H-distributions in various settings

Nenad Antonić
Department of Mathematics
Faculty of Science
University of Zagreb

Linköping, $17^{\text {th }}$ June, 2015

Joint work with Marko Erceg, Ivan Ivec, Marin Mišur and Darko Mitrović

H -measures and variants
H -measures
Existence of H -measures
Localisation principle

H-distributions
Existence
Localisation principle
An application to compactness by compensation

Extensions and variants
H-distributions on Lebesgue spaces with mixed norm Velocity averaging
Compactness by compensation
Further variants

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H),

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects microlocal defect measures).

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects microlocal defect measures). Start from $u_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{c}\left(\mathbf{R}^{d}\right)$, and take the Fourier transform:

$$
\widehat{\varphi u_{n}}(\boldsymbol{\xi})=\int_{\mathbf{R}^{d}} e^{-2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}}\left(\varphi u_{n}\right)(\mathbf{x}) d \mathbf{x}
$$

As φu_{n} is supported on a fixed compact set K, so $\left|\widehat{\varphi u_{n}}(\boldsymbol{\xi})\right| \leqslant C$.

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects microlocal defect measures).
Start from $u_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{c}\left(\mathbf{R}^{d}\right)$, and take the Fourier transform:

$$
\widehat{\varphi u_{n}}(\boldsymbol{\xi})=\int_{\mathbf{R}^{d}} e^{-2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}}\left(\varphi u_{n}\right)(\mathbf{x}) d \mathbf{x}
$$

As φu_{n} is supported on a fixed compact set K, so $\left|\widehat{\varphi u_{n}}(\boldsymbol{\xi})\right| \leqslant C$.
Furthermore, $u_{n} \longrightarrow 0$, and from the definition $\widehat{\varphi u_{n}}(\boldsymbol{\xi}) \longrightarrow 0$ pointwise. By the Lebesgue dominated convergence theorem on bounded sets, we get $\widehat{\varphi u_{n}} \longrightarrow 0$ strong, i.e. strongly in $\mathrm{L}_{\text {loc }}^{2}\left(\mathbf{R}^{d}\right)$.

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects microlocal defect measures).
Start from $u_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{c}\left(\mathbf{R}^{d}\right)$, and take the Fourier transform:

$$
\widehat{\varphi u_{n}}(\boldsymbol{\xi})=\int_{\mathbf{R}^{d}} e^{-2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}}\left(\varphi u_{n}\right)(\mathbf{x}) d \mathbf{x}
$$

As φu_{n} is supported on a fixed compact set K, so $\left|\widehat{\varphi u_{n}}(\boldsymbol{\xi})\right| \leqslant C$.
Furthermore, $u_{n} \longrightarrow 0$, and from the definition $\widehat{\varphi u_{n}}(\boldsymbol{\xi}) \longrightarrow 0$ pointwise. By the Lebesgue dominated convergence theorem on bounded sets, we get $\widehat{\varphi u_{n}} \longrightarrow 0$ strong, i.e. strongly in $\mathrm{L}_{\text {loc }}^{2}\left(\mathbf{R}^{d}\right)$.
On the other hand, by the Plancherel theorem: $\left\|\widehat{\varphi u_{n}}\right\|_{L^{2}\left(\mathbf{R}^{d}\right)}=\left\|\varphi u_{n}\right\|_{L^{2}\left(\mathbf{R}^{d}\right)}$. If $\varphi u_{n} \neq 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$, then $\widehat{\varphi u_{n}} \nrightarrow 0$; some information must go to infinity. How does it go to infinity in various directions?

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects microlocal defect measures).
Start from $u_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{c}\left(\mathbf{R}^{d}\right)$, and take the Fourier transform:

$$
\widehat{\varphi u_{n}}(\boldsymbol{\xi})=\int_{\mathbf{R}^{d}} e^{-2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}}\left(\varphi u_{n}\right)(\mathbf{x}) d \mathbf{x}
$$

As φu_{n} is supported on a fixed compact set K, so $\left|\widehat{\varphi u_{n}}(\boldsymbol{\xi})\right| \leqslant C$.
Furthermore, $u_{n} \longrightarrow 0$, and from the definition $\widehat{\varphi u_{n}}(\boldsymbol{\xi}) \longrightarrow 0$ pointwise. By the Lebesgue dominated convergence theorem on bounded sets, we get $\widehat{\varphi u_{n}} \longrightarrow 0$ strong, i.e. strongly in $\mathrm{L}_{\text {loc }}^{2}\left(\mathbf{R}^{d}\right)$.
On the other hand, by the Plancherel theorem: $\left\|\widehat{\varphi u_{n}}\right\|_{\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)}=\left\|\varphi u_{n}\right\|_{\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)}$. If $\varphi u_{n} \nsim 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$, then $\widehat{\varphi u_{n}} \ngtr 0$; some information must go to infinity. How does it go to infinity in various directions? Take $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$, and consider:

$$
\lim _{n} \int_{\mathbf{R}^{d}} \psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)\left|\widehat{\varphi u_{n}}\right|^{2} d \boldsymbol{\xi}=\int_{\mathrm{S}^{d-1}} \psi(\boldsymbol{\xi}) d \nu_{\varphi}(\boldsymbol{\xi})
$$

The limit is a linear functional in ψ, thus an integral over the sphere of some nonegativne Radon measure (a bounded sequence of Radon measures has an accumulation point), which depends on φ. How does it depent on φ ?

Rough geometric idea

Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi u_{n}}\right|^{2}$ along

Rough geometric idea

Take a sequence $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathrm{u}_{n}}\right|^{2}$ along rays and project onto S^{1}

Rough geometric idea

Take a sequence $\mathbf{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto S^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):
$\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1$

Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto S^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):

$$
\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1
$$

and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

Rough geometric idea
Take a sequence $\mathbf{u}_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto $S^{1} \quad$ Heat equation?

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):
$\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1$
and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface): $\quad \partial_{t} u-\partial_{x}^{2} u=0$

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

Rough geometric idea
Take a sequence $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathrm{u}_{n}}\right|^{2}$ along rays and project onto S^{1}
parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):

$$
\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1
$$

and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

Rough geometric idea
Take a sequence $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto S^{1}
parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):

$$
\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1 \quad \mathrm{P}^{1} \ldots \rho^{2}(\tau, \xi):=(\xi / 2)^{2}+\sqrt{(\xi / 2)^{4}+\tau^{2}}=1
$$

and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

Rough geometric idea
Take a sequence $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathrm{u}_{n}}\right|^{2}$ along rays and project onto S^{1}
parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):

$$
\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1 \quad \mathrm{P}^{1} \ldots \rho^{2}(\tau, \xi):=(\xi / 2)^{2}+\sqrt{(\xi / 2)^{4}+\tau^{2}}=1
$$

and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad \pi(\tau, \xi):=\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$,

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$. The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$, norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π :

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad a(\tau, \xi):=\alpha\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$, norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad a(\tau, \xi):=\alpha\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

The precise scaling is contained in the projections, not the surface.

Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$, norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad a(\tau, \xi):=\alpha\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

The precise scaling is contained in the projections, not the surface.
Now we can state the main theorem, where we use the notation

$$
\mathrm{v} \cdot \mathbf{u}:=\sum v_{i} \bar{u}_{i}, \quad(\mathbf{v} \otimes \mathbf{u}) \mathrm{a}:=(\mathrm{a} \cdot \mathbf{u}) \mathbf{v}, \text { while } \quad(f \boxtimes g)(\mathbf{x}, \boldsymbol{\xi}):=f(\mathbf{x}) g(\boldsymbol{\xi}) .
$$

Existence of H-measures

Theorem. If $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, then there exists its subsequence and a complex matrix Radon measure μ on

$$
\mathbf{R}^{d} \times \mathrm{S}^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ p) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& \quad=\int_{\mathbf{R}^{d} \times S^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Existence of H-measures

Theorem. If $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, then there exists its subsequence and a complex matrix Radon measure μ on

$$
\mathbf{R}^{d} \times \mathrm{P}^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(\mathrm{P}^{d-1}\right)
$$

one has

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ \pi) d \boldsymbol{\xi}=\langle\boldsymbol{\mu} & \left.\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& =\int_{\mathbf{R}^{d} \times \mathrm{P}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Existence of H -measures

Theorem. If $\mathbf{u}_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, then there exists its subsequence and a complex matrix Radon measure μ on

$$
\mathbf{R}^{d} \times \mathrm{S}^{d-1} \quad \mathbf{R}^{d} \times \mathrm{P}^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right) \quad \psi \in \mathrm{C}\left(\mathrm{P}^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ \pi) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& \quad=\int_{\mathbf{R}^{d} \times \mathrm{S}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi}) \quad=\int_{\mathbf{R}^{d} \times \mathrm{P}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Existence of H -measures

Theorem. If $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, then there exists its subsequence and a complex matrix Radon measure μ on

$$
\mathbf{R}^{d} \times \mathrm{S}^{d-1} \quad \mathbf{R}^{d} \times \mathrm{P}^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right) \quad \psi \in \mathrm{C}\left(\mathrm{P}^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{U}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{U}_{n^{\prime}}}(\psi \circ \pi) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& =\int_{\mathbf{R}^{d} \times \mathrm{S}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi}) \quad=\int_{\mathbf{R}^{d} \times \mathrm{P}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi}) .
\end{aligned}
$$

There are some other variants (E. Ju. Panov, ...).

First commutation lemma

Lemma. (general form of the first commutation lemma - Luc Tartar) If $b \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d}\right)$ satisfy the condition

$$
\left(\forall \rho, \varepsilon \in \mathbf{R}^{+}\right)\left(\exists M \in \mathbf{R}^{+}\right) \quad|a(\boldsymbol{\xi})-a(\boldsymbol{\eta})| \leqslant \varepsilon(\text { a.e. }(\boldsymbol{\xi}, \boldsymbol{\eta}) \in Y(M, \rho))
$$

then $C:=\left[\mathcal{A}_{a}, M_{b}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.

First commutation lemma

Lemma. (general form of the first commutation lemma - Luc Tartar) If $b \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d}\right)$ satisfy the condition

$$
\left(\forall \rho, \varepsilon \in \mathbf{R}^{+}\right)\left(\exists M \in \mathbf{R}^{+}\right) \quad|a(\boldsymbol{\xi})-a(\boldsymbol{\eta})| \leqslant \varepsilon \quad(\text { a.e. }(\boldsymbol{\xi}, \boldsymbol{\eta}) \in Y(M, \rho))
$$

then $C:=\left[\mathcal{A}_{a}, M_{b}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.
For given $M, \rho \in \mathbf{R}^{+}$denote the set

$$
Y=Y(M, \rho)=\left\{(\boldsymbol{\xi}, \boldsymbol{\eta}) \in \mathbf{R}^{2 d}:|\boldsymbol{\xi}|,|\boldsymbol{\eta}| \geqslant M \&|\boldsymbol{\xi}-\boldsymbol{\eta}| \leqslant \rho\right\}
$$

First commutation lemma

Lemma. (general form of the first commutation lemma - Luc Tartar) If $b \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d}\right)$ satisfy the condition

$$
\left(\forall \rho, \varepsilon \in \mathbf{R}^{+}\right)\left(\exists M \in \mathbf{R}^{+}\right) \quad|a(\boldsymbol{\xi})-a(\boldsymbol{\eta})| \leqslant \varepsilon \quad(\text { a.e. }(\boldsymbol{\xi}, \boldsymbol{\eta}) \in Y(M, \rho))
$$

then $C:=\left[\mathcal{A}_{a}, M_{b}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.
For given $M, \rho \in \mathbf{R}^{+}$denote the set

$$
Y=Y(M, \rho)=\left\{(\boldsymbol{\xi}, \boldsymbol{\eta}) \in \mathbf{R}^{2 d}:|\boldsymbol{\xi}|,|\boldsymbol{\eta}| \geqslant M \&|\boldsymbol{\xi}-\boldsymbol{\eta}| \leqslant \rho\right\}
$$

In both cases discussed above, this lemma can also be proven directly, based on elementary inequalities.

The importance of First commutation lemma

If we take $u_{n}=\left(u_{n}, v_{n}\right)$, and consider $\mu=\mu_{12}$, we have

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} u_{n^{\prime}}} \overline{\overline{\varphi_{2} v_{n^{\prime}}}} \psi d \boldsymbol{\xi} & =\lim _{n^{\prime}}\left\langle\mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right) \mid \varphi_{2} v_{n^{\prime}}\right\rangle \\
& =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right) \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x} \\
& =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(u_{n^{\prime}}\right) \varphi_{1} \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x}=\left\langle\mu,\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle
\end{aligned}
$$

The importance of First commutation lemma

If we take $\mathbf{u}_{n}=\left(u_{n}, v_{n}\right)$, and consider $\mu=\mu_{12}$, we have

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} u_{n^{\prime}}} \overline{\overline{\varphi_{2} v_{n^{\prime}}}} \psi d \boldsymbol{\xi} & =\lim _{n^{\prime}}\left\langle\mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right) \mid \varphi_{2} v_{n^{\prime}}\right\rangle \\
& =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right) \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x} \\
& =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(u_{n^{\prime}}\right) \varphi_{1} \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x}=\left\langle\mu,\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle .
\end{aligned}
$$

Thus the limit is a bilinear functional in $\varphi_{1} \bar{\varphi}_{2}$ and ψ, and we have the bound:

$$
\left|\int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(u_{n^{\prime}}\right) \varphi_{1} \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x}\right| \leq C\|\psi\|_{C\left(S^{d-1}\right)}\left\|\varphi_{1} \overline{\varphi_{2}}\right\|_{C_{0}\left(\mathbf{R}^{d}\right)}
$$

The importance of First commutation lemma

If we take $\mathrm{u}_{n}=\left(u_{n}, v_{n}\right)$, and consider $\mu=\mu_{12}$, we have

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} u_{n^{\prime}}} \overline{\widehat{\varphi_{2} v_{n^{\prime}}}} \psi d \boldsymbol{\xi} & =\lim _{n^{\prime}}\left\langle\mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right) \mid \varphi_{2} v_{n^{\prime}}\right\rangle \\
& =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right) \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x} \\
& =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(u_{n^{\prime}}\right) \varphi_{1} \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x}=\left\langle\mu,\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle
\end{aligned}
$$

Thus the limit is a bilinear functional in $\varphi_{1} \bar{\varphi}_{2}$ and ψ, and we have the bound:

$$
\left|\int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(u_{n^{\prime}}\right) \varphi_{1} \overline{\varphi_{2} v_{n^{\prime}}} d \mathbf{x}\right| \leq C\|\psi\|_{C\left(S^{d-1}\right)}\left\|\varphi_{1} \overline{\varphi_{2}}\right\|_{C_{0}\left(\mathbf{R}^{d}\right)}
$$

This form makes sense even for $p<2$ (for $p>2$ we use the fact that $\left.u_{n} \in \mathrm{~L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)\right)$.

Localisation principle for classical H-measures

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\mathrm{Bu}=\mathrm{f} \quad, \quad \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{l \times r}\right)
$$

Assume:

$$
\begin{aligned}
& \mathrm{u}_{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}_{n} \xrightarrow{\mathrm{H}_{\mathrm{loc}}^{-1}} 0
\end{aligned}
$$

Localisation principle for classical H-measures

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right)+\mathrm{Bu}_{n}=\mathrm{f}_{n}, \quad \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{l \times r}\right)
$$

Assume:

$$
\begin{aligned}
& \mathbf{u}_{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}_{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0 .
\end{aligned}
$$

Theorem. (localisation principle) If u_{n} satisfies:

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { in } \mathrm{H}_{\mathrm{loc}}^{-1}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)
$$

then for $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{k=1}^{d} \xi_{k} \mathbf{A}^{k}(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\mu}^{\top}=\mathbf{0}
$$

Localisation principle for classical H-measures

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right)+\mathrm{Bu}_{n}=\mathrm{f}_{n}, \quad \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{l \times r}\right)
$$

Assume:

$$
\begin{aligned}
& \mathrm{u}_{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}_{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0 .
\end{aligned}
$$

Theorem. (localisation principle) If u_{n} satisfies:

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { in } \mathrm{H}_{\mathrm{loc}}^{-1}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)
$$

then for $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{k=1}^{d} \xi_{k} \mathbf{A}^{k}(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\mu}^{\top}=\mathbf{0}
$$

Thus, if $l=r$, the support of H -measure $\boldsymbol{\mu}$ is contaned in the set $\left\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times S^{d-1}: \operatorname{det} \mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=0\right\}$ of points where \mathbf{p} is a singular matrix.
The localisation principle is behind the applications to the small-amplitude homogenisation, which can be used in optimal design.
It contains a generalisation of compactness by compensation to variable coefficients.

Localisation principle for parabolic H-measures
In the parabolic case the details become more involved.
Anisotropic Sobolev spaces $\left(s \in \mathbf{R} ; k_{p}(\tau, \boldsymbol{\xi}):=\sqrt[4]{1+(2 \pi \tau)^{2}+(2 \pi|\boldsymbol{\xi}|)^{4}}\right)$

$$
\mathrm{H}^{\frac{s}{2}, s}\left(\mathbf{R}^{1+d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{p}^{s} \hat{u} \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)\right\}
$$

Localisation principle for parabolic H-measures

In the parabolic case the details become more involved.
Anisotropic Sobolev spaces $\left(s \in \mathbf{R} ; k_{p}(\tau, \boldsymbol{\xi}):=\sqrt[4]{1+(2 \pi \tau)^{2}+(2 \pi|\boldsymbol{\xi}|)^{4}}\right)$

$$
\mathrm{H}^{\frac{s}{2}, s}\left(\mathbf{R}^{1+d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{p}^{s} \hat{u} \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)\right\}
$$

Theorem. (localisation principle) Let $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$, uniformly compactly supported in t, satisfy $(s \in \mathbf{N})$

$$
{\sqrt{\partial_{t}}}^{s}\left(\mathbf{A}^{0} \mathbf{u}_{n}\right)+\sum_{|\boldsymbol{\alpha}|=s} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { strongly in } \quad \mathrm{H}_{\mathrm{loc}}^{-\frac{s}{2},-s}\left(\mathbf{R}^{1+d}\right)
$$

where $\mathbf{A}^{0}, \mathbf{A}^{\alpha} \in \mathrm{C}_{b}\left(\mathbf{R}^{1+d} ; \mathrm{M}_{l \times r}(\mathbf{C})\right)$, for some $l \in \mathbf{N}$, while $\sqrt{\partial}_{t}$ is a pseudodifferential operator with symbol $\sqrt{2 \pi i \tau}$, i.e.

$$
\sqrt{\partial}_{t} u=\overline{\mathcal{F}}(\sqrt{2 \pi i \tau} \hat{u}(\tau)) .
$$

Then for a parabolic H -measure $\boldsymbol{\mu}$ associated to (a sub)sequence (of) (u_{n}) one has

$$
\left((\sqrt{2 \pi i \tau})^{s} \mathbf{A}^{0}+\sum_{|\boldsymbol{\alpha}|=s}(2 \pi i \boldsymbol{\xi})^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}\right) \boldsymbol{\mu}^{\top}=\mathbf{0}
$$

H -measures and variants
H -measures
Existence of H -measures
Localisation principle

H-distributions
Existence
Localisation principle
An application to compactness by compensation

Extensions and variants
H-distributions on Lebesgue spaces with mixed norm
Velocity averaging
Compactness by compensation
Further variants

Good bounds: the Hörmander-Mihlin theorem
$\psi: \mathbf{R}^{d} \rightarrow \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ if

$$
\overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right), \quad \text { for } \theta \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

and

$$
\mathcal{S}\left(\mathbf{R}^{d}\right) \ni \theta \mapsto \overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.

Good bounds: the Hörmander-Mihlin theorem

$\psi: \mathbf{R}^{d} \rightarrow \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ if

$$
\overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right), \quad \text { for } \theta \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

and

$$
\mathcal{S}\left(\mathbf{R}^{d}\right) \ni \theta \mapsto \overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.
Theorem. [Hörmander-Mihlin] Let $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ have partial derivatives of order less than or equal to $\kappa=\left[\frac{d}{2}\right]+1$. If for some $k>0$

$$
(\forall r>0)\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}\right) \quad|\boldsymbol{\alpha}| \leqslant \kappa \Longrightarrow \int_{\frac{r}{2} \leqslant|\boldsymbol{\xi}| \leqslant r}\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant k^{2} r^{d-2|\boldsymbol{\alpha}|}
$$

then for any $p \in\langle 1, \infty\rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_{d} (depending only on the dimension d) such that

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathrm{L}^{p} \rightarrow \mathrm{~L}^{p}} \leqslant C_{d} \max \left\{p, \frac{1}{p-1}\right\}\left(k+\|\psi\|_{\infty}\right) .
$$

Good bounds: the Hörmander-Mihlin theorem

$\psi: \mathbf{R}^{d} \rightarrow \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ if

$$
\overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right), \quad \text { for } \theta \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

and

$$
\mathcal{S}\left(\mathbf{R}^{d}\right) \ni \theta \mapsto \overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.
Theorem. [Hörmander-Mihlin] Let $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ have partial derivatives of order less than or equal to $\kappa=\left[\frac{d}{2}\right]+1$. If for some $k>0$

$$
(\forall r>0)\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}\right) \quad|\boldsymbol{\alpha}| \leqslant \kappa \Longrightarrow \int_{\frac{r}{2} \leqslant|\boldsymbol{\xi}| \leqslant r}\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant k^{2} r^{d-2|\boldsymbol{\alpha}|}
$$

then for any $p \in\langle 1, \infty\rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_{d} (depending only on the dimension d) such that

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathrm{L}^{p} \rightarrow \mathrm{~L}^{p}} \leqslant C_{d} \max \left\{p, \frac{1}{p-1}\right\}\left(k+\|\psi\|_{\infty}\right) .
$$

For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$, extended by homogeneity to \mathbf{R}^{d}, we can take $k=\|\psi\|_{\mathrm{C}^{\kappa}}$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \xrightarrow{*}^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) $\left(u_{n}\right)$ and $\left(v_{n}\right)$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If (u_{n}), $\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If (u_{n}), $\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d}\right)$. For $p \geqslant 2, p^{\prime} \leqslant 2$ and we can take $q \geqslant 2$; this covers the L^{2} case (including $u_{n}=v_{n}$).
The assumptions imply $u_{n}, v_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for $p<2$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle .
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If (u_{n}), $\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d}\right)$. For $p \geqslant 2, p^{\prime} \leqslant 2$ and we can take $q \geqslant 2$; this covers the L^{2} case (including $u_{n}=v_{n}$).
The assumptions imply $u_{n}, v_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for $p<2$.
For vector-valued $\mathrm{u}_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{k}\right)$ and $\mathrm{v}_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d} ; \mathbf{C}^{l}\right)$, the result is a matrix valued distribution $\boldsymbol{\mu}=\left[\mu^{i j}\right], i \in 1 . . k$ and $j \in 1 . . l$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle .
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If $\left(u_{n}\right)$, $\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d}\right)$. For $p \geqslant 2, p^{\prime} \leqslant 2$ and we can take $q \geqslant 2$; this covers the L^{2} case (including $u_{n}=v_{n}$).
The assumptions imply $u_{n}, v_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for $p<2$.
For vector-valued $\mathrm{u}_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{k}\right)$ and $\mathrm{v}_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d} ; \mathbf{C}^{l}\right)$, the result is a matrix valued distribution $\boldsymbol{\mu}=\left[\mu^{i j}\right], i \in 1 . . k$ and $j \in 1 . . l$.
The H -distribution would correspond to a non-diagonal block for an H -measure.

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$.
We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem. Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$. We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.
Lemma. Let $\left(v_{n}\right)$ be bounded in both $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 2, \infty]$, and let $v_{n} \rightharpoonup 0$ in \mathcal{D}^{\prime}. Then the sequence ($C v_{n}$) strongly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, for any $q \in[2, r] \backslash\{\infty\}$.

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$. We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.
Lemma. Let $\left(v_{n}\right)$ be bounded in both $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 2, \infty]$, and let $v_{n} \rightharpoonup 0$ in \mathcal{D}^{\prime}. Then the sequence $\left(C v_{n}\right)$ strongly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, for any $q \in[2, r] \backslash\{\infty\}$.

If $q<r$, we can apply the classical interpolation inequality:

$$
\left\|C v_{n}\right\|_{q} \leqslant\left\|C v_{n}\right\|_{2}^{\alpha}\left\|C v_{n}\right\|_{r}^{1-\alpha}
$$

for $\alpha \in\langle 0,1\rangle$ such that $1 / q=\alpha / 2+(1-\alpha) / r$. As C is compact on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ by Tartar's First commutation lemma, while it is bounded on $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, we get the claim.

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$. We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.

Lemma. Let $\left(v_{n}\right)$ be bounded in both $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 2, \infty]$, and let $v_{n} \rightharpoonup 0$ in \mathcal{D}^{\prime}. Then the sequence ($\left.C v_{n}\right)$ strongly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, for any $q \in[2, r] \backslash\{\infty\}$.

If $q<r$, we can apply the classical interpolation inequality:

$$
\left\|C v_{n}\right\|_{q} \leqslant\left\|C v_{n}\right\|_{2}^{\alpha}\left\|C v_{n}\right\|_{r}^{1-\alpha}
$$

for $\alpha \in\langle 0,1\rangle$ such that $1 / q=\alpha / 2+(1-\alpha) / r$. As C is compact on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ by Tartar's First commutation lemma, while it is bounded on $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, we get the claim.

For the most interesting case, where $q=r$, we need a better result: the Krasnosel'skij theorem (a variant of Riesz-Thorin theorem).

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$. We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.

Lemma. Let $\left(v_{n}\right)$ be bounded in both $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 2, \infty]$, and let $v_{n} \rightharpoonup 0$ in \mathcal{D}^{\prime}. Then the sequence ($\left.C v_{n}\right)$ strongly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, for any $q \in[2, r] \backslash\{\infty\}$.

If $q<r$, we can apply the classical interpolation inequality:

$$
\left\|C v_{n}\right\|_{q} \leqslant\left\|C v_{n}\right\|_{2}^{\alpha}\left\|C v_{n}\right\|_{r}^{1-\alpha}
$$

for $\alpha \in\langle 0,1\rangle$ such that $1 / q=\alpha / 2+(1-\alpha) / r$. As C is compact on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ by Tartar's First commutation lemma, while it is bounded on $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, we get the claim.

For the most interesting case, where $q=r$, we need a better result: the Krasnosel'skij theorem (a variant of Riesz-Thorin theorem).
We still need a lemma on compactness of uniformly bounded bilinear forms, and an application of the Schwartz kernel theorem.

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x})
$$

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x}) .
$$

Take an arbitrary (v_{n}) bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$, and by μ denote the H-distribution corresponding to a subsequence of $\left(u_{n}\right)$ and $\left(v_{n}\right)$. Then

$$
(\mathrm{a}(\mathrm{x}) \cdot \boldsymbol{\xi}) \mu(\mathbf{x}, \boldsymbol{\xi})=0
$$

in the sense of distributions on $\mathbf{R}^{d} \times \mathrm{S}^{d-1},(\mathrm{x}, \boldsymbol{\xi}) \mapsto \mathrm{a}(\mathrm{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_{0}^{κ} coefficients.

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x})
$$

Take an arbitrary $\left(v_{n}\right)$ bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$, and by μ denote the H-distribution corresponding to a subsequence of $\left(u_{n}\right)$ and $\left(v_{n}\right)$. Then

$$
(\mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}) \mu(\mathbf{x}, \boldsymbol{\xi})=0
$$

in the sense of distributions on $\mathbf{R}^{d} \times \mathrm{S}^{d-1},(\mathbf{x}, \boldsymbol{\xi}) \mapsto \mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_{0}^{κ} coefficients.

In order to prove the theorem, we need a particular multiplier, the so called (Marcel) Riesz potential $I_{1}:=\mathcal{A}_{|2 \pi \xi|^{-1}}$, and the Riesz transforms $R_{j}:=\mathcal{A}_{\frac{\xi_{j}}{i|\xi|}}$. Note that

$$
\int I_{1}(\phi) \partial_{j} g=\int\left(R_{j} \phi\right) g, \quad g \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

Using the density argument and that R_{j} is bounded from $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ to itself, we conclude $\partial_{j} I_{1}(\phi)=-R_{j}(\phi)$, for $\phi \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.

Compactness by compensation: L^{2} case

It is well known that weak convergences are ill behaved under nonlinear transformations. Only in some particular cases of compensation it is even possible to pass to the limit in a product of two weakly converging sequences.

Compactness by compensation: L^{2} case

It is well known that weak convergences are ill behaved under nonlinear transformations. Only in some particular cases of compensation it is even possible to pass to the limit in a product of two weakly converging sequences.
The prototype of this compensation effect is Murat-Tartar's div-rot lemma.
For simplicity consider 2D case, $\left(u_{n}^{1}, u_{n}^{2}\right)$ and $\left(v_{n}^{1}, v_{n}^{2}\right)$ converging to zero weakly in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, such that $\left(\partial_{x} u_{n}^{1}+\partial_{y} u_{n}^{2}\right)$ and $\left(\partial_{y} v_{n}^{1}-\partial_{x} v_{n}^{2}\right)$ are both contained in a compact set of $\mathrm{H}_{\text {loc }}^{-1}\left(\mathbf{R}^{2}\right)$ (which then implies that they converge to zero strongly in $\mathrm{H}_{l o c}^{-1}\left(\mathbf{R}^{2}\right)$).

Compactness by compensation: L^{2} case

It is well known that weak convergences are ill behaved under nonlinear transformations. Only in some particular cases of compensation it is even possible to pass to the limit in a product of two weakly converging sequences.
The prototype of this compensation effect is Murat-Tartar's div-rot lemma.
For simplicity consider 2D case, $\left(u_{n}^{1}, u_{n}^{2}\right)$ and $\left(v_{n}^{1}, v_{n}^{2}\right)$ converging to zero weakly in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, such that $\left(\partial_{x} u_{n}^{1}+\partial_{y} u_{n}^{2}\right)$ and $\left(\partial_{y} v_{n}^{1}-\partial_{x} v_{n}^{2}\right)$ are both contained in a compact set of $\mathrm{H}_{l o c}^{-1}\left(\mathbf{R}^{2}\right)$ (which then implies that they converge to zero strongly in $\mathrm{H}_{\text {loc }}^{-1}\left(\mathbf{R}^{2}\right)$).
We can define $\mathrm{U}_{n}:=\left[\begin{array}{l}\mathbf{u}_{n} \\ \mathbf{v}_{n}\end{array}\right]$, which (on a subsequence) defines a 4×4 H -measure $\boldsymbol{\mu}$. By the localisation principle, as the above relations can be written in the form ($\mathbf{A}^{1}, \mathbf{A}^{2}$ are 4×4 constant matrices with all entries zero except $A_{11}^{1}=A_{12}^{2}=A_{33}^{2}=1$ and $A_{34}^{1}=-1$)

$$
\mathbf{A}^{1} \partial_{1} \mathbf{U}_{n}+\mathbf{A}^{2} \partial_{2} \mathbf{U}_{n} \rightarrow 0 \text { strongly in } \mathrm{H}_{l o c}^{-1}\left(\mathbf{R}^{2}\right)^{4}
$$

the corresponding \mathbf{H}-measure satisfies $\left(\xi_{1} \mathbf{A}^{1}+\xi_{2} \mathbf{A}^{2}\right) \boldsymbol{\mu}=\mathbf{0}$. After straightforward calculations this shows that $u_{n}^{1} v_{n}^{1}+u_{n}^{2} v_{n}^{2} \longrightarrow 0$ weak $*$ in the sense of Radon measures (and therefore in the sense of distributions as well).

What for sequences in L^{p} ?

For the above we have used only the non-diagonal blocks $\mu_{12}=\mu_{21}^{*}$ of

$$
\boldsymbol{\mu}=\left[\begin{array}{ll}
\boldsymbol{\mu}_{11} & \boldsymbol{\mu}_{12} \\
\boldsymbol{\mu}_{21} & \boldsymbol{\mu}_{22}
\end{array}\right]
$$

corresponding to products of u_{n}^{i} and v_{n}^{j}; in fact, the calculation shows that $\mu_{12}^{11}+\mu_{12}^{22}=0$, which gives the above result.

What for sequences in L^{p} ?

For the above we have used only the non-diagonal blocks $\mu_{12}=\mu_{21}^{*}$ of

$$
\boldsymbol{\mu}=\left[\begin{array}{ll}
\boldsymbol{\mu}_{11} & \boldsymbol{\mu}_{12} \\
\boldsymbol{\mu}_{21} & \boldsymbol{\mu}_{22}
\end{array}\right]
$$

corresponding to products of u_{n}^{i} and v_{n}^{j}; in fact, the calculation shows that $\mu_{12}^{11}+\mu_{12}^{22}=0$, which gives the above result. Assume now $\left(u_{n}^{1}, u_{n}^{2}\right)$ and $\left(v_{n}^{1}, v_{n}^{2}\right)$ converging to zero weakly in $\mathrm{L}^{p}\left(\mathbf{R}^{2}\right)$ and $\mathrm{L}^{p^{\prime}}\left(\mathbf{R}^{2}\right)$, and $\left(\partial_{1} u_{n}^{1}+\partial_{2} u_{n}^{2}\right)$ bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{2}\right)$, while $\left(\partial_{2} v_{n}^{1}-\partial_{1} v_{n}^{2}\right)$ in $\mathrm{L}^{p^{\prime}}\left(\mathbf{R}^{2}\right)$ (thus precompact in $\mathrm{W}_{\text {loc }}^{-1, p}\left(\mathbf{R}^{2}\right)$, and $\mathrm{W}_{\text {loc }}^{-1, p^{\prime}}\left(\mathbf{R}^{2}\right)$).
Then $\left(u_{n}^{1} v_{n}^{1}+u_{n}^{2} v_{n}^{2}\right)$ is bounded in $\mathrm{L}^{1}\left(\mathbf{R}^{2}\right)$, so also in \mathcal{M}_{b} (Radon measures), and by weak $*$ compactness it has a weakly converging subsequence. However, we can say more-the whole sequence converges to zero.

What for sequences in L^{p} ?

For the above we have used only the non-diagonal blocks $\boldsymbol{\mu}_{12}=\boldsymbol{\mu}_{21}^{*}$ of

$$
\boldsymbol{\mu}=\left[\begin{array}{ll}
\boldsymbol{\mu}_{11} & \boldsymbol{\mu}_{12} \\
\boldsymbol{\mu}_{21} & \boldsymbol{\mu}_{22}
\end{array}\right]
$$

corresponding to products of u_{n}^{i} and v_{n}^{j}; in fact, the calculation shows that $\mu_{12}^{11}+\mu_{12}^{22}=0$, which gives the above result.
Assume now $\left(u_{n}^{1}, u_{n}^{2}\right)$ and $\left(v_{n}^{1}, v_{n}^{2}\right)$ converging to zero weakly in $\mathrm{L}^{p}\left(\mathbf{R}^{2}\right)$ and $\mathrm{L}^{p^{\prime}}\left(\mathbf{R}^{2}\right)$, and $\left(\partial_{1} u_{n}^{1}+\partial_{2} u_{n}^{2}\right)$ bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{2}\right)$, while $\left(\partial_{2} v_{n}^{1}-\partial_{1} v_{n}^{2}\right)$ in $\mathrm{L}^{p^{\prime}}\left(\mathbf{R}^{2}\right)$ (thus precompact in $\mathrm{W}_{l o c}^{-1, p}\left(\mathbf{R}^{2}\right)$, and $\mathrm{W}_{\text {loc }}^{-1, p^{\prime}}\left(\mathbf{R}^{2}\right)$).
Then $\left(u_{n}^{1} v_{n}^{1}+u_{n}^{2} v_{n}^{2}\right)$ is bounded in $\mathrm{L}^{1}\left(\mathbf{R}^{2}\right)$, so also in \mathcal{M}_{b} (Radon measures), and by weak $*$ compactness it has a weakly converging subsequence. However, we can say more-the whole sequence converges to zero.
Denote by $\mu^{i j}$ the H -distribution corresponding to (some sub)sequences (of) $\left(u_{n}^{1}, u_{n}^{2}\right)$ and $\left(v_{n}^{1}, v_{n}^{2}\right)$.
Since $\left(\partial_{1} u_{n}^{1}+\partial_{2} u_{n}^{2}\right)$ is bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{2}\right)$, and $\left(\partial_{2} v_{n}^{1}-\partial_{1} v_{n}^{2}\right)$ is bounded in $\mathrm{L}^{p^{\prime}}\left(\mathbf{R}^{2}\right)$, they are weakly precompact, while the only possible limit is zero, so

$$
\begin{aligned}
& \partial_{1} u_{n}^{1}+\partial_{2} u_{n}^{2} \rightharpoonup 0 \text { in } \mathrm{L}^{p}, \quad \text { and } \\
& \partial_{2} v_{n}^{1}-\partial_{1} v_{n}^{2} \rightharpoonup 0 \text { in } \mathrm{L}^{p^{\prime}}
\end{aligned}
$$

From the compactness of the Riesz potential I_{1} mentioned above, we conclude that for $\varphi \in \mathrm{C}_{c}\left(\mathbf{R}^{2}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ the following limit holds in $\mathrm{L}^{p}\left(\mathbf{R}^{2}\right)$:
$\mathcal{A}_{\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)} \frac{\xi_{1}, \boldsymbol{\xi} \mid}{}\left(\varphi u_{n}^{1}\right)+\mathcal{A}_{\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)} \frac{\xi_{2}|\boldsymbol{\xi}|}{}\left(\varphi u_{n}^{2}\right)=\mathcal{A}_{\frac{\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)}{|\boldsymbol{\xi}|}}\left(\partial_{1}\left(\varphi u_{n}^{1}\right)+\partial_{2}\left(\varphi u_{n}^{2}\right)\right) \rightarrow 0$.
Multiplying it first by φv_{n}^{1} and then by φv_{n}^{2}, integrating over \mathbf{R}^{2} and passing to the limit, we conclude from the existence theorem that:

$$
\xi_{1} \mu^{11}+\xi_{2} \mu^{21}=0, \quad \text { and } \quad \xi_{1} \mu^{12}+\xi_{2} \mu^{22}=0
$$

From the compactness of the Riesz potential I_{1} mentioned above, we conclude that for $\varphi \in \mathrm{C}_{c}\left(\mathbf{R}^{2}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ the following limit holds in $\mathrm{L}^{p}\left(\mathbf{R}^{2}\right)$:
$\mathcal{A}_{\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)} \frac{\xi_{1}, \boldsymbol{\xi} \mid}{}\left(\varphi u_{n}^{1}\right)+\mathcal{A}_{\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)} \frac{\xi_{2}|\boldsymbol{\xi}|}{}\left(\varphi u_{n}^{2}\right)=\mathcal{A}_{\frac{\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)}{|\boldsymbol{\xi}|}}\left(\partial_{1}\left(\varphi u_{n}^{1}\right)+\partial_{2}\left(\varphi u_{n}^{2}\right)\right) \rightarrow 0$.
Multiplying it first by φv_{n}^{1} and then by φv_{n}^{2}, integrating over \mathbf{R}^{2} and passing to the limit, we conclude from the existence theorem that:

$$
\xi_{1} \mu^{11}+\xi_{2} \mu^{21}=0, \quad \text { and } \quad \xi_{1} \mu^{12}+\xi_{2} \mu^{22}=0
$$

Next, take

$$
w_{n}^{j}=\varphi \mathcal{A}_{\frac{\psi(\boldsymbol{\xi}| | \xi \mid)}{|\boldsymbol{\xi}|}}\left(\varphi u_{n}^{j}\right) \in \mathrm{W}^{1, p^{\prime}}\left(\mathbf{R}^{d}\right), \quad j=1,2
$$

From the last limits on the preceeding slide we get

$$
\left\langle\left(\varphi v_{n}^{1},-\varphi v_{n}^{2}\right), \nabla w_{n}^{j}\right\rangle=-\left\langle\operatorname{rot}\left(\varphi v_{n}^{1}, \varphi v_{n}^{2}\right), w_{n}^{j}\right\rangle \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for $j=1,2$. Rewriting it in the integral formulation, we obtain again from the existence theorem:

$$
\xi_{2} \mu^{11}-\xi_{1} \mu^{12}=0, \quad \xi_{2} \mu^{21}-\xi_{1} \mu^{22}=0
$$

From the compactness of the Riesz potential I_{1} mentioned above, we conclude that for $\varphi \in \mathrm{C}_{c}\left(\mathbf{R}^{2}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ the following limit holds in $\mathrm{L}^{p}\left(\mathbf{R}^{2}\right)$:
$\mathcal{A}_{\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)} \frac{\xi_{1} \mid}{|\boldsymbol{\xi}|}\left(\varphi u_{n}^{1}\right)+\mathcal{A}_{\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)} \frac{\xi_{2}|\boldsymbol{\xi}|}{}\left(\varphi u_{n}^{2}\right)=\mathcal{A}_{\frac{\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)}{|\boldsymbol{\xi}|}}\left(\partial_{1}\left(\varphi u_{n}^{1}\right)+\partial_{2}\left(\varphi u_{n}^{2}\right)\right) \rightarrow 0$.
Multiplying it first by φv_{n}^{1} and then by φv_{n}^{2}, integrating over \mathbf{R}^{2} and passing to the limit, we conclude from the existence theorem that:

$$
\xi_{1} \mu^{11}+\xi_{2} \mu^{21}=0, \quad \text { and } \quad \xi_{1} \mu^{12}+\xi_{2} \mu^{22}=0
$$

Next, take

$$
w_{n}^{j}=\varphi \mathcal{A}_{\frac{\psi(\boldsymbol{\xi}| | \xi \mid)}{|\boldsymbol{\xi}|}}\left(\varphi u_{n}^{j}\right) \in \mathrm{W}^{1, p^{\prime}}\left(\mathbf{R}^{d}\right), \quad j=1,2
$$

From the last limits on the preceeding slide we get

$$
\left\langle\left(\varphi v_{n}^{1},-\varphi v_{n}^{2}\right), \nabla w_{n}^{j}\right\rangle=-\left\langle\operatorname{rot}\left(\varphi v_{n}^{1}, \varphi v_{n}^{2}\right), w_{n}^{j}\right\rangle \rightarrow 0 \text { as } n \rightarrow \infty
$$

for $j=1,2$. Rewriting it in the integral formulation, we obtain again from the existence theorem:

$$
\xi_{2} \mu^{11}-\xi_{1} \mu^{12}=0, \quad \xi_{2} \mu^{21}-\xi_{1} \mu^{22}=0
$$

From the algebraic relations above, we can easily conclude

$$
\xi_{1}\left(\mu^{11}+\mu^{22}\right)=0 \text { and } \xi_{2}\left(\mu^{11}+\mu^{22}\right)=0
$$

implying that the distribution $\mu^{11}+\mu^{22}$ is supported on the set $\left\{\xi_{1}=0\right\} \cap\left\{\xi_{2}=0\right\} \cap P=\emptyset$, which implies $\mu^{11}+\mu^{22} \equiv 0$.
After inserting $\psi \equiv 1$ in the definition of H-distribution, we immediately reach the conclusion.

This proof is similar to the L^{2} case, but it should be noted that we had used only a non-diagonal block of $4 \times 4 \mathrm{H}$-measure, which corresponds to the only available $2 \times 2 \mathrm{H}$-distribution.

This proof is similar to the L^{2} case, but it should be noted that we had used only a non-diagonal block of $4 \times 4 \mathrm{H}$-measure, which corresponds to the only available $2 \times 2 \mathrm{H}$-distribution.

There is no reason to limit oneself to two dimensions; take (\mathbf{u}_{n}) and (\mathbf{v}_{n}) converging weakly to zero in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)^{d}$ and $\mathrm{L}^{p^{\prime}}\left(\mathbf{R}^{d}\right)^{d}$, and by $\boldsymbol{\mu}$ denote $d \times d$ matrix H-distribution corresponding to some chosen subsequences of $\left(\mathbf{u}_{n}\right)$ and $\left(\mathrm{v}_{n}\right)$.

This proof is similar to the L^{2} case, but it should be noted that we had used only a non-diagonal block of $4 \times 4 \mathrm{H}$-measure, which corresponds to the only available $2 \times 2 \mathrm{H}$-distribution.

There is no reason to limit oneself to two dimensions; take $\left(u_{n}\right)$ and $\left(v_{n}\right)$ converging weakly to zero in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)^{d}$ and $\mathrm{L}^{p^{\prime}}\left(\mathbf{R}^{d}\right)^{d}$, and by $\boldsymbol{\mu}$ denote $d \times d$ matrix H-distribution corresponding to some chosen subsequences of $\left(\mathbf{u}_{n}\right)$ and (v_{n}).

Theorem. Let $\left(\mathrm{u}_{n}\right)$ and $\left(\mathrm{v}_{n}\right)$ be vector valued sequences converging to zero weakly in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)^{d}$ and $\mathrm{L}^{p^{\prime}}\left(\mathbf{R}^{d}\right)^{d}$, respectively. Assume the sequence (div u_{n}) is bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, and the sequence ($\operatorname{rot} \mathrm{v}_{n}$) is bounded in $\mathrm{L}^{p^{\prime}}\left(\mathbf{R}^{d}\right)^{d \times d}$. Then the sequence $\left(u_{n} \cdot v_{n}\right)$ converges to zero in the sense of distributions (or vaguely in the sense of Radon measures).

H -measures and variants
H -measures
Existence of H -measures
Localisation principle

H-distributions
Existence
Localisation principle
An application to compactness by compensation

Extensions and variants
H-distributions on Lebesgue spaces with mixed norm
Velocity averaging
Compactness by compensation
Further variants

Lebesgue spaces with mixed norm
For $\mathbf{p} \in[1, \infty)^{d}$, by $\mathrm{L}^{\mathrm{P}}\left(\mathbf{R}^{d}\right)$ denote the space of f on \mathbf{R}^{d} with finite norm
$\|f\|_{\mathbf{p}}=\left(\int_{\mathbf{R}} \cdots\left(\int_{\mathbf{R}}\left(\int_{\mathbf{R}}\left|f\left(x_{1}, \ldots, x_{d}\right)\right|^{p_{1}} d x_{1}\right)^{p_{2} / p_{1}} d x_{2}\right)^{p_{3} / p_{2}} \cdots d x_{d}\right)^{1 / p_{d}}$.

Lebesgue spaces with mixed norm
For $\mathbf{p} \in[1, \infty)^{d}$, by $\mathrm{L}^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ denote the space of f on \mathbf{R}^{d} with finite norm
$\|f\|_{\mathbf{p}}=\left(\int_{\mathbf{R}} \cdots\left(\int_{\mathbf{R}}\left(\int_{\mathbf{R}}\left|f\left(x_{1}, \ldots, x_{d}\right)\right|^{p_{1}} d x_{1}\right)^{p_{2} / p_{1}} d x_{2}\right)^{p_{3} / p_{2}} \cdots d x_{d}\right)^{1 / p_{d}}$.
These spaces can be seen as vector-valued Lebesgue spaces in the sense

$$
\mathrm{L}^{\mathrm{P}}\left(\mathbf{R}^{d}\right)=\mathrm{L}_{x_{d}}^{p_{d}}\left(\mathbf{R} ; \mathrm{L}_{x_{1}, \ldots, x_{d-1}}^{\left(p_{1}, \ldots, p_{d-1}\right)}\left(\mathbf{R}^{d-1}\right)\right) .
$$

Lebesgue spaces with mixed norm

For $\mathbf{p} \in[1, \infty)^{d}$, by $\mathrm{L}^{\mathrm{p}}\left(\mathbf{R}^{d}\right)$ denote the space of f on \mathbf{R}^{d} with finite norm

$$
\|f\|_{\mathbf{p}}=\left(\int_{\mathbf{R}} \cdots\left(\int_{\mathbf{R}}\left(\int_{\mathbf{R}}\left|f\left(x_{1}, \ldots, x_{d}\right)\right|^{p_{1}} d x_{1}\right)^{p_{2} / p_{1}} d x_{2}\right)^{p_{3} / p_{2}} \cdots d x_{d}\right)^{1 / p_{d}} .
$$

These spaces can be seen as vector-valued Lebesgue spaces in the sense

$$
\mathrm{L}^{\mathrm{P}}\left(\mathbf{R}^{d}\right)=\mathrm{L}_{x_{d}}^{p_{d}}\left(\mathbf{R} ; \mathrm{L}_{x_{1}, \ldots, x_{d-1}}^{\left(p_{1}, \ldots, p_{d-1}\right)}\left(\mathbf{R}^{d-1}\right)\right) .
$$

Theorem. Let $m \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d} \backslash\{0\}\right)$ for some $A>0$ and any $|\boldsymbol{\alpha}| \leqslant\left[\frac{d}{2}\right]+1$
(a) either Mihlin's condition

$$
\left|\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})\right| \leqslant A|\boldsymbol{\xi}|^{-|\boldsymbol{\alpha}|} \quad \text { or }
$$

(b) Hörmander's condition

$$
\sup _{R>0} R^{-d+2|\boldsymbol{\alpha}|} \int_{R<|\boldsymbol{\xi}|<2 R}\left|\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant A^{2}<\infty .
$$

Then m lies in $\mathcal{M}_{\mathbf{p}}$, for any $\mathbf{p} \in\langle 1, \infty\rangle^{d}$, and we have the estimate

$$
\begin{aligned}
\|m\|_{\mathcal{M}_{\mathbf{P}}} & \leqslant \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max \left\{p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right\}\left(A+\|m\|_{\mathrm{L}^{\infty}}\right) \\
& \leqslant c^{\prime} \prod_{j=0}^{d-1} \max \left\{p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right\}\left(A+\|m\|_{\mathrm{L}^{\infty}}\right)
\end{aligned}
$$

where c and c^{\prime} are constants that depend only on d.

H-distributions on mixed-norm Lebesgue spaces

Lemma. Let $\left(v_{n}\right)$ be bounded both in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and in $\mathrm{L}^{\mathbf{r}}\left(\mathbf{R}^{d}\right)$, for some $\mathbf{r} \in[2, \infty]^{d}$, and such that $v_{n} \longrightarrow 0$ in \mathcal{D}^{\prime}. Then $\left(C v_{n}\right)$, where the commutator is defined by $C:=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$, strongly converges to zero in $\mathrm{L}^{\mathbf{q}}\left(\mathbf{R}^{d}\right)$, for any $\mathbf{q} \in[2, \infty\rangle^{d}$ such that there exists $\lambda \in\langle 0,1\rangle$ for which it holds

$$
\frac{1}{q_{i}}=\frac{\lambda}{2}+\frac{1-\lambda}{r_{i}}, \quad i \in 1 . . d
$$

H-distributions on mixed-norm Lebesgue spaces

Lemma. Let $\left(v_{n}\right)$ be bounded both in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and in $\mathrm{L}^{\mathbf{r}}\left(\mathbf{R}^{d}\right)$, for some $\mathbf{r} \in[2, \infty]^{d}$, and such that $v_{n} \longrightarrow 0$ in \mathcal{D}^{\prime}. Then $\left(C v_{n}\right)$, where the commutator is defined by $C:=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$, strongly converges to zero in $\mathrm{L}^{\mathbf{q}}\left(\mathbf{R}^{d}\right)$, for any $\mathbf{q} \in[2, \infty\rangle^{d}$ such that there exists $\lambda \in\langle 0,1\rangle$ for which it holds

$$
\frac{1}{q_{i}}=\frac{\lambda}{2}+\frac{1-\lambda}{r_{i}}, \quad i \in 1 . . d
$$

Theorem. Let $\kappa=[d / 2]+1$ and $\mathbf{p} \in\langle 1, \infty\rangle^{d}$. If $u_{n} \longrightarrow 0$ weakly in $\mathrm{L}_{\mathrm{loc}}^{\mathbf{p}}\left(\mathbf{R}^{d}\right), v_{n} \xrightarrow{*} v$ in $\mathrm{L}_{\mathrm{loc}}^{\mathbf{q}}\left(\mathbf{R}^{d}\right)$, for some $\mathbf{q} \in[2, \infty]^{d}$ such that $\mathbf{q}>\mathbf{p}^{\prime}$, then there exist subsequences $\left(u_{n^{\prime}}\right)$ and ($v_{n^{\prime}}$) and a complex distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times S^{d-1}\right)$, such that for $\phi_{1}, \phi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(S^{d-1}\right)$ one has

$$
\left.\begin{array}{rl}
\lim _{n^{\prime}} \mathrm{L}^{\mathbf{P}}\left(\mathbf{R}^{d}\right) \\
& \left\langle\mathcal{A}_{\psi}\left(\phi_{1} u_{n^{\prime}}\right), \phi_{2} v_{n^{\prime}}\right\rangle_{\mathrm{L}^{\mathbf{p}^{\prime}}\left(\mathbf{R}^{d}\right)}
\end{array}=\lim _{n^{\prime}} \mathrm{L}^{\mathbf{p}}\left(\mathbf{R}^{d}\right)\left\langle\phi_{1} u_{n^{\prime}}, \mathcal{A}_{\bar{\psi}}\left(\phi_{2} v_{n^{\prime}}\right)\right\rangle_{\mathrm{L}^{\mathbf{p}^{\prime}}\left(\mathbf{R}^{d}\right)}\right)
$$

where $\mathcal{A}_{\psi}: \mathrm{L}^{\mathbf{p}}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ is the Fourier multiplier operator.

Velocity averaging

A sequence of solutions to some (fractional order) PDE

$$
\sum_{k=1}^{d} \partial_{x_{k}}^{\alpha_{k}}\left(a_{k}(\mathbf{x}, \mathbf{v}) u_{n}(\mathbf{x}, \mathbf{v})\right)=g_{n}(\mathbf{x}, \mathbf{v})
$$

is often only weakly convergent in $\mathrm{L}_{\mathrm{loc}}^{p}\left(\mathbf{R}^{d+m}\right)$. Sometimes it is sufficient to have strong precompactness only of the averaged sequence; for some $\rho \in \mathrm{C}_{c}\left(\mathbf{R}^{m}\right):$

$$
\int_{\mathbf{R}^{m}} \rho(\mathbf{v}) u_{n}(\mathbf{x}, \mathbf{v}) d \mathbf{v}
$$

Velocity averaging

A sequence of solutions to some (fractional order) PDE

$$
\sum_{k=1}^{d} \partial_{x_{k}}^{\alpha_{k}}\left(a_{k}(\mathbf{x}, \mathbf{v}) u_{n}(\mathbf{x}, \mathbf{v})\right)=g_{n}(\mathbf{x}, \mathbf{v})
$$

is often only weakly convergent in $\mathrm{L}_{\mathrm{loc}}^{p}\left(\mathbf{R}^{d+m}\right)$. Sometimes it is sufficient to have strong precompactness only of the averaged sequence; for some $\rho \in \mathrm{C}_{c}\left(\mathbf{R}^{m}\right):$

$$
\int_{\mathbf{R}^{m}} \rho(\mathbf{v}) u_{n}(\mathbf{x}, \mathbf{v}) d \mathbf{v}
$$

In abstract terms, take E a separable Banach space, and $p \in\langle 1, \infty\rangle$.

Theorem. [M. Lazar \& D. Mitrović (CRAS, 2013)]

A continuous bilinear functional $B: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \boxtimes E \longrightarrow \mathbf{C}$ can be extended to a continuous functional on $\mathrm{L}^{p}\left(\mathbf{R}^{d} ; E\right)$ if and only if there is a $b \in \mathrm{~L}^{p^{\prime}}\left(\mathbf{R}^{d} ; \mathbf{R}_{0}^{+}\right)$ such that

$$
(\forall \psi \in E) \quad|\tilde{B} \psi(\mathbf{x})| \leqslant b(\mathbf{x})\|\psi\|_{E}
$$

where \tilde{B} is defined by $\langle\tilde{B} \psi, \varphi\rangle=B(\varphi, \psi)$.

An H-distribution

Instead of the sphere (or ellipsoid) take a manifold

$$
\mathrm{P}:=\left\{\boldsymbol{\xi} \in \mathbf{R}^{d}: \sum_{k=1}^{d}\left|\xi_{k}\right|^{l \alpha_{k}}=1\right\}
$$

where l is such that $l \alpha_{k}>d, k \in 1 . . d$.

An H-distribution

Instead of the sphere (or ellipsoid) take a manifold

$$
\mathrm{P}:=\left\{\boldsymbol{\xi} \in \mathbf{R}^{d}: \sum_{k=1}^{d}\left|\xi_{k}\right|^{l \alpha_{k}}=1\right\}
$$

where l is such that $l \alpha_{k}>d, k \in 1 . . d$.
A function ψ from P can be extended to ψ_{P} on $\mathbf{R}^{d} \backslash\{0\}$ by projections

$$
\left(\pi_{P}(\boldsymbol{\xi})\right)_{i}=\xi_{i}\left(\xi_{1}^{l \alpha_{1}}+\cdots+\xi_{d}^{l \alpha_{d}}\right)^{-1 / l \alpha_{i}}
$$

An H-distribution

Instead of the sphere (or ellipsoid) take a manifold

$$
\mathrm{P}:=\left\{\boldsymbol{\xi} \in \mathbf{R}^{d}: \sum_{k=1}^{d}\left|\xi_{k}\right|^{l \alpha_{k}}=1\right\}
$$

where l is such that $l \alpha_{k}>d, k \in 1 . . d$.
A function ψ from P can be extended to ψ_{P} on $\mathbf{R}^{d} \backslash\{0\}$ by projections

$$
\left(\pi_{P}(\boldsymbol{\xi})\right)_{i}=\xi_{i}\left(\xi_{1}^{l \alpha_{1}}+\cdots+\xi_{d}^{l \alpha_{d}}\right)^{-1 / l \alpha_{i}}
$$

Theorem. [M. Lazar \& D. Mitrović (CRAS, 2013)] (u_{n}) bounded in $\mathrm{L}^{s}\left(\mathbf{R}^{d+m}\right)$, supported in a compact $(s \in\langle 1,2\rangle)$, and $\left(v_{n}\right)$ bounded in $\mathrm{L}_{c}^{\infty}\left(\mathbf{R}^{m}\right)$.
Then for any $\bar{s} \in\langle 1, s\rangle$, on a subsequence, there is a continuous bilinear functional B on $\mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d+m}\right) \boxtimes \mathrm{C}^{d}(P)$ such that for $\varphi \in \mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d+m}\right)$ and $\psi \in \mathrm{C}^{d}(P)$

$$
B(\varphi, \psi)=\lim _{n} \int_{\mathbf{R}^{d+m}} \varphi(\mathbf{x}, \mathbf{v}) u_{n}(\mathbf{x}, \mathbf{v})\left(\mathcal{A}_{\psi_{P}} v_{n}\right)(\mathbf{x}) d \mathbf{x} d \mathbf{v}
$$

Furthermore, B can be extended to a continuous bilinear functional on $\mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d+m} ; \mathrm{C}^{d}(P)\right)$.

What for $q<\infty$?

An analogous construction led M . Mišur and D . Mitrović to a construction of another variant, with an application to compactness by compensation.

Theorem. [M. Mišur \& D. Mitrović (JFA, 2015)] (u_{n}) bounded in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, $p>1$, and $\left(v_{n}\right)$ bounded in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, where $1 / r:=1 / p+1 / q<1$, and v_{n} are supported in a compact.
Then for any $\bar{s} \in\langle 1, r\rangle$, on a subsequence, there is a continuous bilinear functional B on $\mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d}\right) \boxtimes \mathrm{C}^{d}(P)$ such that for $\varphi \in \mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{d}(P)$

$$
B(\varphi, \psi)=\lim _{n} \int_{\mathbf{R}^{d}} \varphi(\mathbf{x}) u_{n}(\mathbf{x})\left(\mathcal{A}_{\psi_{P}} v_{n}\right)(\mathbf{x}) d \mathbf{x}
$$

Furthermore, B can be extended to a continuous bilinear functional on $\mathrm{L}^{\bar{s}^{\prime}}\left(\mathbf{R}^{d} ; \mathrm{C}^{d}(P)\right)$.

Strong consistency condition

Introduce the set

$$
\Lambda_{\mathcal{D}}=\left\{\boldsymbol{\mu} \in L^{\bar{s}}\left(\mathbf{R}^{d} ;\left(C^{d}\left(\mathrm{P}^{d}\right)\right)^{\prime}\right)^{r}:\left(\sum_{k=1}^{n}\left(2 \pi i \xi_{k}\right)^{\alpha_{k}} \mathbf{A}^{k}\right) \boldsymbol{\mu}=\mathbf{0}_{m}\right\}
$$

where the given equality is understood in the sense of $L^{\bar{s}}\left(\mathbf{R}^{d} ;\left(C^{d}\left(\mathrm{P}^{d}\right)\right)^{\prime}\right)^{m}$.

Strong consistency condition

Introduce the set

$$
\Lambda_{\mathcal{D}}=\left\{\boldsymbol{\mu} \in L^{\bar{s}}\left(\mathbf{R}^{d} ;\left(C^{d}\left(\mathrm{P}^{d}\right)\right)^{\prime}\right)^{r}:\left(\sum_{k=1}^{n}\left(2 \pi i \xi_{k}\right)^{\alpha_{k}} \mathbf{A}^{k}\right) \boldsymbol{\mu}=\mathbf{0}_{m}\right\}
$$

where the given equality is understood in the sense of $L^{\bar{s}}\left(\mathbf{R}^{d} ;\left(C^{d}\left(\mathrm{P}^{d}\right)\right)^{\prime}\right)^{m}$. Let us assume that coefficients of the bilinear form $q(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\eta})=\mathbf{Q}(\mathbf{x}) \boldsymbol{\lambda} \cdot \boldsymbol{\eta}$, belong to space $L_{l o c}^{t}\left(\mathbf{R}^{d}\right)$, where $1 / t+1 / p+1 / q<1$.

We say that set $\Lambda_{\mathcal{D}}$, bilinear form q and matrix $\boldsymbol{\mu}=\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{r}\right], \boldsymbol{\mu}_{j} \in L^{\bar{s}}\left(\mathbf{R}^{d} ;\left(C^{d}\left(\mathrm{P}^{d}\right)\right)^{\prime}\right)^{r}$ satisfy the strong consistency condition if $(\forall j \in\{1, \ldots, r\}) \boldsymbol{\mu}_{j} \in \Lambda_{\mathcal{D}}$, and it holds

$$
\langle\phi \mathbf{Q} \otimes 1, \boldsymbol{\mu}\rangle \geq \mathbf{0}, \quad \phi \in L^{\bar{s}}\left(\mathbf{R}^{d} ; \mathbf{R}_{0}^{+}\right)
$$

Compactness by compensation

Theorem. Assume that sequences $\left(\mathrm{u}_{n}\right)$ and $\left(\mathrm{v}_{n}\right)$ are bounded in $L^{p}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ and $L^{q}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, respectively, and converge toward u and v in the sense of distributions.
Assume that

$$
\mathbf{G}_{n}:=\sum_{k=1}^{d} \partial_{k}^{\alpha_{k}}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right) \rightarrow \mathbf{0} \text { in } W^{-1, p}\left(\Omega ; \mathbf{R}^{m}\right),
$$

holds and that

$$
q\left(\mathbf{x} ; \mathbf{u}_{n}, \mathbf{v}_{n}\right) \rightharpoonup \omega \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right) .
$$

If the set $\Lambda_{\mathcal{D}}$, the bilinear form q, and matrix H-distribution μ, corresponding to subsequences of $\left(\mathrm{u}_{n}-\mathrm{u}\right)$ and $\left(\mathrm{v}_{n}-\mathrm{v}\right)$, satisfy the strong consistency condition, then

$$
q(\mathbf{x} ; \mathbf{u}, \mathbf{v}) \leq \omega \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right)
$$

Further variants and open questions
J. Aleksić, S. Pilipović, I. Vojnović (preprint)

Further variants and open questions
J. Aleksić, S. Pilipović, I. Vojnović (preprint)
F. Rindler (ARMA, 2015): microlocal compactness forms

Thank you for your attention.

