′〈DPu, Pv 〉W −W ′〈DQu,Qv 〉W
+ W ′〈D(P +Q− PQ)u, v 〉W −W ′〈Du, (P +Q− PQ)v 〉W .

Then V := ker(D −M), Ṽ := ker(D +M∗), and M satisfies (M1)–(M2).
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Gramm operator

Graph space (W, 〈 · | · 〉T ) is a Hilbert space, where another (indefinite) inner
product is defined:

[u | v ] := W ′〈Du, v 〉W = 〈Tu | v 〉L − 〈u | T̃ v 〉L , u, v ∈W .

This inner product is dominated by the graph norm, which insures the existence
of a linear operator G ∈ L(W ;W ) such that

[u | v ] = 〈Gu | v 〉T and 〈Gu | v 〉T = 〈u | Gv 〉T .

Such an operator is called the Gramm operator.

Inner product space is a Krĕın space if it admits an orthogonal decomposition
to its nonnegative and nonpositive parts, which are complete.

Equivalently, a Hilbert space is a Krĕın space if its Gramm operator is invertible.
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Krĕın spaces

(W, [ · | · ]) is not a Krĕın space – it is a degenerate space, because its Gramm
operator G := j ◦D (j : W ′ −→W is the canonical isomorphism) has
large kernel:

kerG = W0 .

Theorem. If G is the Gramm operator of the space W , then the quotient
space Ŵ := W/kerG is a Krĕın space if and only if imG is closed.

Ŵ := W/W0 is the Krĕın space, with

[ û | v̂ ]̂ := [u | v ] , u, v ∈W .

Important: imD is closed and kerD = W0.
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Ŵ := W/W0 is the Krĕın space, with
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Quotient Krĕın space

Lemma. Let U ⊇W0 and Y be subspaces of W . Then

a) U is closed if and only if Û := {v̂ : v ∈ U} is closed in Ŵ ;

b) ̂(U + Y ) = {u+ v +W0 : u ∈ U, v ∈ Y } = Û + Ŷ ;

c) U + Y is closed if and only if Û + Ŷ is closed;

d) (Ŷ )[⊥]̂ = Ŷ [⊥].

e) if Y is maximal non-negative (non-positive) in W , than Ŷ is maximal
non-negative (non-positive) in Ŵ ;

f) if Û is maximal non-negative (non-positive) in Ŵ , then U is maximal
non-negative (non-positive) in W .
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(V1)–(V2) ⇐⇒ (X1)–(X2)

Theorem. a) If subspaces V and Ṽ satisfy (V1)–(V2), then V is maximal
non-negative in W (satisfies (X1)–(X2)) and Ṽ is maximal non-positive in W .

b) If V is maximal non-negative in W , then V and Ṽ := V [⊥] satisfy
(V1)–(V2).
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(M1)–(M2) =⇒ (V1)–(V2) (recall)

Theorem. [EGC] (T1)–(T3) and M ∈ L(W ;W ′) satisfy (M) imply

V := ker(D −M) and Ṽ := ker(D +M∗) satisfy (V).

Corollary. Under above assumptions

T|ker(D−M)
: ker(D −M) −→ L i T̃|ker(D+M∗)

: ker(D +M∗) −→ L

are isomorphisms.
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(M1)–(M2) ←− (V1)–(V2) (recall)

Theorem. Let V and Ṽ satisfy (V1)–(V2), and suppose that there exist
operators P ∈ L(W ;V ) and Q ∈ L(W ; Ṽ ) such that

(∀ v ∈ V ) D(v − Pv) = 0 ,

(∀ v ∈ Ṽ ) D(v −Qv) = 0 ,

DPQ = DQP .

Let us define M ∈ L(W ;W ′) (for u, v ∈W ) with

W ′〈Mu, v 〉W = W ′〈DPu, Pv 〉W −W ′〈DQu,Qv 〉W
+ W ′〈D(P +Q− PQ)u, v 〉W −W ′〈Du, (P +Q− PQ)v 〉W .

Then V := ker(D −M), Ṽ := ker(D +M∗), and M satisfies (M1)–(M2).
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(M1)–(M2) ⇐= (V1)–(V2) (direct proof)

Theorem. If V, Ṽ are two closed subspaces of W that satisfy W0 ⊆ V ∩ Ṽ ,
then the following statements are equivalent:
a) There exist operators P ∈ L(W ;V ) and Q ∈ L(W ; Ṽ ), such that

(∀ v ∈ V ) D(v − Pv) = 0 ,

(∀ v ∈ Ṽ ) D(v −Qv) = 0 ,

DPQ = DQP .

b) There exist projectors P ′, Q′ ∈ L(W ;W ), such that

P ′
2

= P ′ and Q′
2

= Q′ ,

imP ′ = V and imQ′ = Ṽ ,

P ′Q′ = Q′P ′ .

(b) is equivalent to closedness of V + Ṽ .
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(M1)–(M2) ⇐= (V1)–(V2) (cont.)

Theorem.
a) V, Ṽ 6W satisfy (V), and exists a closed subspace W2 ⊆ C− of W ,
V +̇W2 = W , then there exist an operator M ∈ L(W ;W ′) satisfying (M) and
V = ker(D −M).

If we define W1 as orthogonal complement of W0 in V , so that
W = W1+̇W0+̇W2, and denote by R1, R0, R2 projectors that correspond to
above direct sum, then one such operator is given with M = D(R1 −R2).

b) M ∈ L(W ;W ′) an operator satisfying (M1)–(M2), V := ker(D −M).

For W2, the orthogonal complement of W0 in ker(D +M), W2 ⊆ C− is
closed, V +̇W2 = W , and M coincide with the operator in (a).

Lemma. Let W ′′2 6W satisfies W ′′2 ⊆ C− and W ′′2 + V = W .
Then there is a closed subspace W2 of W , such that W2 ⊆ C− and
W2+̇V = W .
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(M1)–(M2) ⇐= (V1)–(V2) (cont.)

Lemma. If U1 + U2 = W for some subspaces U1 ⊆ C+ and U2 ⊆ C− of W ,
then U1 ∩ U2 ⊆W0.
If additionally U1 is maximal nonnegative and U2 maximal nonpositive, then
U1 ∩ U2 = W0.

Theorem. For a maximal nonnegative subspace V of W , it is equivalent:
a) There is a maximal nonpositive subspace W2 of W , such that W2 + V = W ;
b) There is a nonpositive subspace W2̂ of Ŵ , such that W2̂ + V̂ = Ŵ .

Corollary. The conditions (V) and (M) are equivalent.
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Scalar elliptic equation

Consider
−div (A∇u) + cu = f

in Ω ⊆ Rd,

where f ∈ L2(Ω), c ∈ L∞(Ω) with 1
β′ 6 c 6 1

α′ , for some

β′ ≥ α′ > 0, and

A ∈Md(α
′, β′; Ω) :=

{
A ∈ L∞(Ω; Md(R)) :

(∀ ξ ∈ Rd) Aξ · ξ ≥ α′|ξ|2 & Aξ · ξ ≥ 1

β′
|Aξ|2

}
New unknown vector function taking values in Rd+1:

u =

[
ud
ud+1

]
=

[
−A∇xu

u

]
.

Then the starting equation can be written as a first-order system{
∇xud+1 + A−1ud = 0

div ud + cud+1 = f
,
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Scalar elliptic equation (cont.)

which is a Friedrichs system with the choice of

Ak = ek ⊗ ed+1 + ed+1 ⊗ ek ∈ Md+1(R) , C =

[
A−1 0

0 c

]
.

The graph space: W = L2
div(Ω)×H1(Ω).

Dirichlet, Neumann and Robin boundary conditions are imposed by the
following choice of V and Ṽ :

VD = ṼD :=L2
div(Ω)×H1

0(Ω) ,

VN = ṼN :={(ud, ud+1)> ∈W : ν · ud = 0} ,

VR :={(ud, ud+1)> ∈W : ν · ud = aud+1|Γ} ,

ṼR :={(ud, ud+1)> ∈W : ν · ud = −aud+1|Γ} .
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Heat equation

. . . with zero initial and Dirichlet boundary condition:
∂tu−div x(A∇xu) + b · ∇xu+ cu = f in ΩT

u = 0 on 〈0, T 〉 × Γ

u(0, ·) = 0 on Ω

...as a Friedrichs system:{
∇xud+1 + A−1ud = 0

∂tud+1 + div xud + cud+1 −A−1b · ud = f
,

(note that we use u = (ud, ud+1)>).
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Friedrichs operator and the graph space

The operator T is given by

T

[
ud
ud+1

]
=

[
∇xud+1 + A−1ud

∂tud+1 + div xud + cud+1 −A−1b · ud

]
,

while the corresponding graph space is

W =
{

u ∈ L2(ΩT ;Rd+1) : ∇xud+1 ∈ L2(ΩT ;Rd)

& ∂tud+1 + div xud ∈ L2(ΩT )
}

=
{

u ∈ L2
div(ΩT ) : ∇xud+1 ∈ L2(ΩT ;Rd)

}
=
{

u ∈ L2
div(ΩT ) : ud+1 ∈ L2(0, T ; H1(Ω))

}
.
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Properties of the last component

Lemma. The projection u = (ud, ud+1)> 7→ ud+1 is a continuous linear
operator from W to W (0, T ), which is continuously embedded to
C([0, T ]; L2(Ω)).

The space

W (0, T ) =
{
u ∈ L2(0, T ; H1(Ω)) : ∂tu ∈ L2(0, T ; H−1(Ω))

}
,

is a Banach space when equipped by norm

‖u‖W (0,T ) =
√
‖u‖2

L2(0,T ;H1(Ω))
+ ‖∂tu‖2L2(0,T ;H−1(Ω))

.
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Finally

Let

V =
{

u ∈W : ud+1 ∈ L2(0, T ; H1
0(Ω)), ud+1(·, 0) = 0 a.e. on Ω

}
,

Ṽ =
{

v ∈W : vd+1 ∈ L2(0, T ; H1
0(Ω)), vd+1(·, T ) = 0 a.e. on Ω

}
.

Do they satisfy (V1)–(V2)? Technical...

Theorem
The above V and Ṽ satisfy (V1)–(V2), and therefore the operator
T|V : V −→ L is an isomorphism.
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Two-field theory. . .

Heat equation with b = 0 and c = 0:
∂tu−div x(A∇xu) = f in ΩT

u = 0 on Γ× 〈0, T 〉
u(·, 0) = 0 on Ω

Two field theory:

developed by Ern and Guermond for elliptic problems

matrices need to be of the form

Ak =

[
0 Bk

(Bk)> ak

]
and C =

[
Cd 0
0> cd+1

]
,

where Bk ∈ Rd are constant vectors, ak ∈W1,∞(ΩT ), Cd ∈ L∞(ΩT ; Md(R))
and cd+1 ∈ L∞(ΩT ), k ∈ 1..(d+ 1).

For the heat equation matrices have this form!
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. . . with partial coercivity

Instead of coercivity (positivity) condition (F2), the following is required:

(∃µ1 > 0)(∀ ξ = (ξd, ξd+1) ∈ Rd+1)(
C + C> +

d+1∑
k=1

∂kAk

)
ξ · ξ > 2µ1|ξd|

2 (a.e. on Ω) ,

(∃µ2 > 0)(∀ u ∈ V ∪ Ṽ )√
〈 Lu | u 〉L2(ΩT ;Rd+1) + ‖Bud+1‖L2(ΩT ;Rd) > µ2‖ud+1‖L2(ΩT ) ,

where Bud+1 :=
∑d+1
k=1 Bk∂kud+1 = ∇xud+1.

For our system both conditions are trivially fulfilled.

Therefore, we have the well-posedness result.
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Some further applications . . .

Dirac system
Maxwell system
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Open problems . . .

– Find all representations of a particular equation in the form of a Friedrichs
system.

– Application to other equations of practical importance (mixed-type problems).

– Compare the results to those already known in the classical setting.
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Some used properties

Theorem. a) [ · | · ]-orthogonal complement of a maximal non-negative
(non-positive) subspace is non-positive (non-negative).

b) Each maximal semi-definite subspace contains all isotropic vectors in W .

c) If L is a non-negative (non-positive) subspace of a Krein space, such that
L[⊥] is non-positive (non-negative), then ClL is maximal non-negative
(non-positive).

d) Each maximal semi-definite subspace of a Krein space is closed.

e) A subspace L of a Krein space is closed if and only if L = L[⊥][⊥].

f) For a subspace L of a Krein space W it holds

L ∩ L[⊥] = {0} ⇐⇒ Cl (L+ L[⊥]) = W .
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