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What are H-measures?
Mathematical objects introduced by:
◦ Luc Tartar, motivated by intended applications in homogenisation (H),

and

◦ Patrick Gérard, whose motivation were certain problems in kinetic theory
(and who called these objects microlocal defect measures).

Start from un −⇀ 0 in L2(Rd), ϕ ∈ Cc(R
d), and take the Fourier transform:

ϕ̂un(ξ) =

∫
Rd

e−2πix·ξ(ϕun)(x)dx

As ϕun is supported on a fixed compact set K, so |ϕ̂un(ξ)| 6 C.

Furthermore, un −⇀ 0, and from the definition ϕ̂un(ξ) −→ 0 pointwise.
By the Lebesgue dominated convergence theorem on bounded sets, we get
ϕ̂un −→ 0 strong, i.e. strongly in L2

loc(Rd).

On the other hand, by the Plancherel theorem: ‖ϕ̂un‖L2(Rd) = ‖ϕun‖L2(Rd).

If ϕun 6⇀ 0 in L2(Rd), then ϕ̂un 6⇀ 0; some information must go to infinity.

How does it go to infinity in various directions? Take ψ ∈ C(Sd−1), and
consider:

lim
n

∫
Rd

ψ(ξ/|ξ|)|ϕ̂un|2dξ =

∫
Sd−1

ψ(ξ)dνϕ(ξ) .

The limit is a linear functional in ψ, thus an integral over the sphere of some
nonegativne Radon measure (a bounded sequence of Radon measures has an
accumulation point), which depends on ϕ. How does it depent on ϕ?
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Rough geometric idea
Take a sequence un −⇀ 0 in L2(R2), and integrate |ϕ̂un|2 along

rays and project onto S1 Heat equation? parabolas and project onto P1

τ

ξ1

T

T0

τ

ξ

T

T0

√
2

1

O

In R2 we have a compact curve (a surface in higher dimensions):

S1 . . . r2(τ, ξ) := τ2 + ξ2 = 1

P1 . . . ρ2(τ, ξ) := (ξ/2)2 +
√

(ξ/2)4 + τ2 = 1

and projection R2
∗ = R2 \ {0} onto the curve (surface):

∂tu− ∂2
xu = 0

p(τ, ξ) :=
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)

π(τ, ξ) :=
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
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Analytic picture

Multiplication by b ∈ L∞(R2), a bounded operator Mb on L2(R2):
(Mbu)(x) := b(x)u(x) ,

norm equal to ‖b‖L∞(R2).

Fourier multiplier Aa, for a ∈ L∞(R2): Âau = aû.
The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1 or P1.
We extend it by the projections, p or π: if α is a function defined on a
compact surface, we take a := α ◦ p or a := α ◦ π, i.e.

a(τ, ξ) := α
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)

a(τ, ξ) := α
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)

The precise scaling is contained in the projections, not the surface.

Now we can state the main theorem, where we use the notation

v · u :=
∑

viūi , (v ⊗ u)a := (a · u)v ,while (f � g)(x, ξ) := f(x)g(ξ) .

5
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ξ

r(τ, ξ)

)
a(τ, ξ) := α

( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
The precise scaling is contained in the projections, not the surface.

Now we can state the main theorem, where we use the notation

v · u :=
∑

viūi , (v ⊗ u)a := (a · u)v ,while (f � g)(x, ξ) := f(x)g(ξ) .
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Existence of H-measures

Theorem. If un −⇀ 0 in L2(Rd;Rr), then there exists its subsequence and a
complex matrix Radon measure µ on

Rd × Sd−1

Rd × Pd−1

such that for any ϕ1, ϕ2 ∈ C0(Rd) and

ψ ∈ C(Sd−1)

ψ ∈ C(Pd−1)

one has

lim
n′

∫
Rd

ϕ̂1un′ ⊗ ϕ̂2un′(ψ ◦ p

π

) dξ = 〈µ, (ϕ1ϕ̄2)� ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ(x, ξ)

=

∫
Rd×Pd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ(x, ξ) .

There are some other variants (E. Ju. Panov, . . . ).
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First commutation lemma

Lemma. (general form of the first commutation lemma — Luc Tartar)
If b ∈ C0(Rd) and a ∈ L∞(Rd) satisfy the condition

(∀ ρ, ε ∈ R+)(∃M ∈ R+) |a(ξ)− a(η)| 6 ε (a.e. (ξ,η) ∈ Y (M,ρ)) ,

then C := [Aa,Mb] is a compact operator on L2(Rd).

For given M,ρ ∈ R+ denote the set

Y = Y (M,ρ) = {(ξ,η) ∈ R2d : |ξ|, |η| >M & |ξ − η| 6 ρ} .

η

ξ

%

Y
M

In both cases discussed above, this lemma can also be proven directly, based on
elementary inequalities.
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The importance of First commutation lemma

If we take un = (un, vn), and consider µ = µ12, we have

lim
n′

∫
Rd

ϕ̂1un′ ϕ̂2vn′ψ dξ = lim
n′
〈Aψ(ϕ1un′)|ϕ2vn′〉

= lim
n′

∫
Rd
Aψ(ϕ1un′)ϕ2vn′ dx

= lim
n′

∫
Rd
Aψ(un′)ϕ1ϕ2vn′ dx = 〈µ, (ϕ1ϕ̄2)� ψ〉 .

Thus the limit is a bilinear functional in ϕ1ϕ̄2 and ψ, and we have the bound:∣∣∣ ∫
Rd
Aψ(un′)ϕ1ϕ2vn′dx

∣∣∣ ≤ C‖ψ‖C(Sd−1)‖ϕ1ϕ2‖C0(Rd) .

This form makes sense even for p < 2 (for p > 2 we use the fact that
un ∈ L2

loc(Rd)).
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Localisation principle for classical H-measures

d∑
k=1

∂k(Aku

n

)+Bu

n

= f

n

, Ak ∈ Cb(R
d; Ml×r)

Assume:

un
L2

−−⇀ 0 , and defines µ

fn
H−1

loc−−→ 0 .

Theorem. (localisation principle) If un satisfies:

d∑
k=1

∂k
(
Akun

)
−→ 0 in H−1

loc(Rd;Cr) ,

then for p(x, ξ) :=
∑d
k=1 ξkA

k(x) on Ω× Sd−1 one has:

p(x, ξ)µ> = 0 .

Thus, if l = r, the support of H-measure µ is contaned in the set{
(x, ξ) ∈ Ω× Sd−1 : detp(x, ξ) = 0

}
of points where p is a singular matrix.

The localisation principle is behind the applications to the small-amplitude
homogenisation, which can be used in optimal design.

It contains a generalisation of compactness by compensation to variable
coefficients.
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Localisation principle for parabolic H-measures
In the parabolic case the details become more involved.

Anisotropic Sobolev spaces (s ∈ R; kp(τ, ξ) := 4
√

1 + (2πτ)2 + (2π|ξ|)4)

H
s
2
,s(R1+d) :=

{
u ∈ S ′ : kspû ∈ L2(R1+d)

}
.

Theorem. (localisation principle) Let un −⇀ 0 in L2(R1+d;Cr), uniformly
compactly supported in t, satisfy (s ∈ N)

√
∂t
s
(A0un) +

∑
|α|=s

∂α
x (Aαun) −→ 0 strongly in H

− s
2
,−s

loc (R1+d) ,

where A0,Aα ∈ Cb(R
1+d; Ml×r(C)), for some l ∈ N, while

√
∂t is a

pseudodifferential operator with symbol
√

2πiτ , i.e.

√
∂tu = F

(√
2πiτ û(τ)

)
.

Then for a parabolic H-measure µ associated to (a sub)sequence (of) (un) one
has (

(
√

2πiτ)sA0 +
∑
|α|=s

(2πiξ)αAα

)
µ> = 0.
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H-measures and variants
H-measures
Existence of H-measures
Localisation principle

H-distributions
Existence
Localisation principle
An application to compactness by compensation

Extensions and variants
H-distributions on Lebesgue spaces with mixed norm
Velocity averaging
Compactness by compensation
Further variants
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Good bounds: the Hörmander-Mihlin theorem

ψ : Rd → C is a Fourier multiplier on Lp(Rd) if

F̄(ψF(θ)) ∈ Lp(Rd) , for θ ∈ S(Rd),

and
S(Rd) 3 θ 7→ F̄(ψF(θ)) ∈ Lp(Rd)

can be extended to a continuous mapping Aψ : Lp(Rd)→ Lp(Rd).

Theorem. [Hörmander-Mihlin] Let ψ ∈ L∞(Rd) have partial derivatives of
order less than or equal to κ = [ d

2
] + 1. If for some k > 0

(∀r > 0)(∀α ∈ Nd
0) |α| 6 κ =⇒

∫
r
2
6|ξ|6r

|∂αψ(ξ)|2dξ 6 k2rd−2|α| ,

then for any p ∈ 〈1,∞〉 and the associated multiplier operator Aψ there exists
a Cd (depending only on the dimension d) such that

‖Aψ‖Lp→Lp 6 Cd max

{
p,

1

p− 1

}
(k + ‖ψ‖∞) .

For ψ ∈ Cκ(Sd−1), extended by homogeneity to Rd, we can take k = ‖ψ‖Cκ .
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The main theorem

Theorem. [N.A. & D. Mitrović (2011)] If un −⇀ 0 in Lp(Rd) and
vn

∗−−⇀ v in Lq(Rd) for some q > max{p′, 2}, then there exist subsequences
(un′), (vn′) and a complex valued distribution µ ∈ D′(Rd × Sd−1) of order not
more than κ = [d/2] + 1 in ξ, such that for every ϕ1, ϕ2 ∈ C∞c (Rd) and
ψ ∈ Cκ(Sd−1) we have:

lim
n′

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2ψ〉 .

µ is the H-distribution corresponding to (a subsequence of) (un) and (vn).

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µ is supported on Cl Ω× Sd−1.

We distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). For p > 2, p′ 6 2 and we can
take q > 2; this covers the L2 case (including un = vn).
The assumptions imply un, vn −⇀ 0 in L2

loc(Rd), resulting in a distribution µ
of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for p < 2.

For vector-valued un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix
valued distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

The H-distribution would correspond to a non-diagonal block for an H-measure.
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Theorem. [N.A. & D. Mitrović (2011)] If un −⇀ 0 in Lp(Rd) and
vn

∗−−⇀ v in Lq(Rd) for some q > max{p′, 2}, then there exist subsequences
(un′), (vn′) and a complex valued distribution µ ∈ D′(Rd × Sd−1) of order not
more than κ = [d/2] + 1 in ξ, such that for every ϕ1, ϕ2 ∈ C∞c (Rd) and
ψ ∈ Cκ(Sd−1) we have:

lim
n′

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2ψ〉 .

µ is the H-distribution corresponding to (a subsequence of) (un) and (vn).

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µ is supported on Cl Ω× Sd−1.

We distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). For p > 2, p′ 6 2 and we can
take q > 2; this covers the L2 case (including un = vn).
The assumptions imply un, vn −⇀ 0 in L2

loc(Rd), resulting in a distribution µ
of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for p < 2.

For vector-valued un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix
valued distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

The H-distribution would correspond to a non-diagonal block for an H-measure.

13



The main theorem
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Theorem. [N.A. & D. Mitrović (2011)] If un −⇀ 0 in Lp(Rd) and
vn

∗−−⇀ v in Lq(Rd) for some q > max{p′, 2}, then there exist subsequences
(un′), (vn′) and a complex valued distribution µ ∈ D′(Rd × Sd−1) of order not
more than κ = [d/2] + 1 in ξ, such that for every ϕ1, ϕ2 ∈ C∞c (Rd) and
ψ ∈ Cκ(Sd−1) we have:

lim
n′

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2ψ〉 .

µ is the H-distribution corresponding to (a subsequence of) (un) and (vn).

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µ is supported on Cl Ω× Sd−1.

We distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). For p > 2, p′ 6 2 and we can
take q > 2; this covers the L2 case (including un = vn).
The assumptions imply un, vn −⇀ 0 in L2

loc(Rd), resulting in a distribution µ
of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for p < 2.

For vector-valued un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix
valued distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

The H-distribution would correspond to a non-diagonal block for an H-measure.

13



The main theorem
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The proof is based on First commutation lemma

ψ ∈ Cκ(Sd−1) satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, Aψ and Mϕ are bounded operators on Lp(Rd), for any p ∈ 〈1,∞〉.
We are interested in the properties of their commutator, C = AψMϕ −MϕAψ.

Lemma. Let (vn) be bounded in both L2(Rd) and Lr(Rd), for some
r ∈ 〈2,∞], and let vn ⇀ 0 in D′. Then the sequence (Cvn) strongly converges
to zero in Lq(Rd), for any q ∈ [2, r] \ {∞}.

If q < r, we can apply the classical interpolation inequality:

‖Cvn‖q 6 ‖Cvn‖α2 ‖Cvn‖1−αr ,

for α ∈ 〈0, 1〉 such that 1/q = α/2 + (1− α)/r. As C is compact on L2(Rd)
by Tartar’s First commutation lemma, while it is bounded on Lr(Rd), we get
the claim.

For the most interesting case, where q = r, we need a better result: the
Krasnosel’skij theorem (a variant of Riesz-Thorin theorem).

We still need a lemma on compactness of uniformly bounded bilinear forms,
and an application of the Schwartz kernel theorem.
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Therefore, Aψ and Mϕ are bounded operators on Lp(Rd), for any p ∈ 〈1,∞〉.
We are interested in the properties of their commutator, C = AψMϕ −MϕAψ.

Lemma. Let (vn) be bounded in both L2(Rd) and Lr(Rd), for some
r ∈ 〈2,∞], and let vn ⇀ 0 in D′. Then the sequence (Cvn) strongly converges
to zero in Lq(Rd), for any q ∈ [2, r] \ {∞}.

If q < r, we can apply the classical interpolation inequality:

‖Cvn‖q 6 ‖Cvn‖α2 ‖Cvn‖1−αr ,

for α ∈ 〈0, 1〉 such that 1/q = α/2 + (1− α)/r. As C is compact on L2(Rd)
by Tartar’s First commutation lemma, while it is bounded on Lr(Rd), we get
the claim.

For the most interesting case, where q = r, we need a better result: the
Krasnosel’skij theorem (a variant of Riesz-Thorin theorem).

We still need a lemma on compactness of uniformly bounded bilinear forms,
and an application of the Schwartz kernel theorem.

14



Localisation principle

Theorem. Take un ⇀ 0 in Lp(Rd), fn → 0 in W−1,q
loc (Rd), for some

q ∈ 〈1, d〉, such that
div (a(x)un(x)) = fn(x) .

Take an arbitrary (vn) bounded in L∞(Rd), and by µ denote the
H-distribution corresponding to a subsequence of (un) and (vn). Then

(a(x) · ξ)µ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.

In order to prove the theorem, we need a particular multiplier, the so called
(Marcel) Riesz potential I1 := A|2πξ|−1 , and the Riesz transforms Rj := A ξj

i|ξ|
.

Note that ∫
I1(φ)∂jg =

∫
(Rjφ)g, g ∈ S(Rd).

Using the density argument and that Rj is bounded from Lp(Rd) to itself, we
conclude ∂jI1(φ) = −Rj(φ), for φ ∈ Lp(Rd).
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Compactness by compensation: L2 case

It is well known that weak convergences are ill behaved under nonlinear
transformations. Only in some particular cases of compensation it is even
possible to pass to the limit in a product of two weakly converging sequences.

The prototype of this compensation effect is Murat-Tartar’s div-rot lemma.

For simplicity consider 2D case, (u1
n, u

2
n) and (v1

n, v
2
n) converging to zero

weakly in L2(R2), such that (∂xu
1
n + ∂yu

2
n) and (∂yv

1
n − ∂xv2

n) are both
contained in a compact set of H−1

loc(R
2) (which then implies that they converge

to zero strongly in H−1
loc(R

2)).

We can define Un :=

[
un
vn

]
, which (on a subsequence) defines a 4× 4

H-measure µ. By the localisation principle, as the above relations can be
written in the form (A1,A2 are 4× 4 constant matrices with all entries zero
except A1

11 = A2
12 = A2

33 = 1 and A1
34 = −1)

A1∂1Un + A2∂2Un → 0 strongly in H−1
loc(R

2)4 ,

the corresponding H-measure satisfies (ξ1A
1 + ξ2A

2)µ = 0. After
straightforward calculations this shows that u1

nv
1
n + u2

nv
2
n −⇀ 0 weak ∗ in the

sense of Radon measures (and therefore in the sense of distributions as well).
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What for sequences in Lp?
For the above we have used only the non-diagonal blocks µ12 = µ∗21 of

µ =

[
µ11 µ12

µ21 µ22

]
,

corresponding to products of uin and vjn; in fact, the calculation shows that
µ11

12 + µ22
12 = 0, which gives the above result.

Assume now (u1
n, u

2
n) and (v1

n, v
2
n) converging to zero weakly in Lp(R2) and

Lp
′
(R2), and (∂1u

1
n + ∂2u

2
n) bounded in Lp(R2), while (∂2v

1
n − ∂1v

2
n) in

Lp
′
(R2) (thus precompact in W−1,p

loc (R2), and W−1,p′

loc (R2)).

Then (u1
nv

1
n + u2

nv
2
n) is bounded in L1(R2), so also in Mb (Radon measures),

and by weak ∗ compactness it has a weakly converging subsequence. However,
we can say more—the whole sequence converges to zero.

Denote by µij the H-distribution corresponding to (some sub)sequences (of)
(u1
n, u

2
n) and (v1

n, v
2
n).

Since (∂1u
1
n + ∂2u

2
n) is bounded in Lp(R2), and (∂2v

1
n − ∂1v

2
n) is bounded in

Lp
′
(R2), they are weakly precompact, while the only possible limit is zero, so

∂1u
1
n + ∂2u

2
n ⇀ 0 in Lp , and

∂2v
1
n − ∂1v

2
n ⇀ 0 in Lp

′
.
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From the compactness of the Riesz potential I1 mentioned above, we conclude
that for ϕ ∈ Cc(R

2) and ψ ∈ Cκ(Sd−1) the following limit holds in Lp(R2):

A
ψ(ξ/|ξ|) ξ1|ξ|

(ϕu1
n) +A

ψ(ξ/|ξ|) ξ2|ξ|
(ϕu2

n) = Aψ(ξ/|ξ|)
|ξ|

(∂1(ϕu1
n) + ∂2(ϕu2

n))→ 0 .

Multiplying it first by ϕv1
n and then by ϕv2

n, integrating over R2 and passing to
the limit, we conclude from the existence theorem that:

ξ1µ
11 + ξ2µ

21 = 0, and ξ1µ
12 + ξ2µ

22 = 0 .

Next, take
wjn = ϕAψ(ξ/|ξ|)

|ξ|
(ϕujn) ∈W1,p′(Rd), j = 1, 2.

From the last limits on the preceeding slide we get

〈(ϕv1
n,−ϕv2

n),∇wjn〉 = −〈rot (ϕv1
n, ϕv

2
n), wjn〉 → 0 as n→∞,

for j = 1, 2. Rewriting it in the integral formulation, we obtain again from the
existence theorem:

ξ2µ
11 − ξ1µ12 = 0, ξ2µ

21 − ξ1µ22 = 0.

From the algebraic relations above, we can easily conclude

ξ1
(
µ11 + µ22) = 0 and ξ2

(
µ11 + µ22) = 0,

implying that the distribution µ11 + µ22 is supported on the set
{ξ1 = 0} ∩ {ξ2 = 0} ∩ P = ∅, which implies µ11 + µ22 ≡ 0.
After inserting ψ ≡ 1 in the definition of H-distribution, we immediately reach
the conclusion.
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After inserting ψ ≡ 1 in the definition of H-distribution, we immediately reach
the conclusion.
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This proof is similar to the L2 case, but it should be noted that we had used
only a non-diagonal block of 4× 4 H-measure, which corresponds to the only
available 2× 2 H-distribution.

There is no reason to limit oneself to two dimensions; take (un) and (vn)

converging weakly to zero in Lp(Rd)d and Lp
′
(Rd)d, and by µ denote d× d

matrix H-distribution corresponding to some chosen subsequences of (un) and
(vn).

Theorem. Let (un) and (vn) be vector valued sequences converging to zero

weakly in Lp(Rd)d and Lp
′
(Rd)d, respectively. Assume the sequence (div un)

is bounded in Lp(Rd), and the sequence (rot vn) is bounded in Lp
′
(Rd)d×d.

Then the sequence (un · vn) converges to zero in the sense of distributions (or
vaguely in the sense of Radon measures).
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Lebesgue spaces with mixed norm
For p ∈ [1,∞〉d, by Lp(Rd) denote the space of f on Rd with finite norm

‖f‖p =

(∫
R

· · ·
(∫

R

(∫
R

|f(x1, . . . , xd)|p1dx1

)p2/p1
dx2

)p3/p2
· · · dxd

)1/pd

.

These spaces can be seen as vector-valued Lebesgue spaces in the sense

Lp(Rd) = Lpdxd(R; L
(p1,...,pd−1)
x1,...,xd−1 (Rd−1)) .

Theorem. Let m ∈ L∞(Rd \ {0}) for some A > 0 and any |α| 6 [ d
2
] + 1

(a) either Mihlin’s condition |∂α
ξ m(ξ)| 6 A|ξ|−|α| or

(b) Hörmander’s condition

sup
R>0

R−d+2|α|
∫
R<|ξ|<2R

|∂α
ξ m(ξ)|2 dξ 6 A2 <∞ .

Then m lies in Mp, for any p ∈ 〈1,∞〉d, and we have the estimate

‖m‖Mp
6

d∑
k=1

ck
k−1∏
j=0

max{pd−j , (pd−j − 1)−1/pd−j}(A+ ‖m‖L∞)

6 c′
d−1∏
j=0

max{pd−j , (pd−j − 1)−1/pd−j}(A+ ‖m‖L∞) ,

where c and c′ are constants that depend only on d.
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H-distributions on mixed-norm Lebesgue spaces

Lemma. Let (vn) be bounded both in L2(Rd) and in Lr(Rd), for some
r ∈ [2,∞]d, and such that vn −⇀ 0 in D′. Then (Cvn), where the
commutator is defined by C := AψMϕ −MϕAψ, strongly converges to zero in
Lq(Rd), for any q ∈ [2,∞〉d such that there exists λ ∈ 〈0, 1〉 for which it holds

1

qi
=
λ

2
+

1− λ
ri

, i ∈ 1..d .

Theorem. Let κ = [d/2] + 1 and p ∈ 〈1,∞〉d. If un −⇀ 0 weakly in

Lp
loc(Rd), vn

∗−⇀v in Lq
loc(Rd), for some q ∈ [2,∞]d such that q > p′, then

there exist subsequences (un′) and (vn′) and a complex distribution
µ ∈ D′(Rd × Sd−1), such that for φ1, φ2 ∈ C∞c (Rd) and ψ ∈ Cκ(Sd−1) one
has

lim
n′

Lp(Rd)

〈
Aψ(φ1un′), φ2vn′

〉
Lp′ (Rd)

= lim
n′

Lp(Rd)

〈
φ1un′ ,Aψ(φ2vn′)

〉
Lp′ (Rd)

= 〈µ, φ1φ2 � ψ〉 ,

where Aψ : Lp(Rd) −→ Lp(Rd) is the Fourier multiplier operator.
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Velocity averaging

A sequence of solutions to some (fractional order) PDE

d∑
k=1

∂αkxk (ak(x,v)un(x,v)) = gn(x,v) ,

is often only weakly convergent in Lploc(Rd+m). Sometimes it is sufficient to
have strong precompactness only of the averaged sequence; for some
ρ ∈ Cc(R

m): ∫
Rm

ρ(v)un(x,v) dv .

In abstract terms, take E a separable Banach space, and p ∈ 〈1,∞〉.

Theorem. [M. Lazar & D. Mitrović (CRAS, 2013)]
A continuous bilinear functional B : Lp(Rd)� E −→ C can be extended to a

continuous functional on Lp(Rd;E) if and only if there is a b ∈ Lp
′
(Rd;R+

0 )
such that

(∀ψ ∈ E) |B̃ψ(x)| 6 b(x)‖ψ‖E ,

where B̃ is defined by 〈B̃ψ, ϕ〉 = B(ϕ,ψ).
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An H-distribution
Instead of the sphere (or ellipsoid) take a manifold

P :=
{
ξ ∈ Rd :

d∑
k=1

|ξk|lαk = 1
}
,

where l is such that lαk > d, k ∈ 1..d.

A function ψ from P can be extended to ψP on Rd \ {0} by projections

(πP (ξ))i = ξi
(
ξlα1
1 + · · ·+ ξ

lαd
d

)−1/lαi
.

Theorem. [M. Lazar & D. Mitrović (CRAS, 2013)] (un) bounded in
Ls(Rd+m), supported in a compact (s ∈ 〈1, 2〉), and (vn) bounded in
L∞c (Rm).
Then for any s̄ ∈ 〈1, s〉, on a subsequence, there is a continuous bilinear

functional B on Ls̄
′
(Rd+m)� Cd(P ) such that for ϕ ∈ Ls̄

′
(Rd+m) and

ψ ∈ Cd(P )

B(ϕ,ψ) = lim
n

∫
Rd+m

ϕ(x,v)un(x,v)(AψP vn)(x) dxdv .

Furthermore, B can be extended to a continuous bilinear functional on
Ls̄
′
(Rd+m; Cd(P )).
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What for q <∞?

An analogous construction led M. Mǐsur and D. Mitrović to a construction of
another variant, with an application to compactness by compensation.

Theorem. [M. Mǐsur & D. Mitrović (JFA, 2015)] (un) bounded in Lp(Rd),
p > 1, and (vn) bounded in Lq(Rd), where 1/r := 1/p+ 1/q < 1, and vn are
supported in a compact.
Then for any s̄ ∈ 〈1, r〉, on a subsequence, there is a continuous bilinear

functional B on Ls̄
′
(Rd)� Cd(P ) such that for ϕ ∈ Ls̄

′
(Rd) and ψ ∈ Cd(P )

B(ϕ,ψ) = lim
n

∫
Rd

ϕ(x)un(x)(AψP vn)(x) dx .

Furthermore, B can be extended to a continuous bilinear functional on
Ls̄
′
(Rd; Cd(P )).
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Strong consistency condition

Introduce the set

ΛD =
{
µ ∈ Ls̄(Rd; (Cd(Pd))′)r :

( n∑
k=1

(2πiξk)αkAk
)
µ = 0m

}
,

where the given equality is understood in the sense of Ls̄(Rd; (Cd(Pd))′)m.

Let us assume that coefficients of the bilinear form q(x,λ,η) = Q(x)λ · η,
belong to space Ltloc(R

d), where 1/t+ 1/p+ 1/q < 1.

We say that set ΛD, bilinear form q and matrix
µ = [µ1, . . . ,µr],µj ∈ Ls̄(Rd; (Cd(Pd))′)r satisfy the strong consistency
condition if (∀j ∈ {1, . . . , r}) µj ∈ ΛD, and it holds

〈φQ⊗ 1,µ〉 ≥ 0, φ ∈ Ls̄(Rd;R+
0 ).
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Compactness by compensation

Theorem. Assume that sequences (un) and (vn) are bounded in Lp(Rd;Rr)
and Lq(Rd;Rr), respectively, and converge toward u and v in the sense of
distributions.
Assume that

Gn :=
d∑
k=1

∂
αk
k (Akun) → 0 in W−1,p(Ω;Rm),

holds and that
q(x; un, vn) ⇀ ω in D′(Rd).

If the set ΛD, the bilinear form q, and matrix H-distribution µ, corresponding
to subsequences of (un − u) and (vn − v), satisfy the strong consistency
condition, then

q(x; u, v) ≤ ω in D′(Rd).
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Further variants and open questions

J. Aleksić, S. Pilipović, I. Vojnović (preprint)

F. Rindler (ARMA, 2015): microlocal compactness forms
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Thank you for your attention.
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