Friedrichs systems

Nenad Antonić

Department of Mathematics
Faculty of Science
University of Zagreb

Oxford, 15 ${ }^{\text {th }}$ September 2014

Joint work with Krešimir Burazin, Marko Vrdoljak and Marko Erceg

WeConMApp

Why should one be interested in Friedrichs systems?
Symmetric hyperbolic systems
Symmetric positive systems
Classical theory
Boundary conditions for Friedrichs systems
Existence, uniqueness, well-posedness
Abstract formulation
Graph spaces
Cone formalism of Ern, Guermond and Caplain
Interdependence of different representations of boundary conditions
Kreĭn space formalism
Kreĭn spaces
Equivalence of boundary conditions
What can we say for the Friedrichs operator now?
Sufficient assumptions
An example: elliptic equation
Other second order equations
Two-field theory
Non-stationary theory
Homogenisation of Friedrichs systems
Homogenisation
Examples: Stationary diffusion and heat equation
Concluding remarks

Friedrichs' system (KOF1958)

Assumptions:
$d, r \in \mathbf{N}, \Omega \subseteq \mathbf{R}^{d}$ open and bounded with Lipschitz boundary Γ;

Friedrichs' system (KOF1958)

Assumptions:
$d, r \in \mathbf{N}, \Omega \subseteq \mathbf{R}^{d}$ open and bounded with Lipschitz boundary Γ;
$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right), k \in 1 . . d$, and $\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right)$

Friedrichs' system (KOF1958)

Assumptions:
$d, r \in \mathbf{N}, \Omega \subseteq \mathbf{R}^{d}$ open and bounded with Lipschitz boundary Γ;
$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right), k \in 1 . . d$, and $\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfying
(F1) matrix functions \mathbf{A}_{k} are symmetric: $\mathbf{A}_{k}=\mathbf{A}_{k}^{\top}$;

Friedrichs' system (KOF1958)

Assumptions:
$d, r \in \mathbf{N}, \Omega \subseteq \mathbf{R}^{d}$ open and bounded with Lipschitz boundary Γ;
$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right), k \in 1 . . d$, and $\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfying
(F1) matrix functions \mathbf{A}_{k} are symmetric: $\mathbf{A}_{k}=\mathbf{A}_{k}^{\top} ;$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{\top}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} \quad(\text { ae on } \Omega) \tag{F2}
\end{equation*}
$$

Friedrichs' system (KOF1958)

Assumptions:
$d, r \in \mathbf{N}, \Omega \subseteq \mathbf{R}^{d}$ open and bounded with Lipschitz boundary Γ;
$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right), k \in 1 . . d$, and $\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfying
(F1) matrix functions \mathbf{A}_{k} are symmetric: $\mathbf{A}_{k}=\mathbf{A}_{k}^{\top} ;$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{\top}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} \quad(\text { ae on } \Omega) \tag{F2}
\end{equation*}
$$

The operator $\mathcal{L}: \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right) \longrightarrow \mathcal{D}^{\prime}\left(\Omega ; \mathbf{R}^{r}\right)$

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}
$$

is called the symmetric positive operator or the Friedrichs operator,

Friedrichs' system (KOF1958)

Assumptions:
$d, r \in \mathbf{N}, \Omega \subseteq \mathbf{R}^{d}$ open and bounded with Lipschitz boundary Γ;
$\mathbf{A}_{k} \in \mathrm{~W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right), k \in 1 . . d$, and $\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfying
(F1) matrix functions \mathbf{A}_{k} are symmetric: $\mathbf{A}_{k}=\mathbf{A}_{k}^{\top}$;

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{\top}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} \quad(\text { ae on } \Omega) \tag{F2}
\end{equation*}
$$

The operator $\mathcal{L}: \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right) \longrightarrow \mathcal{D}^{\prime}\left(\Omega ; \mathbf{R}^{r}\right)$

$$
\mathcal{L} \mathrm{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}
$$

is called the symmetric positive operator or the Friedrichs operator, and

$$
\mathcal{L} \mathrm{u}=\mathrm{f}
$$

the symmetric positive system or the Friedrichs system.

Symmetric hyperbolic systems (KOF1954)

Summing over repeated indices:

$$
\mathrm{A}^{k} \partial_{k} \mathrm{u}+\mathrm{Bu}=\mathrm{f}
$$

In divergence form:

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\left(\mathbf{B}-\partial_{k} \mathbf{A}^{k}\right) \mathbf{u}=\mathbf{f} .
$$

Symmetric hyperbolic systems (KOF1954)

Summing over repeated indices:

$$
\mathrm{A}^{k} \partial_{k} \mathrm{u}+\mathrm{Bu}=\mathrm{f}
$$

In divergence form:

$$
\partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\mathbf{C u}=\mathbf{f} .
$$

It is symmetric if all matrices \mathbf{A}^{k} are symmetric; and hyperbolic (Friedrichs) if one of the matrices is even positive definite.

The wave equation

In d-dimensional space:

$$
\left(\rho u^{\prime}\right)^{\prime}-\operatorname{div}(\mathbf{A} \nabla u)=g .
$$

Time $t=x^{0}$ and $\partial_{0}:=\frac{\partial}{\partial t}$:
(*)

$$
\partial_{0}\left(\rho \partial_{0} u\right)-\sum_{i, j=1}^{d} \partial_{i}\left(a^{i j} \partial_{j} u\right)=g .
$$

The wave equation

In d-dimensional space:

$$
\left(\rho u^{\prime}\right)^{\prime}-\operatorname{div}(\mathbf{A} \nabla u)=g .
$$

Time $t=x^{0}$ and $\partial_{0}:=\frac{\partial}{\partial t}$:
(*)

$$
\partial_{0}\left(\rho \partial_{0} u\right)-\sum_{i, j=1}^{d} \partial_{i}\left(a^{i j} \partial_{j} u\right)=g .
$$

New variables: $v_{j}:=\partial_{j} u, j \in 0 . . d$ give vector unknown $u=\left[u, v_{0}, \ldots, v_{d}\right]^{\top}$, and with: $a^{00}:=-\rho, a^{0 i}:=a^{i 0}:=0$ we have

$$
-\partial_{i}\left(a^{i j} v_{j}\right)=g .
$$

The wave equation

In d-dimensional space:

$$
\left(\rho u^{\prime}\right)^{\prime}-\operatorname{div}(\mathbf{A} \nabla u)=g
$$

Time $t=x^{0}$ and $\partial_{0}:=\frac{\partial}{\partial t}$:

$$
\begin{equation*}
\partial_{0}\left(\rho \partial_{0} u\right)-\sum_{i, j=1}^{d} \partial_{i}\left(a^{i j} \partial_{j} u\right)=g \tag{*}
\end{equation*}
$$

New variables: $v_{j}:=\partial_{j} u, j \in 0 . . d$ give vector unknown $\mathrm{u}=\left[u, v_{0}, \ldots, v_{d}\right]^{\top}$, and with: $a^{00}:=-\rho, a^{0 i}:=a^{i 0}:=0$ we have

$$
-\partial_{i}\left(a^{i j} v_{j}\right)=g
$$

This transformation gives us only one equation. For a system with $d+2$ unknowns to be formally deterministic, we need $d+1$ more equations. Clearly, defining equations for v^{i} would lead to a formally deterministic system, which is not symmetric.

The wave equation (cont.)

We also have $(d+1)(d+2) / 2$ symmetry relations $\partial_{i} v_{j}=\partial_{j} v_{i}$.

The wave equation (cont.)

We also have $(d+1)(d+2) / 2$ symmetry relations $\partial_{i} v_{j}=\partial_{j} v_{i}$. Take the derivatives of the products in $(*)$:

$$
\rho \partial_{0} v_{0}-a^{i j} \partial_{i} v_{j}+\partial_{0} \rho v_{0}-\left(\partial_{i} a^{i j}\right) v_{j}=g
$$

This will be the second equation of the system.

The wave equation (cont.)

We also have $(d+1)(d+2) / 2$ symmetry relations $\partial_{i} v_{j}=\partial_{j} v_{i}$.
Take the derivatives of the products in $(*)$:

$$
\rho \partial_{0} v_{0}-a^{i j} \partial_{i} v_{j}+\partial_{0} \rho v_{0}-\left(\partial_{i} a^{i j}\right) v_{j}=g
$$

This will be the second equation of the system.
For the first, take the definition of $v_{0}:=\partial_{0} u$.

The wave equation (cont.)

We also have $(d+1)(d+2) / 2$ symmetry relations $\partial_{i} v_{j}=\partial_{j} v_{i}$.
Take the derivatives of the products in $(*)$:

$$
\rho \partial_{0} v_{0}-a^{i j} \partial_{i} v_{j}+\partial_{0} \rho v_{0}-\left(\partial_{i} a^{i j}\right) v_{j}=g
$$

This will be the second equation of the system.
For the first, take the definition of $v_{0}:=\partial_{0} u$.
The remaining d equations will be the Schwarz symmetry relations, with one index being 0 , but multiplied by \mathbf{A}^{\top} :

$$
\begin{aligned}
\partial_{0} u-v_{0} & =0 \\
\rho \partial_{0} v_{0}-a^{i j} \partial_{i} v_{j}+b^{j} v_{j} & =g \\
a^{i j} \partial_{0} v_{i}-a^{i j} \partial_{i} v_{0} & =0
\end{aligned}
$$

where $b^{0}:=\partial_{0} \rho, b^{j}:=-\partial_{i} a^{i j}=\left[-\operatorname{div} \mathbf{A}^{\top}\right]^{j}$, for $j \in 1 . . d$.

The wave equation (cont.)

We also have $(d+1)(d+2) / 2$ symmetry relations $\partial_{i} v_{j}=\partial_{j} v_{i}$.
Take the derivatives of the products in $(*)$:

$$
\rho \partial_{0} v_{0}-a^{i j} \partial_{i} v_{j}+\partial_{0} \rho v_{0}-\left(\partial_{i} a^{i j}\right) v_{j}=g
$$

This will be the second equation of the system.
For the first, take the definition of $v_{0}:=\partial_{0} u$.
The remaining d equations will be the Schwarz symmetry relations, with one index being 0 , but multiplied by \mathbf{A}^{\top} :

$$
\begin{aligned}
\partial_{0} u-v_{0} & =0 \\
\rho \partial_{0} v_{0}-a^{i j} \partial_{i} v_{j}+b^{j} v_{j} & =g \\
a^{i j} \partial_{0} v_{i}-a^{i j} \partial_{i} v_{0} & =0
\end{aligned}
$$

where $b^{0}:=\partial_{0} \rho, b^{j}:=-\partial_{i} a^{i j}=\left[-\operatorname{div} \mathbf{A}^{\top}\right]^{j}$, for $j \in 1 . . d$.
Actually, we can take $v_{0}=\partial_{0} u$ as a definition of u, and solve first for the remaining unknowns.

The wave equation in the required form

$$
\begin{gathered}
{\left[\begin{array}{cccc}
\rho & 0 & \cdots & 0 \\
0 & & & \\
\vdots & \mathbf{A}^{\top} & \\
0 &
\end{array}\right] \partial_{0} \mathbf{u}+\sum_{i=1}^{d}\left[\begin{array}{cccc}
0 & -a^{i 1} & \cdots & -a^{i n} \\
-a^{i 1} & & & \\
\vdots & & \mathbf{0} &
\end{array}\right] \partial_{i} \mathbf{u}} \\
-a^{i n} \\
\\
+\left[\begin{array}{cccc}
b^{0} & b^{1} & \cdots & b^{n} \\
0 & & & \\
\vdots & \mathbf{0} & \\
0 & &
\end{array}\right] \mathbf{u}=\left[\begin{array}{c}
g \\
0 \\
\vdots \\
0
\end{array}\right]
\end{gathered}
$$

The wave equation in the required form

$$
\left[\begin{array}{cccc}
\rho & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & \mathbf{A}^{\top} & \\
0 & & \partial_{0} \mathbf{u}+ & \sum_{i=1}^{d}\left[\begin{array}{cccc}
0 & -a^{i 1} & \cdots & -a^{i n} \\
-a^{i 1} & & & \\
\vdots & & \mathbf{0} & \\
-a^{i n} & &
\end{array}\right] \partial_{i} \mathbf{u} \\
& +\left[\begin{array}{cccc}
b^{0} & b^{1} & \cdots & b^{n} \\
0 & & \\
\vdots & \mathbf{0} \\
0 & &
\end{array}\right] \mathbf{u}=\left[\begin{array}{c}
g \\
0 \\
\vdots \\
0
\end{array}\right]
\end{array}\right.
$$

\mathbf{A}^{i} are symmetric, \mathbf{A}^{0} is even positive definite ($\rho>0$ and \mathbf{A} is p.d.). In particular, the system to which we reduced the wave equation is hyperbolic in the sense of Petrovski.

The wave equation (cont.)

For initial data $u(0,)=.u_{0}$ and $u^{\prime}(0,)=.u_{1}$, take:

$$
\begin{aligned}
(u(0, .) & \left.=u_{0} \quad\right) \\
\partial_{0} u(0, .) & =u_{1} \\
\partial_{i} u(0, .) & =\partial_{i} u_{0} \quad, \text { for } i \in 1 . . d
\end{aligned}
$$

as the initial data for the system.
u_{0} is defined on \mathbf{R}^{d}, so we can compute its derivatives in the spatial directions.

The wave equation (cont.)

For initial data $u(0,)=.u_{0}$ and $u^{\prime}(0,)=.u_{1}$, take:

$$
\begin{aligned}
(u(0, .) & \left.=u_{0} \quad\right) \\
\partial_{0} u(0, .) & =u_{1} \\
\partial_{i} u(0, .) & =\partial_{i} u_{0} \quad, \text { for } i \in 1 . . d
\end{aligned}
$$

as the initial data for the system.
u_{0} is defined on \mathbf{R}^{d}, so we can compute its derivatives in the spatial directions.
To check:
the identities defining v_{i} (and therefore the symmetry relations).
For $i \in 1 . . d$:

$$
\partial_{0} v_{i}=\partial_{i} v_{0}=\partial_{i} \partial_{0} u=\partial_{0} \partial_{i} u
$$

(The first equality follows from the regularity of \mathbf{A}^{\top}, because
$\mathbf{A}^{\top}\left(\partial_{0} \vee-\nabla v_{0}\right)=0$ implies $\left.\partial_{0} v_{i}=\partial_{i} v_{0}.\right)$
Now, we have that $\partial_{0}\left(v_{i}-\partial_{i} u\right)=0$, and $v_{i}-\partial_{i} u=0$ at $t=0$, and we conclude that the last identity holds for any $t>0$.

Maxwell's systems

In a material with electric permeability ϵ, conductivity σ and magnetic susceptibility $\boldsymbol{\mu}$

$$
\begin{aligned}
& \mathrm{D}^{\prime}=\operatorname{rot} \mathrm{H}-\mathrm{J}+\mathrm{F} \\
& \mathrm{~B}^{\prime}=-\operatorname{rot} \mathrm{E}+\mathrm{G}
\end{aligned}
$$

Maxwell's systems

In a material with electric permeability ϵ, conductivity σ and magnetic susceptibility $\boldsymbol{\mu}$

$$
\begin{aligned}
& \mathrm{D}^{\prime}=\operatorname{rot} \mathrm{H}-\mathrm{J}+\mathrm{F} \\
& \mathrm{~B}^{\prime}=-\operatorname{rot} \mathrm{E}+\mathrm{G}
\end{aligned}
$$

together with $\operatorname{div} D=\rho$ and $\operatorname{div} B=0$, and with the constitutive laws:

$$
\begin{aligned}
\mathrm{D}(., t) & =\epsilon \mathrm{E}(., t) \\
\mathrm{J}(., t) & =\sigma \mathrm{E}(., t) \\
\mathrm{B}(., t) & =\boldsymbol{\mu} \mathrm{H}(., t) .
\end{aligned}
$$

Maxwell's systems (cont.)

E and H as variables, $u:=\left[\begin{array}{l}E \\ H\end{array}\right]$, the system can be written in the form of a symmetric system:

$$
\sum_{i=0}^{3} \mathbf{A}^{i} \partial_{i} \mathbf{u}+\mathbf{B u}=\mathbf{f}
$$

Maxwell's systems (cont.)

E and H as variables, $u:=\left[\begin{array}{l}E \\ H\end{array}\right]$, the system can be written in the form of a symmetric system:

$$
\sum_{i=0}^{3} \mathbf{A}^{i} \partial_{i} \mathbf{u}+\mathbf{B u}=\mathbf{f}
$$

where:

$$
\mathbf{A}^{0}=\left[\begin{array}{ll}
\boldsymbol{\epsilon} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\mu}
\end{array}\right], \mathbf{A}^{1}:=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{Q}_{1}^{\top} \\
\mathbf{Q}_{1} & \mathbf{0}
\end{array}\right], \mathbf{A}^{2}:=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{Q}_{2}^{\top} \\
\mathbf{Q}_{2} & \mathbf{0}
\end{array}\right], \mathbf{A}^{3}:=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{Q}_{3}^{\top} \\
\mathbf{Q}_{3} & \mathbf{0}
\end{array}\right] .
$$

Maxwell's systems (cont.)

E and H as variables, $u:=\left[\begin{array}{l}E \\ H\end{array}\right]$, the system can be written in the form of a symmetric system:

$$
\sum_{i=0}^{3} \mathbf{A}^{i} \partial_{i} \mathbf{u}+\mathbf{B u}=\mathbf{f}
$$

where:

$$
\mathbf{A}^{0}=\left[\begin{array}{cc}
\boldsymbol{\epsilon} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\mu}
\end{array}\right], \mathbf{A}^{1}:=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{Q}_{1}^{\top} \\
\mathbf{Q}_{1} & \mathbf{0}
\end{array}\right], \mathbf{A}^{2}:=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{Q}_{2}^{\top} \\
\mathbf{Q}_{2} & \mathbf{0}
\end{array}\right], \mathbf{A}^{3}:=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{Q}_{3}^{\top} \\
\mathbf{Q}_{3} & \mathbf{0}
\end{array}\right]
$$

The constant antisymmetric matrices \mathbf{Q}_{k} are given by:

$$
\mathbf{Q}_{1}:=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \mathbf{Q}_{2}:=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], \mathbf{Q}_{3}:=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Maxwell's systems (cont.)

$$
\mathbf{B}=\left[\begin{array}{ll}
\boldsymbol{\sigma} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right], \quad \text { while the right hand side is } \mathrm{f}=\left[\begin{array}{l}
\mathrm{F} \\
\mathrm{G}
\end{array}\right] .
$$

Maxwell's systems (cont.)

$\mathbf{B}=\left[\begin{array}{ll}\boldsymbol{\sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right], \quad$ while the right hand side is $\mathrm{f}=\left[\begin{array}{l}\mathrm{F} \\ \mathrm{G}\end{array}\right]$.
In the above we have used the fact that the rotator (curl) of a vector field E can be written as:

$$
\begin{aligned}
\operatorname{rot} \mathrm{E}=\left[\begin{array}{c}
\partial_{2} E^{3}-\partial_{3} E^{2} \\
\partial_{3} E^{1}-\partial_{1} E^{3} \\
\partial_{1} E^{2}-\partial_{2} E^{1}
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \partial_{1} \mathrm{E} \\
& +\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \partial_{2} \mathrm{E}+\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \partial_{3} \mathrm{E} .
\end{aligned}
$$

Maxwell's systems (cont.)

$\mathbf{B}=\left[\begin{array}{ll}\boldsymbol{\sigma} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right], \quad$ while the right hand side is $\mathrm{f}=\left[\begin{array}{l}\mathrm{F} \\ \mathrm{G}\end{array}\right]$.
In the above we have used the fact that the rotator (curl) of a vector field E can be written as:

$$
\begin{aligned}
\operatorname{rot} \mathrm{E}=\left[\begin{array}{c}
\partial_{2} E^{3}-\partial_{3} E^{2} \\
\partial_{3} E^{1}-\partial_{1} E^{3} \\
\partial_{1} E^{2}-\partial_{2} E^{1}
\end{array}\right] & =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \partial_{1} \mathrm{E} \\
& +\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \partial_{2} \mathrm{E}+\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \partial_{3} \mathrm{E} .
\end{aligned}
$$

If we assume the uniform boundedness and symmetry of the permeability and susceptibility tensors, the above system is even symmetric hyperbolic.

Friedrichs systems

Introduced in:
K. O. Friedrichs: Symmetric positive linear differential equations, Communications on Pure and Applied Mathematics 11 (1958), 333-418

Friedrichs systems

Introduced in:
K. O. Friedrichs: Symmetric positive linear differential equations, Communications on Pure and Applied Mathematics 11 (1958), 333-418

Goal:

- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Friedrichs systems

Introduced in:
K. O. Friedrichs: Symmetric positive linear differential equations, Communications on Pure and Applied Mathematics 11 (1958), 333-418

Goal:

- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

- unified treatment of equations and systems of different type.

Friedrichs systems

Introduced in:
K. O. Friedrichs: Symmetric positive linear differential equations, Communications on Pure and Applied Mathematics 11 (1958), 333-418

Goal:

- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

- unified treatment of equations and systems of different type.
- still it does not cover all of Gårding's theory of general elliptic equations, or

Lerray's of general hyperbolic equations.

Example - heat equation, first form

Heat equation with lower order terms ($\Omega \subseteq \mathbf{R}^{d}, T>0$ and $\Omega_{T}:=\langle 0, T\rangle \times \Omega$):

$$
\partial_{t} u-\operatorname{div}(\mathbf{A} \nabla u)+\mathbf{b} \cdot \nabla u+c u=f \quad \text { in } \Omega_{T}
$$

where $f \in \mathrm{~L}^{2}\left(\Omega_{T}\right), c \in \mathrm{~L}^{\infty}\left(\Omega_{T}\right), \mathbf{b} \in \mathrm{L}^{\infty}\left(\Omega_{T} ; \mathbf{R}^{d}\right)$ and $\mathbf{A} \in \mathrm{L}^{\infty}\left(\Omega_{T} ; \mathrm{M}_{d}(\mathbf{R})\right)$ is symmetric with eigenvalues between $\alpha>0$ and $\beta \geqslant \alpha$ a.e. on Ω_{T}.

Example - heat equation, first form

Heat equation with lower order terms ($\Omega \subseteq \mathbf{R}^{d}, T>0$ and $\Omega_{T}:=\langle 0, T\rangle \times \Omega$):

$$
\partial_{t} u-\operatorname{div}(\mathbf{A} \nabla u)+\mathbf{b} \cdot \nabla u+c u=f \quad \text { in } \Omega_{T},
$$

where $f \in \mathrm{~L}^{2}\left(\Omega_{T}\right), c \in \mathrm{~L}^{\infty}\left(\Omega_{T}\right), \mathbf{b} \in \mathrm{L}^{\infty}\left(\Omega_{T} ; \mathbf{R}^{d}\right)$ and $\mathbf{A} \in \mathrm{L}^{\infty}\left(\Omega_{T} ; \mathrm{M}_{d}(\mathbf{R})\right)$ is symmetric with eigenvalues between $\alpha>0$ and $\beta \geqslant \alpha$ a.e. on Ω_{T}.
Similarly as for the wave equation: $\mathbf{A}=\left[a^{1} \cdots a^{d}\right]$ and $w=\nabla u$

$$
\left[\begin{array}{cc}
1 & 0^{\top} \\
0 & \mathbf{0}
\end{array}\right] \partial_{t}\left[\begin{array}{c}
u \\
\mathbf{w}
\end{array}\right]-\sum_{i=1}^{d}\left[\begin{array}{cc}
\operatorname{div}^{i} a^{i} & \left(\mathrm{a}^{i}\right)^{\top} \\
\mathrm{a}^{i} & \mathbf{0}
\end{array}\right] \partial_{x^{i}}\left[\begin{array}{l}
u \\
\mathrm{w}
\end{array}\right]+\left[\begin{array}{cc}
c & \mathrm{~b}^{\top} \\
0 & \mathbf{A}
\end{array}\right]\left[\begin{array}{l}
u \\
\mathrm{w}
\end{array}\right]=\left[\begin{array}{l}
f \\
0
\end{array}\right] .
$$

Example - heat equation, first form

Heat equation with lower order terms ($\Omega \subseteq \mathbf{R}^{d}, T>0$ and $\Omega_{T}:=\langle 0, T\rangle \times \Omega$):

$$
\partial_{t} u-\operatorname{div}(\mathbf{A} \nabla u)+\mathbf{b} \cdot \nabla u+c u=f \quad \text { in } \Omega_{T},
$$

where $f \in \mathrm{~L}^{2}\left(\Omega_{T}\right), c \in \mathrm{~L}^{\infty}\left(\Omega_{T}\right), \mathbf{b} \in \mathrm{L}^{\infty}\left(\Omega_{T} ; \mathbf{R}^{d}\right)$ and $\mathbf{A} \in \mathrm{L}^{\infty}\left(\Omega_{T} ; \mathrm{M}_{d}(\mathbf{R})\right)$ is symmetric with eigenvalues between $\alpha>0$ and $\beta \geqslant \alpha$ a.e. on Ω_{T}.
Similarly as for the wave equation: $\mathbf{A}=\left[a^{1} \cdots a^{d}\right]$ and $w=\nabla u$

$$
\left[\begin{array}{cc}
1 & 0^{\top} \\
0 & \mathbf{0}
\end{array}\right] \partial_{t}\left[\begin{array}{c}
u \\
\mathrm{w}
\end{array}\right]-\sum_{i=1}^{d}\left[\begin{array}{cc}
\operatorname{div}^{i} & \left(\mathrm{a}^{i}\right)^{\top} \\
\mathrm{a}^{i} & \mathbf{0}
\end{array}\right] \partial_{x^{i}}\left[\begin{array}{c}
u \\
\mathrm{w}
\end{array}\right]+\left[\begin{array}{cc}
c & \mathrm{~b}^{\top} \\
0 & \mathbf{A}
\end{array}\right]\left[\begin{array}{l}
u \\
\mathrm{w}
\end{array}\right]=\left[\begin{array}{l}
f \\
0
\end{array}\right] .
$$

It is clearly symmetric; positivity should be checked.

Example - heat equation, second form

New unknown vector function taking values in \mathbf{R}^{d+1} :

$$
\mathrm{u}=\left[\begin{array}{l}
u \\
\mathrm{v}
\end{array}\right]=\left[\begin{array}{c}
u \\
-\mathbf{A} \nabla u
\end{array}\right]
$$

Example - heat equation, second form

New unknown vector function taking values in \mathbf{R}^{d+1} :

$$
\mathbf{u}=\left[\begin{array}{l}
u \\
\mathbf{v}
\end{array}\right]=\left[\begin{array}{c}
u \\
-\mathbf{A} \nabla u
\end{array}\right]
$$

Then the heat equation can be written as a first-order system

$$
\left\{\begin{array}{l}
\partial_{t} u+\operatorname{div} \mathbf{v}+c u-\mathbf{A}^{-1} \mathbf{b} \cdot \mathbf{v}=f \\
\nabla u+\mathbf{A}^{-1} \mathbf{v}=0
\end{array}\right.
$$

Example - heat equation, second form

New unknown vector function taking values in \mathbf{R}^{d+1} :

$$
\mathbf{u}=\left[\begin{array}{l}
u \\
\mathbf{v}
\end{array}\right]=\left[\begin{array}{c}
u \\
-\mathbf{A} \nabla u
\end{array}\right]
$$

Then the heat equation can be written as a first-order system

$$
\left\{\begin{array}{l}
\partial_{t} u+\operatorname{div} \mathbf{v}+c u-\mathbf{A}^{-1} \mathbf{b} \cdot \mathbf{v}=f \\
\nabla u+\mathbf{A}^{-1} \mathbf{v}=0
\end{array}\right.
$$

which is a Friedrichs system

$$
\left[\begin{array}{cc}
1 & 0^{\top} \\
0 & \mathbf{0}
\end{array}\right] \partial_{t}\left[\begin{array}{c}
u \\
\mathrm{v}
\end{array}\right]+\sum_{i=1}^{d}\left[\begin{array}{ccccc}
1 & \cdots & 1 & \cdots & 0 \\
\vdots & \ddots & 0 & \cdots & 0 \\
1 & \cdots & 0 & \cdots & 0 \\
\vdots & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right] \partial_{x^{i}}\left[\begin{array}{c}
u \\
\mathrm{v}
\end{array}\right]+\left[\begin{array}{cc}
c & -\mathbf{A}^{-1} \mathrm{~b} \\
0 & \mathbf{A}^{-1}
\end{array}\right]\left[\begin{array}{l}
u \\
\mathrm{v}
\end{array}\right]=\left[\begin{array}{l}
f \\
0
\end{array}\right]
$$

Example - heat equation, second form

New unknown vector function taking values in \mathbf{R}^{d+1} :

$$
\mathbf{u}=\left[\begin{array}{l}
u \\
\mathbf{v}
\end{array}\right]=\left[\begin{array}{c}
u \\
-\mathbf{A} \nabla u
\end{array}\right]
$$

Then the heat equation can be written as a first-order system

$$
\left\{\begin{array}{l}
\partial_{t} u+\operatorname{div} \mathbf{v}+c u-\mathbf{A}^{-1} \mathbf{b} \cdot \mathbf{v}=f \\
\nabla u+\mathbf{A}^{-1} \mathbf{v}=0
\end{array}\right.
$$

which is a Friedrichs system

$$
\left[\begin{array}{cc}
1 & 0^{\top} \\
0 & \mathbf{0}
\end{array}\right] \partial_{t}\left[\begin{array}{l}
u \\
\mathrm{v}
\end{array}\right]+\sum_{i=1}^{d}\left[\begin{array}{ccccc}
1 & \cdots & 1 & \cdots & 0 \\
\vdots & \ddots & 0 & \cdots & 0 \\
1 & \cdots & 0 & \cdots & 0 \\
\vdots & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right] \partial_{x^{i}}\left[\begin{array}{l}
u \\
\mathrm{v}
\end{array}\right]+\left[\begin{array}{cc}
c & -\mathbf{A}^{-1} \mathbf{b} \\
0 & \mathbf{A}^{-1}
\end{array}\right]\left[\begin{array}{l}
u \\
\mathrm{v}
\end{array}\right]=\left[\begin{array}{l}
f \\
0
\end{array}\right] .
$$

The condition (F1) holds. The positivity condition $\mathbf{C}+\mathbf{C}^{\top} \geqslant 2 \mu_{0} \mathbf{I}$ is fulfilled if and only if $c-\frac{1}{4} \mathbf{A}^{-1} \mathbf{b} \cdot \mathbf{b}$ is uniformly positive.

Tricomi's equation

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0 .
$$

Tricomi's equation

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0
$$

The Tricomi equation is of mixed type. The standard procedure for classification gives us $a c-b^{2}=y$, so the equation is elliptic for $y>0$, parabolic on the line $y=0$ and hyperbolic in the lower half plane $y<0$.

Tricomi's equation

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0
$$

The Tricomi equation is of mixed type. The standard procedure for classification gives us $a c-b^{2}=y$, so the equation is elliptic for $y>0$, parabolic on the line $y=0$ and hyperbolic in the lower half plane $y<0$. Two unknown functions:

$$
\begin{aligned}
v & :=\partial_{x} u \\
w & :=\partial_{y} u
\end{aligned}
$$

lead to the form:

$$
y \partial_{x} v-\partial_{y} w=0
$$

which gives a formally deterministic system, but not symmetric.

Tricomi's equation

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0
$$

The Tricomi equation is of mixed type. The standard procedure for classification gives us $a c-b^{2}=y$, so the equation is elliptic for $y>0$, parabolic on the line $y=0$ and hyperbolic in the lower half plane $y<0$.
Two unknown functions:

$$
\begin{aligned}
v & :=\partial_{x} u \\
w & :=\partial_{y} u
\end{aligned}
$$

lead to the form:

$$
y \partial_{x} v-\partial_{y} w=0
$$

which gives a formally deterministic system, but not symmetric.
The Schwarz symmetries give us more equations, and the following choice leads to a symmetric system:

$$
\begin{aligned}
\partial_{x} u-v & =0 \\
-y \partial_{x} v-\partial_{y} w & =0 \\
\partial_{x} w-\partial_{y} v & =0 .
\end{aligned}
$$

Tricomi's equation

Again, eliminate u and solve the system of two remaining equations, with unknowns v and $w: u_{1}:=v, u_{2}:=w$.

Tricomi's equation

Again, eliminate u and solve the system of two remaining equations, with unknowns v and $w: u_{1}:=v, u_{2}:=w$.

Any solution of this equation satisfies the symmetric system:

$$
\mathbf{A}^{1} \partial_{x} \mathbf{u}+\mathbf{A}^{2} \partial_{y} \mathbf{u}=0,
$$

where the matrices are given by:

$$
\mathbf{A}^{1}:=\left[\begin{array}{cc}
-y & 0 \\
0 & 1
\end{array}\right] \text { and } \mathbf{A}^{2}:=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] .
$$

Tricomi's equation

Again, eliminate u and solve the system of two remaining equations, with unknowns v and $w: u_{1}:=v, u_{2}:=w$.

Any solution of this equation satisfies the symmetric system:

$$
\mathbf{A}^{1} \partial_{x} \mathbf{u}+\mathbf{A}^{2} \partial_{y} \mathbf{u}=0,
$$

where the matrices are given by:

$$
\mathbf{A}^{1}:=\left[\begin{array}{cc}
-y & 0 \\
0 & 1
\end{array}\right] \text { and } \mathbf{A}^{2}:=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] .
$$

Clearly, \mathbf{A}^{1} and \mathbf{A}^{2} are symmetric, and for $y<0$ the matrix \mathbf{A}^{1} is positive definite - its (simple) eigenvalues are 1 and $-y$.

Tricomi's equation

Again, eliminate u and solve the system of two remaining equations, with unknowns v and $w: u_{1}:=v, u_{2}:=w$.

Any solution of this equation satisfies the symmetric system:

$$
\mathbf{A}^{1} \partial_{x} \mathbf{u}+\mathbf{A}^{2} \partial_{y} \mathbf{u}=0,
$$

where the matrices are given by:

$$
\mathbf{A}^{1}:=\left[\begin{array}{cc}
-y & 0 \\
0 & 1
\end{array}\right] \text { and } \mathbf{A}^{2}:=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] .
$$

Clearly, \mathbf{A}^{1} and \mathbf{A}^{2} are symmetric, and for $y<0$ the matrix \mathbf{A}^{1} is positive definite - its (simple) eigenvalues are 1 and $-y$.

Thus, a symmetric hyperbolic system corresponds to the Tricomi's equation in the lower half plane.

Tricomi's equation

Again, eliminate u and solve the system of two remaining equations, with unknowns v and $w: u_{1}:=v, u_{2}:=w$.

Any solution of this equation satisfies the symmetric system:

$$
\mathbf{A}^{1} \partial_{x} \mathbf{u}+\mathbf{A}^{2} \partial_{y} \mathbf{u}=0
$$

where the matrices are given by:

$$
\mathbf{A}^{1}:=\left[\begin{array}{cc}
-y & 0 \\
0 & 1
\end{array}\right] \text { and } \mathbf{A}^{2}:=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

Clearly, \mathbf{A}^{1} and \mathbf{A}^{2} are symmetric, and for $y<0$ the matrix \mathbf{A}^{1} is positive definite - its (simple) eigenvalues are 1 and $-y$.

Thus, a symmetric hyperbolic system corresponds to the Tricomi's equation in the lower half plane.
It is not positive ([KOF1958] - a transformation providing the right form).

Why should one be interested in Friedrichs systems?
Symmetric hyperbolic systems
Symmetric positive systems
Classical theory
Boundary conditions for Friedrichs systems
Existence, uniqueness, well-posedness
Abstract formulation
Graph spaces
Cone formalism of Ern, Guermond and Caplain
Interdependence of different representations of boundary conditions
Kreĭn space formalism
Kreĭn spaces
Equivalence of boundary conditions
What can we say for the Friedrichs operator now?
Sufficient assumptions
An example: elliptic equation
Other second order equations
Two-field theory
Non-stationary theory
Homogenisation of Friedrichs systems
Homogenisation
Examples: Stationary diffusion and heat equation
Concluding remarks

Boundary conditions

Boundary conditions are enforced via matrix valued boundary field:

Boundary conditions

Boundary conditions are enforced via matrix valued boundary field:

$$
\mathbf{A}_{\nu}:=\sum_{k=1}^{d} \nu_{k} \mathbf{A}_{k} \in \mathrm{~L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right),
$$

where $\boldsymbol{\nu}=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{d}\right)$ is the outward unit normal on Γ,

Boundary conditions

Boundary conditions are enforced via matrix valued boundary field:

$$
\mathbf{A}_{\nu}:=\sum_{k=1}^{d} \nu_{k} \mathbf{A}_{k} \in \mathrm{~L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right),
$$

where $\boldsymbol{\nu}=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{d}\right)$ is the outward unit normal on Γ, and

$$
\mathbf{M} \in \mathrm{L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right) .
$$

Boundary conditions

Boundary conditions are enforced via matrix valued boundary field:

$$
\mathbf{A}_{\nu}:=\sum_{k=1}^{d} \nu_{k} \mathbf{A}_{k} \in \mathrm{~L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right),
$$

where $\boldsymbol{\nu}=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{d}\right)$ is the outward unit normal on Γ, and

$$
\mathbf{M} \in \mathrm{L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right) .
$$

Boundary condition

$$
\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0
$$

Boundary conditions

Boundary conditions are enforced via matrix valued boundary field:

$$
\mathbf{A}_{\nu}:=\sum_{k=1}^{d} \nu_{k} \mathbf{A}_{k} \in \mathrm{~L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right),
$$

where $\boldsymbol{\nu}=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{d}\right)$ is the outward unit normal on Γ, and

$$
\mathbf{M} \in \mathrm{L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right) .
$$

Boundary condition

$$
\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0
$$

allows the treatment of different types of usual boundary conditions.

Assumptions on the boundary matrix \mathbf{M}

We assume (for ae $\mathbf{x} \in \Gamma$)
[KOF1958]
(FM1) $\quad\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0$,

Assumptions on the boundary matrix \mathbf{M}

We assume (for ae $\mathbf{x} \in \Gamma$)
[KOF1958]
(FM1) $\quad\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0$,
(FM2) $\quad \mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right)$.

Assumptions on the boundary matrix \mathbf{M}

We assume (for ae $\mathbf{x} \in \Gamma$)
[KOF1958]
(FM1)
$\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0$,
(FM2)

$$
\mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right)
$$

Such \mathbf{M} is called the admissible boundary condition.

Assumptions on the boundary matrix \mathbf{M}

We assume (for ae $\mathbf{x} \in \Gamma$)
[KOF1958]
(FM1)

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0
$$

$$
\begin{equation*}
\mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right) \tag{FM2}
\end{equation*}
$$

Such M is called the admissible boundary condition.
The boundary problem: for given $\mathrm{f} \in \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right)$ find u such that

$$
\left\{\begin{array}{l}
\mathcal{L} \mathrm{u}=\mathrm{f} \\
\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0
\end{array}\right.
$$

Different ways to enforce boundary conditions

Instead of

$$
\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathbf{u}=0 \quad \text { on } \Gamma,
$$

Lax proposed boundary conditions with

$$
\mathrm{u}(\mathrm{x}) \in N(\mathrm{x}), \quad \mathrm{x} \in \Gamma,
$$

where $N=\{N(\mathbf{x}): \mathbf{x} \in \Gamma\}$ is a family of subspaces of \mathbf{R}^{r}.

Different ways to enforce boundary conditions

Instead of

$$
\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathbf{u}=0 \quad \text { on } \Gamma,
$$

Lax proposed boundary conditions with

$$
\mathbf{u}(\mathbf{x}) \in N(\mathbf{x}), \quad \mathbf{x} \in \Gamma,
$$

where $N=\{N(\mathbf{x}): \mathbf{x} \in \Gamma\}$ is a family of subspaces of \mathbf{R}^{r}.
Boundary problem:

$$
\left\{\begin{array}{l}
\mathcal{L} \mathbf{u}=\mathrm{f} \\
\mathrm{u}(\mathrm{x}) \in N(\mathrm{x}), \quad \mathrm{x} \in \Gamma
\end{array}\right.
$$

Assumptions on N

maximal boundary conditions: (for ae $\mathbf{x} \in \Gamma$)
(FX1)
$N(\mathbf{x})$ is non-negative with respect to $\mathbf{A}_{\nu}(\mathbf{x})$:

$$
(\forall \boldsymbol{\xi} \in N(\mathbf{x})) \quad \mathbf{A}_{\nu}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0
$$

(FX2) there is no non-negative subspace with respect to $\mathbf{A}_{\nu}(\mathbf{x})$, which contains $N(\mathbf{x}) ;$

Assumptions on N

maximal boundary conditions: (for ae $\mathbf{x} \in \Gamma$)
[PDL]
$N(\mathbf{x})$ is non-negative with respect to $\mathbf{A}_{\nu}(\mathbf{x})$:

$$
\begin{equation*}
(\forall \boldsymbol{\xi} \in N(\mathbf{x})) \quad \mathbf{A}_{\nu}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0 \tag{FX1}
\end{equation*}
$$

there is no non-negative subspace with respect to

$$
\begin{equation*}
\mathbf{A}_{\nu}(\mathbf{x}), \text { which contains } N(\mathbf{x}) \tag{FX2}
\end{equation*}
$$

or
[RSP\&LS1966]
Let $N(\mathbf{x})$ and $\tilde{N}(\mathbf{x}):=\left(\mathbf{A}_{\nu}(\mathbf{x}) N(\mathbf{x})\right)^{\perp}$ satisfy (for ae $\left.\mathbf{x} \in \Gamma\right)$
(FV1)

$$
\begin{array}{ll}
(\forall \boldsymbol{\xi} \in N(\mathbf{x})) & \mathbf{A}_{\nu}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0 \\
(\forall \boldsymbol{\xi} \in \tilde{N}(\mathbf{x})) & \mathbf{A}_{\nu}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \leqslant 0
\end{array}
$$

(FV2)

$$
\tilde{N}(\mathbf{x})=\left(\mathbf{A}_{\nu}(\mathbf{x}) N(\mathbf{x})\right)^{\perp} \quad \text { and } \quad N(\mathbf{x})=\left(\mathbf{A}_{\nu}(\mathbf{x}) \tilde{N}(\mathbf{x})\right)^{\perp}
$$

Equivalence of different descriptions of boundary conditions

Theorem. It holds
$(F M 1)-(F M 2) \quad \Longleftrightarrow \quad(F X 1)-(F X 2) \quad \Longleftrightarrow \quad(F V 1)-(F V 2)$,
with

$$
N(\mathbf{x}):=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)
$$

Equivalence of different descriptions of boundary conditions

Theorem. It holds

$$
(F M 1)-(F M 2) \quad \Longleftrightarrow \quad(F X 1)-(F X 2) \quad \Longleftrightarrow \quad(F V 1)-(F V 2)
$$

with

$$
N(\mathbf{x}):=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)
$$

In fact, for a weak existence result some additional assumptions are needed [JR1994], [MJ2004].

Classical results on well-posedness

Friedrichs:

- uniqueness of the classical solution
- existence of a weak solution (under some additional assumptions)

Classical results on well-posedness

Friedrichs:

- uniqueness of the classical solution
- existence of a weak solution (under some additional assumptions)

Contributions:
C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...

Classical results on well-posedness

Friedrichs:

- uniqueness of the classical solution
- existence of a weak solution (under some additional assumptions)

Contributions:
C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...

- the meaning of traces for functions in the graph space
- weak well-posedness results under additional assumptions (on \mathbf{A}_{ν})
- regularity of solution
- numerical treatment

Why should one be interested in Friedrichs systems?
Symmetric hyperbolic systems
Symmetric positive systems
Classical theory
Boundary conditions for Friedrichs systems
Existence, uniqueness, well-posedness
Abstract formulation
Graph spaces
Cone formalism of Ern, Guermond and Caplain
Interdependence of different representations of boundary conditions
Kreĭn space formalism
Kreĭn spaces
Equivalence of boundary conditions
What can we say for the Friedrichs operator now?
Sufficient assumptions
An example: elliptic equation
Other second order equations
Two-field theory
Non-stationary theory
Homogenisation of Friedrichs systems
Homogenisation
Examples: Stationary diffusion and heat equation
Concluding remarks

New approach...

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.

New approach...
A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.

- abstract setting (operators on Hilbert spaces)

New approach...

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.

- abstract setting (operators on Hilbert spaces)
- intrinsic criterion for the bijectivity of Friedrichs' operator

New approach...

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.

- abstract setting (operators on Hilbert spaces)
- intrinsic criterion for the bijectivity of Friedrichs' operator
-avoiding the question of traces for functions in the graph space

New approach...

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.

- abstract setting (operators on Hilbert spaces)
- intrinsic criterion for the bijectivity of Friedrichs' operator
-avoiding the question of traces for functions in the graph space
-investigation of different formulations of boundary conditions

New approach...

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.

- abstract setting (operators on Hilbert spaces)
- intrinsic criterion for the bijectivity of Friedrichs' operator
-avoiding the question of traces for functions in the graph space
-investigation of different formulations of boundary conditions
... and new open questions.

Assumptions

L - real Hilbert space ($L^{\prime} \equiv L$),
$\mathcal{D} \subseteq L$ - dense subspace,

Assumptions

L - real Hilbert space ($L^{\prime} \equiv L$),
$\mathcal{D} \subseteq L$ - dense subspace,
$T, \tilde{T}: \mathcal{D} \longrightarrow L$ - linear unbounded operators satisfying

Assumptions

L - real Hilbert space ($L^{\prime} \equiv L$),
$\mathcal{D} \subseteq L$ - dense subspace,
$T, \tilde{T}: \mathcal{D} \longrightarrow L$ — linear unbounded operators satisfying
(T1)

$$
(\forall \varphi, \psi \in \mathcal{D}) \quad\langle T \varphi \mid \psi\rangle_{L}=\langle\varphi \mid \tilde{T} \psi\rangle_{L} ;
$$

Assumptions

L - real Hilbert space ($L^{\prime} \equiv L$),
$\mathcal{D} \subseteq L$ - dense subspace,
$T, \tilde{T}: \mathcal{D} \longrightarrow L$ - linear unbounded operators satisfying

$$
\begin{equation*}
(\forall \varphi, \psi \in \mathcal{D}) \quad\langle T \varphi \mid \psi\rangle_{L}=\langle\varphi \mid \tilde{T} \psi\rangle_{L} ; \tag{T1}
\end{equation*}
$$

$$
\begin{equation*}
(\exists c>0)(\forall \varphi \in \mathcal{D}) \quad\|(T+\tilde{T}) \varphi\|_{L} \leqslant c\|\varphi\|_{L} ; \tag{T2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right)(\forall \varphi \in \mathcal{D}) \quad\langle(T+\tilde{T}) \varphi \mid \varphi\rangle_{L} \geqslant 2 \mu_{0}\|\varphi\|_{L}^{2} . \tag{T3}
\end{equation*}
$$

Let $\mathcal{D}:=\mathrm{C}_{c}^{\infty}\left(\Omega ; \mathbf{R}^{r}\right), L=\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right)$ and $T, \tilde{T}: \mathcal{D} \longrightarrow L$ be defined by

$$
\begin{aligned}
T \mathbf{u} & :=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \\
\tilde{T} \mathbf{u} & :=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{\top} \mathbf{u}\right)+\left(\mathbf{C}^{\top}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}^{\top}\right) \mathbf{u},
\end{aligned}
$$

where \mathbf{A}_{k} and \mathbf{C} are as above (they satisfy (F1)-(F2)).

The Friedrichs operator

Let $\mathcal{D}:=\mathrm{C}_{c}^{\infty}\left(\Omega ; \mathbf{R}^{r}\right), L=\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right)$ and $T, \tilde{T}: \mathcal{D} \longrightarrow L$ be defined by

$$
\begin{aligned}
T \mathbf{u} & :=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \\
\tilde{T} \mathbf{u} & :=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{\top} \mathbf{u}\right)+\left(\mathbf{C}^{\top}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}^{\top}\right) \mathbf{u},
\end{aligned}
$$

where \mathbf{A}_{k} and \mathbf{C} are as above (they satisfy (F1)-(F2)).
Then T and \tilde{T} satisfy (T1)-(T3)

The Friedrichs operator

Let $\mathcal{D}:=\mathrm{C}_{c}^{\infty}\left(\Omega ; \mathbf{R}^{r}\right), L=\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right)$ and $T, \tilde{T}: \mathcal{D} \longrightarrow L$ be defined by

$$
\begin{aligned}
T \mathbf{u} & :=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \\
\tilde{T} \mathbf{u} & :=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{\top} \mathbf{u}\right)+\left(\mathbf{C}^{\top}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}^{\top}\right) \mathbf{u},
\end{aligned}
$$

where \mathbf{A}_{k} and \mathbf{C} are as above (they satisfy (F1)-(F2)).
Then T and \tilde{T} satisfy (T1)-(T3)
... fits in this framework.

Prolongations

$\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T}\right)$ is an inner product space, where

$$
\langle\cdot \mid \cdot\rangle_{T}:=\langle\cdot \mid \cdot\rangle_{L}+\langle T \cdot \mid T \cdot\rangle_{L} .
$$

$\|\cdot\|_{T}$ is called graph norm.

Prolongations

$\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T}\right)$ is an inner product space, where

$$
\langle\cdot \mid \cdot\rangle_{T}:=\langle\cdot \mid \cdot\rangle_{L}+\langle T \cdot \mid T \cdot\rangle_{L}
$$

$\|\cdot\|_{T}$ is called graph norm.
W_{0} - the completion of \mathcal{D} in the graph norm

Prolongations

$\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T}\right)$ is an inner product space, where

$$
\langle\cdot \mid \cdot\rangle_{T}:=\langle\cdot \mid \cdot\rangle_{L}+\langle T \cdot \mid T \cdot\rangle_{L} .
$$

$\|\cdot\|_{T}$ is called graph norm.
W_{0} - the completion of \mathcal{D} in the graph norm
$T, \tilde{T}: \mathcal{D} \longrightarrow L$ are continuous with respect to $\left(\|\cdot\|_{T},\|\cdot\|_{L}\right) \ldots$ extension by density to $\mathcal{L}\left(W_{0} ; L\right)$.

Prolongations

$\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T}\right)$ is an inner product space, where

$$
\langle\cdot \mid \cdot\rangle_{T}:=\langle\cdot \mid \cdot\rangle_{L}+\langle T \cdot \mid T \cdot\rangle_{L} .
$$

$\|\cdot\|_{T}$ is called graph norm.
W_{0} - the completion of \mathcal{D} in the graph norm
$T, \tilde{T}: \mathcal{D} \longrightarrow L$ are continuous with respect to $\left(\|\cdot\|_{T},\|\cdot\|_{L}\right) \ldots$ extension by density to $\mathcal{L}\left(W_{0} ; L\right)$.

The following embedding are dense and continuous:

$$
W_{0} \hookrightarrow L \equiv L^{\prime} \hookrightarrow W_{0}^{\prime} .
$$

Prolongations

$\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T}\right)$ is an inner product space, where

$$
\langle\cdot \mid \cdot\rangle_{T}:=\langle\cdot \mid \cdot\rangle_{L}+\langle T \cdot \mid T \cdot\rangle_{L} .
$$

$\|\cdot\|_{T}$ is called graph norm.
W_{0} - the completion of \mathcal{D} in the graph norm
$T, \tilde{T}: \mathcal{D} \longrightarrow L$ are continuous with respect to $\left(\|\cdot\|_{T},\|\cdot\|_{L}\right) \ldots$ extension by density to $\mathcal{L}\left(W_{0} ; L\right)$.

The following embedding are dense and continuous:

$$
W_{0} \hookrightarrow L \equiv L^{\prime} \hookrightarrow W_{0}^{\prime} .
$$

Let $\tilde{T}^{*} \in \mathcal{L}\left(L ; W_{0}^{\prime}\right)$ be the adjoint operator of $\tilde{T}: W_{0} \longrightarrow L$

$$
(\forall u \in L)\left(\forall v \in W_{0}\right) \quad W_{0}^{\prime}\left\langle\tilde{T}^{*} u, v\right\rangle_{W_{0}}=\langle u \mid \tilde{T} v\rangle_{L} .
$$

Prolongations

$\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T}\right)$ is an inner product space, where

$$
\langle\cdot \mid \cdot\rangle_{T}:=\langle\cdot \mid \cdot\rangle_{L}+\langle T \cdot \mid T \cdot\rangle_{L} .
$$

$\|\cdot\|_{T}$ is called graph norm.
W_{0} - the completion of \mathcal{D} in the graph norm
$T, \tilde{T}: \mathcal{D} \longrightarrow L$ are continuous with respect to $\left(\|\cdot\|_{T},\|\cdot\|_{L}\right) \ldots$ extension by density to $\mathcal{L}\left(W_{0} ; L\right)$.

The following embedding are dense and continuous:

$$
W_{0} \hookrightarrow L \equiv L^{\prime} \hookrightarrow W_{0}^{\prime} .
$$

Let $\tilde{T}^{*} \in \mathcal{L}\left(L ; W_{0}^{\prime}\right)$ be the adjoint operator of $\tilde{T}: W_{0} \longrightarrow L$

$$
(\forall u \in L)\left(\forall v \in W_{0}\right) \quad W_{0}^{\prime}\left\langle\tilde{T}^{*} u, v\right\rangle_{W_{0}}=\langle u \mid \tilde{T} v\rangle_{L} .
$$

Therefore $T=\tilde{T}_{\left.\right|_{W_{0}}}^{*}$

Prolongations

$\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T}\right)$ is an inner product space, where

$$
\langle\cdot \mid \cdot\rangle_{T}:=\langle\cdot \mid \cdot\rangle_{L}+\langle T \cdot \mid T \cdot\rangle_{L} .
$$

$\|\cdot\|_{T}$ is called graph norm.
W_{0} - the completion of \mathcal{D} in the graph norm
$T, \tilde{T}: \mathcal{D} \longrightarrow L$ are continuous with respect to $\left(\|\cdot\|_{T},\|\cdot\|_{L}\right) \ldots$ extension by density to $\mathcal{L}\left(W_{0} ; L\right)$.

The following embedding are dense and continuous:

$$
W_{0} \hookrightarrow L \equiv L^{\prime} \hookrightarrow W_{0}^{\prime} .
$$

Let $\tilde{T}^{*} \in \mathcal{L}\left(L ; W_{0}^{\prime}\right)$ be the adjoint operator of $\tilde{T}: W_{0} \longrightarrow L$

$$
(\forall u \in L)\left(\forall v \in W_{0}\right) \quad W_{0}^{\prime}\left\langle\tilde{T}^{*} u, v\right\rangle_{W_{0}}=\langle u \mid \tilde{T} v\rangle_{L} .
$$

Therefore $T=\tilde{T}_{\left.\right|_{W_{0}}}^{*}$, and analogously $\tilde{T}=T_{\left.\right|_{W_{0}}}^{*}$.

Prolongations

$\left(\mathcal{D},\langle\cdot \mid \cdot\rangle_{T}\right)$ is an inner product space, where

$$
\langle\cdot \mid \cdot\rangle_{T}:=\langle\cdot \mid \cdot\rangle_{L}+\langle T \cdot \mid T \cdot\rangle_{L} .
$$

$\|\cdot\|_{T}$ is called graph norm.
W_{0} - the completion of \mathcal{D} in the graph norm
$T, \tilde{T}: \mathcal{D} \longrightarrow L$ are continuous with respect to $\left(\|\cdot\|_{T},\|\cdot\|_{L}\right) \ldots$ extension by density to $\mathcal{L}\left(W_{0} ; L\right)$.

The following embedding are dense and continuous:

$$
W_{0} \hookrightarrow L \equiv L^{\prime} \hookrightarrow W_{0}^{\prime} .
$$

Let $\tilde{T}^{*} \in \mathcal{L}\left(L ; W_{0}^{\prime}\right)$ be the adjoint operator of $\tilde{T}: W_{0} \longrightarrow L$

$$
(\forall u \in L)\left(\forall v \in W_{0}\right) \quad W_{0}^{\prime}\left\langle\tilde{T}^{*} u, v\right\rangle_{W_{0}}=\langle u \mid \tilde{T} v\rangle_{L} .
$$

Therefore $T=\tilde{T}_{\left.\right|_{W_{0}}}^{*}$, and analogously $\tilde{T}=T_{\left.\right|_{W_{0}}}^{*}$.
Abusing notation: $T, \tilde{T} \in \mathcal{L}\left(L ; W_{0}^{\prime}\right) \ldots(\mathrm{T} 1)-(\mathrm{T} 3)$

Formulation of the problem

Lemma. The graph space

$$
W:=\{u \in L: T u \in L\}=\{u \in L: \tilde{T} u \in L\},
$$

is a Hilbert space with respect to $\langle\cdot \mid \cdot\rangle_{T}$.

Formulation of the problem

Lemma. The graph space

$$
W:=\{u \in L: T u \in L\}=\{u \in L: \tilde{T} u \in L\},
$$

is a Hilbert space with respect to $\langle\cdot \mid \cdot\rangle_{T}$.

Problem: for given $f \in L$ find $u \in W$ such that $T u=f$.

Formulation of the problem

Lemma. The graph space

$$
W:=\{u \in L: T u \in L\}=\{u \in L: \tilde{T} u \in L\}
$$

is a Hilbert space with respect to $\langle\cdot \mid \cdot\rangle_{T}$.

Problem: for given $f \in L$ find $u \in W$ such that $T u=f$.

Find sufficient conditions on $V \leqslant W$ such that $T_{\left.\right|_{V}}: V \longrightarrow L$ is an isomorphism.

Boundary operator

Boundary operator $D \in \mathcal{L}\left(W ; W^{\prime}\right)$:

$$
{ }_{W^{\prime}}\langle D u, v\rangle_{W}:=\langle T u \mid v\rangle_{L}-\langle u \mid \tilde{T} v\rangle_{L}, \quad u, v \in W
$$

Boundary operator

Boundary operator $D \in \mathcal{L}\left(W ; W^{\prime}\right)$:

$$
{ }_{W^{\prime}}\langle D u, v\rangle_{W}:=\langle T u \mid v\rangle_{L}-\langle u \mid \tilde{T} v\rangle_{L}, \quad u, v \in W
$$

Lemma. $\quad D$ is symmetric and satisfies

$$
\operatorname{ker} D=W_{0}
$$

$$
\operatorname{im} D=W_{0}^{0}:=\left\{g \in W^{\prime}:\left(\forall u \in W_{0}\right) \quad W^{\prime}\langle g, u\rangle_{W}=0\right\}
$$

In particular, im D is closed in W^{\prime}.

Boundary operator

Boundary operator $D \in \mathcal{L}\left(W ; W^{\prime}\right)$:

$$
{ }_{W^{\prime}}\langle D u, v\rangle_{W}:=\langle T u \mid v\rangle_{L}-\langle u \mid \tilde{T} v\rangle_{L}, \quad u, v \in W
$$

Lemma. $\quad D$ is symmetric and satisfies

$$
\begin{aligned}
\operatorname{ker} D & =W_{0} \\
\operatorname{im} D & =W_{0}^{0}:=\left\{g \in W^{\prime}:\left(\forall u \in W_{0}\right) \quad W^{\prime}\langle g, u\rangle_{W}=0\right\}
\end{aligned}
$$

In particular, im D is closed in W^{\prime}.

If T is the Friedrichs operator \mathcal{L}, then for $\mathrm{u}, \mathrm{v} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ we have

$$
{ }_{W^{\prime}}\langle D \mathbf{u}, \mathrm{v}\rangle_{W}=\int_{\Gamma} \mathbf{A}_{\nu}(\mathbf{x}) \mathbf{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathbf{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x})
$$

Well-posedness theorem

Let V and \tilde{V} be subspaces of W that satisfy

$$
\begin{array}{ll}
(\forall u \in V) & W^{\prime}\langle D u, u\rangle_{W} \geqslant 0 \\
(\forall v \in \tilde{V}) & { }_{W}\left\langle\langle D v, v\rangle_{W} \leqslant 0\right. \\
V=D(\tilde{V})^{0}, & \tilde{V}=D(V)^{0} . \tag{V2}
\end{array}
$$

(cone formalism)

Well-posedness theorem

Let V and \tilde{V} be subspaces of W that satisfy

$$
\begin{array}{ll}
(\forall u \in V) & W^{\prime}\langle D u, u\rangle_{W} \geqslant 0 \\
(\forall v \in \tilde{V}) & { }_{W}\left\langle\langle D v, v\rangle_{W} \leqslant 0\right. \\
V=D(\tilde{V})^{0}, & \tilde{V}=D(V)^{0} .
\end{array}
$$

(cone formalism)
Theorem. Under assumptions (T1) - (T3) and (V1) - (V2), the operators $T_{\left.\right|_{V}}: V \longrightarrow L$ and $\tilde{T}_{\left.\right|_{\tilde{V}}}: \tilde{V} \longrightarrow L$ are isomorphisms.
[AE\&JLG\&GC2007]

Correspondence with classical assumptions

$$
\begin{array}{ll}
(\forall u \in V) & { }_{W}\left\langle\langle D u, u\rangle_{W} \geqslant 0,\right. \\
(\forall v \in \tilde{V}) & { }_{W}\langle D v, v\rangle_{W} \leqslant 0, \\
V=D(\tilde{V})^{0}, & \tilde{V}=D(V)^{0},
\end{array}
$$

Correspondence with classical assumptions

$$
\begin{aligned}
& (\forall u \in V) \quad W^{\prime}\langle D u, u\rangle_{W} \geqslant 0, \\
& (\forall v \in \tilde{V}) \quad{ }_{W^{\prime}}\langle D v, v\rangle_{W} \leqslant 0, \\
& V=D(\tilde{V})^{0}, \quad \tilde{V}=D(V)^{0},
\end{aligned}
$$

(V2)
(FV1)

$$
(\forall \boldsymbol{\xi} \in N(\mathbf{x})) \quad \mathbf{A}_{\nu}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0,
$$

$$
(\forall \boldsymbol{\xi} \in \tilde{N}(\mathbf{x})) \quad \mathbf{A}_{\nu}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \leqslant 0
$$

$$
\begin{equation*}
\tilde{N}(\mathbf{x})=\left(\mathbf{A}_{\nu}(\mathbf{x}) N(\mathbf{x})\right)^{\perp} \quad \text { and } \quad N(\mathbf{x})=\left(\mathbf{A}_{\nu}(\mathbf{x}) \tilde{N}(\mathbf{x})\right)^{\perp} \tag{FV2}
\end{equation*}
$$

(for ae $\mathbf{x} \in \Gamma$)

Other sets of conditions in the classical setting (recall)

maximal boundary conditions: (for ae $\mathbf{x} \in \Gamma$)

$$
\begin{equation*}
(\forall \boldsymbol{\xi} \in N(\mathbf{x})) \quad \mathbf{A}_{\nu}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0 \tag{FX1}
\end{equation*}
$$ there is no non-negative subspace with respect to $\mathbf{A}_{\nu}(\mathbf{x})$, which contains $N(\mathbf{x})$,

admissible boundary conditions: there exists a matrix function $\mathbf{M}: \Gamma \longrightarrow \mathrm{M}_{r}(\mathbf{R})$ such that (for ae $\mathbf{x} \in \Gamma$)
(FM1)

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0
$$

(FM2)

$$
\mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right)
$$

Correspondence - maximal b.c.

maximal boundary conditions: (for ae $\mathbf{x} \in \Gamma$)
(FX1)

$$
(\forall \boldsymbol{\xi} \in N(\mathbf{x})) \quad \mathbf{A}_{\nu}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0
$$

there is no non-negative subspace with respect to
(FX2)

$$
\mathbf{A}_{\nu}(\mathbf{x}), \text { which contains } N(\mathbf{x})
$$

Correspondence - maximal b.c.

maximal boundary conditions: (for ae $\mathbf{x} \in \Gamma$)

$$
\begin{equation*}
(\forall \boldsymbol{\xi} \in N(\mathbf{x})) \quad \mathbf{A}_{\nu}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0 \tag{FX1}
\end{equation*}
$$

there is no non-negative subspace with respect to
(FX2)

$$
\mathbf{A}_{\nu}(\mathbf{x}), \text { which contains } N(\mathbf{x})
$$

subspace V is maximal non-negative with respect to D :
(X1) V is non-negative with respect to $D: \quad(\forall v \in V) \quad{ }_{W}\langle D v, v\rangle_{W} \geqslant 0$,
(X2) there is no non-negative subspace with respect to D that contains V.

Correspondence - admissible b.c.

admissible boundary condition: there exist a matrix function $\mathbf{M}: \Gamma \longrightarrow \mathrm{M}_{r}(\mathbf{R})$ such that (for ae $\mathbf{x} \in \Gamma$)
(FM1) $\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathrm{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0$,
(FM2)

$$
\mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right) .
$$

Correspondence - admissible b.c.

admissible boundary condition: there exist a matrix function $\mathbf{M}: \Gamma \longrightarrow \mathrm{M}_{r}(\mathbf{R})$ such that (for ae $\mathbf{x} \in \Gamma$)
(FM1)

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0
$$

$$
\begin{equation*}
\mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right) \tag{FM2}
\end{equation*}
$$

admissible boundary condition: there exist $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ that satisfy

$$
\begin{gather*}
(\forall u \in W) \quad W^{\prime}\langle M u, u\rangle_{W} \geqslant 0 \tag{M1}\\
W=\operatorname{ker}(D-M)+\operatorname{ker}(D+M)
\end{gather*}
$$

Equivalence of different descriptions of b.c.

Theorem. (classical) It holds

$$
(F M 1)-(F M 2) \quad \Longleftrightarrow \quad(F V 1)-(F V 2) \quad \Longleftrightarrow \quad(F X 1)-(F X 2),
$$

with

$$
N(\mathbf{x}):=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)
$$

Equivalence of different descriptions of b.c.

Theorem. (classical) It holds

$$
(F M 1)-(F M 2) \quad \Longleftrightarrow \quad(F V 1)-(F V 2) \quad \Longleftrightarrow \quad(F X 1)-(F X 2),
$$

with

$$
N(\mathbf{x}):=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)
$$

Theorem. (A. Ern, J.-L. Guermond, G. Caplain) It holds

$$
(M 1)-(M 2) \quad \Longrightarrow(V 1)-(V 2) \quad \Longrightarrow \quad(X 1)-(X 2)
$$

with

$$
V:=\operatorname{ker}(D-M)
$$

$(\mathrm{M} 1)-(\mathrm{M} 2) \quad \longleftarrow \quad(\mathrm{V} 1)-(\mathrm{V} 2)$

Theorem. Let V and \tilde{V} satisfy (V1)-(V2), and suppose that there exist operators $P \in \mathcal{L}(W ; V)$ and $Q \in \mathcal{L}(W ; \tilde{V})$ such that

$$
\begin{array}{ll}
(\forall v \in V) & D(v-P v)=0, \\
(\forall v \in \tilde{V}) & D(v-Q v)=0, \\
& D P Q=D Q P .
\end{array}
$$

Let us define $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ (for $\left.u, v \in W\right)$ with

$$
\begin{aligned}
& W_{W^{\prime}}\langle M u, v\rangle_{W}={ }_{W^{\prime}}\langle D P u, P v\rangle_{W}-{ }_{W^{\prime}}\langle D Q u, Q v\rangle_{W} \\
& \quad+{ }_{W^{\prime}}\langle D(P+Q-P Q) u, v\rangle_{W}-{ }_{W^{\prime}}\langle D u,(P+Q-P Q) v\rangle_{W} .
\end{aligned}
$$

Then $V:=\operatorname{ker}(D-M), \tilde{V}:=\operatorname{ker}\left(D+M^{*}\right)$, and M satisfies (M1)-(M2).
$(\mathrm{M} 1)-(\mathrm{M} 2) \quad \longleftarrow \quad(\mathrm{V} 1)-(\mathrm{V} 2)$

Theorem. Let V and \tilde{V} satisfy (V1)-(V2), and suppose that there exist operators $P \in \mathcal{L}(W ; V)$ and $Q \in \mathcal{L}(W ; \tilde{V})$ such that

$$
\begin{array}{ll}
(\forall v \in V) & D(v-P v)=0, \\
(\forall v \in \tilde{V}) & D(v-Q v)=0, \\
& D P Q=D Q P .
\end{array}
$$

Let us define $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ (for $\left.u, v \in W\right)$ with

$$
\begin{aligned}
& W_{W^{\prime}}\langle M u, v\rangle_{W}={ }_{W^{\prime}}\langle D P u, P v\rangle_{W}-{ }_{W^{\prime}}\langle D Q u, Q v\rangle_{W} \\
& \quad+{ }_{W^{\prime}}\langle D(P+Q-P Q) u, v\rangle_{W}-{ }_{W^{\prime}}\langle D u,(P+Q-P Q) v\rangle_{W}
\end{aligned}
$$

Then $V:=\operatorname{ker}(D-M), \tilde{V}:=\operatorname{ker}\left(D+M^{*}\right)$, and M satisfies (M1)-(M2).
Lemma. Suppose additionally that $V+\tilde{V}$ is closed. Then the operators P and Q from previous theorem do exist.

When this is satisfied?

Lemma. (K. Burazin, N.A.)

If codim $W_{0}\left(=\operatorname{dim} W / W_{0}\right)$ is finite, then the set $V+\tilde{V}$ is closed whenever V and \tilde{V} satisfy (V1)-(V2).

When this is satisfied?

Lemma. (K. Burazin, N.A.)

If codim $W_{0}\left(=\operatorname{dim} W / W_{0}\right)$ is finite, then the set $V+\tilde{V}$ is closed whenever V and \tilde{V} satisfy (V1)-(V2).

In one dimension (ode-s) this is the case.
The classification of admissible conditions can be given.

When this is satisfied?

Lemma. (K. Burazin, N.A.)
If codim $W_{0}\left(=\operatorname{dim} W / W_{0}\right)$ is finite, then the set $V+\tilde{V}$ is closed whenever V and \tilde{V} satisfy (V1)-(V2).

In one dimension (ode-s) this is the case.
The classification of admissible conditions can be given.
However, in general this is not true, and for many interesting situations $V+\tilde{V}$ is NOT closed.

When this is satisfied?

Lemma. (K. Burazin, N.A.)

If codim $W_{0}\left(=\operatorname{dim} W / W_{0}\right)$ is finite, then the set $V+\tilde{V}$ is closed whenever V and \tilde{V} satisfy (V1)-(V2).

In one dimension (ode-s) this is the case.
The classification of admissible conditions can be given.
However, in general this is not true, and for many interesting situations $V+\tilde{V}$ is NOT closed.

Sufficient conditions for a counter example:

When this is satisfied?

Lemma. (K. Burazin, N.A.)

If codim $W_{0}\left(=\operatorname{dim} W / W_{0}\right)$ is finite, then the set $V+\tilde{V}$ is closed whenever V and \tilde{V} satisfy (V1)-(V2).

In one dimension (ode-s) this is the case.
The classification of admissible conditions can be given.
However, in general this is not true, and for many interesting situations $V+\tilde{V}$ is NOT closed.

Sufficient conditions for a counter example:
Theorem. (K. Burazin, N.A.)
Let subspaces V and \tilde{V} of space W satisfy (V1)-(V2), $V \cap \tilde{V}=W_{0}$, and $W \neq V+\tilde{V}$.

When this is satisfied?

Lemma. (K. Burazin, N.A.)

If codim $W_{0}\left(=\operatorname{dim} W / W_{0}\right)$ is finite, then the set $V+\tilde{V}$ is closed whenever V and \tilde{V} satisfy (V1)-(V2).

In one dimension (ode-s) this is the case.
The classification of admissible conditions can be given.
However, in general this is not true, and for many interesting situations $V+\tilde{V}$ is NOT closed.

Sufficient conditions for a counter example:
Theorem. (K. Burazin, N.A.)
Let subspaces V and \tilde{V} of space W satisfy (V1)-(V2), $V \cap \tilde{V}=W_{0}$, and $W \neq V+\tilde{V}$.

Then $V+\tilde{V}$ is not closed in W.

When this is satisfied?

Lemma. (K. Burazin, N.A.)

If codim $W_{0}\left(=\operatorname{dim} W / W_{0}\right)$ is finite, then the set $V+\tilde{V}$ is closed whenever V and \tilde{V} satisfy (V1)-(V2).

In one dimension (ode-s) this is the case.
The classification of admissible conditions can be given.
However, in general this is not true, and for many interesting situations $V+\tilde{V}$ is NOT closed.

Sufficient conditions for a counter example:
Theorem. (K. Burazin, N.A.)
Let subspaces V and \tilde{V} of space W satisfy (V1)-(V2), $V \cap \tilde{V}=W_{0}$, and $W \neq V+\tilde{V}$.

Then $V+\tilde{V}$ is not closed in W.
Moreover, there do not exist operators P and Q with desired properties.

Counter example

Let $\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ be given. Scalar elliptic equation

$$
-\Delta u+\mu u=f
$$

Counter example

Let $\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ be given. Scalar elliptic equation

$$
-\Delta u+\mu u=f
$$

can be written as Friedrichs' system: $\left\{\begin{array}{l}\mathrm{p}+\nabla u=0 \\ \mu u+\operatorname{divp}=f\end{array}\right.$

Counter example

Let $\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ be given. Scalar elliptic equation

$$
-\Delta u+\mu u=f
$$

can be written as Friedrichs' system: $\left\{\begin{array}{l}\mathrm{p}+\nabla u=0 \\ \mu u+\operatorname{divp}=f\end{array}\right.$
Then $W=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$.

Counter example

Let $\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ be given. Scalar elliptic equation

$$
-\Delta u+\mu u=f
$$

can be written as Friedrichs' system: $\left\{\begin{array}{l}\mathrm{p}+\nabla u=0 \\ \mu u+\operatorname{divp}=f\end{array}\right.$
Then $W=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$. For $\alpha>0$ we define (Robin b. c.)

$$
\begin{aligned}
& V:=\left\{(\mathrm{p}, u)^{\top} \in W: \mathcal{T}_{\text {div }} \mathrm{p}=\alpha \mathcal{T}_{\mathrm{H}^{1} u} u,\right. \\
& \tilde{V}:=\left\{(\mathrm{r}, v)^{\top} \in W: \mathcal{T}_{\text {div }} \mathrm{r}=-\alpha \mathcal{T}_{\mathrm{H}^{1} v} v .\right.
\end{aligned}
$$

Counter example

Let $\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ be given. Scalar elliptic equation

$$
-\Delta u+\mu u=f
$$

can be written as Friedrichs' system: $\left\{\begin{array}{l}\mathrm{p}+\nabla u=0 \\ \mu u+\operatorname{divp}=f\end{array}\right.$
Then $W=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$. For $\alpha>0$ we define (Robin b. c.)

$$
\begin{aligned}
& V:=\left\{(\mathrm{p}, u)^{\top} \in W: \mathcal{T}_{\text {div }} \mathrm{p}=\alpha \mathcal{T}_{\mathrm{H}^{1}} u\right\}, \\
& \tilde{V}:=\left\{(\mathrm{r}, v)^{\top} \in W: \mathcal{T}_{\text {div }} \mathrm{r}=-\alpha \mathcal{T}_{\mathrm{H}^{1}} v\right\} .
\end{aligned}
$$

Lemma.

The above V and \tilde{V} satisfy (V1)-(V2), $V \cap \tilde{V}=W_{0}$ and $V+\tilde{V} \neq W$.

Counter example

Let $\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ be given. Scalar elliptic equation

$$
-\Delta u+\mu u=f
$$

can be written as Friedrichs' system: $\left\{\begin{array}{l}\mathrm{p}+\nabla u=0 \\ \mu u+\operatorname{divp}=f\end{array}\right.$
Then $W=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$. For $\alpha>0$ we define (Robin b. c.)

$$
\begin{aligned}
& V:=\left\{(\mathrm{p}, u)^{\top} \in W: \mathcal{T}_{\text {div }} \mathrm{p}=\alpha \mathcal{T}_{\mathrm{H}^{1}} u\right\}, \\
& \tilde{V}:=\left\{(\mathrm{r}, v)^{\top} \in W: \mathcal{T}_{\text {div }} \mathrm{r}=-\alpha \mathcal{T}_{\mathrm{H}^{1}} v\right\} .
\end{aligned}
$$

Lemma.

The above V and \tilde{V} satisfy (V1)-(V2), $V \cap \tilde{V}=W_{0}$ and $V+\tilde{V} \neq W$. There exists an operator $M \in \mathcal{L}\left(W ; W^{\prime}\right)$, that satisfies (M1)-(M2) and $V=\operatorname{ker}(D-M)$.

Why should one be interested in Friedrichs systems?
Symmetric hyperbolic systems
Symmetric positive systems
Classical theory
Boundary conditions for Friedrichs systems
Existence, uniqueness, well-posedness
Abstract formulation
Graph spaces
Cone formalism of Ern, Guermond and Caplain
Interdependence of different representations of boundary conditions
Kreĭn space formalism
Kreĭn spaces
Equivalence of boundary conditions
What can we say for the Friedrichs operator now?
Sufficient assumptions
An example: elliptic equation
Other second order equations
Two-field theory
Non-stationary theory
Homogenisation of Friedrichs systems
Homogenisation
Examples: Stationary diffusion and heat equation
Concluding remarks

New notation

$$
[u \mid v]:={ }_{W^{\prime}}\langle D u, v\rangle_{W}=\langle T u \mid v\rangle_{L}-\langle u \mid \tilde{T} v\rangle_{L}, \quad u, v \in W
$$

is an indefinite inner product on W.

New notation

$$
[u \mid v]:={ }_{W^{\prime}}\langle D u, v\rangle_{W}=\langle T u \mid v\rangle_{L}-\langle u \mid \tilde{T} v\rangle_{L}, \quad u, v \in W
$$

is an indefinite inner product on W.
(V1)

$$
\begin{align*}
& (\forall v \in V) \quad[v \mid v] \geqslant 0, \\
& (\forall v \in \tilde{V}) \quad[v \mid v] \leqslant 0 ; \\
& V=\tilde{V}^{[\perp]}, \quad \tilde{V}=V^{[\perp]} . \tag{V2}
\end{align*}
$$

(${ }^{[\perp]}$ stands for $[\cdot \mid \cdot]$-orthogonal complement)

New notation

$$
[u \mid v]:={ }_{W}\langle D u, v\rangle_{W}=\langle T u \mid v\rangle_{L}-\langle u \mid \tilde{T} v\rangle_{L}, \quad u, v \in W
$$

is an indefinite inner product on W.

$$
\begin{gather*}
(\forall v \in V) \quad[v \mid v] \geqslant 0 \\
(\forall v \in \tilde{V}) \quad[v \mid v] \leqslant 0 \tag{V1}\\
V=\tilde{V}^{[\perp]}, \quad \tilde{V}=V^{[\perp]}
\end{gather*}
$$

(${ }^{[\perp]}$ stands for $[\cdot \mid \cdot]$-orthogonal complement)
subspace V is maximal non-negative in $(W,[\cdot \mid \cdot])$:
(X1) $\quad V$ is non-negative in $(W,[\cdot \mid \cdot]): \quad(\forall v \in V) \quad[v \mid v] \geqslant 0$,
(X2) there is no non-negative subspace in $(W,[\cdot \mid \cdot])$ containing V.

Kreĭn spaces

($W,[\cdot \mid \cdot]$) is not a Krein space - it is a degenerate space, because its Gramm operator $G:=j \circ D \quad\left(j: W^{\prime} \longrightarrow W\right.$ is the canonical isomorphism $)$ has large kernel:

$$
\operatorname{ker} G=W_{0}
$$

Kreĭn spaces

$(W,[\cdot \mid \cdot])$ is not a Kreĭn space - it is a degenerate space, because its Gramm operator $G:=j \circ D \quad\left(j: W^{\prime} \longrightarrow W\right.$ is the canonical isomorphism) has large kernel:

$$
\operatorname{ker} G=W_{0}
$$

Theorem. If G is the Gramm operator of the space W, then the quotient space $\hat{W}:=W / \operatorname{ker} G$ is a Krĕn space if and only if $\operatorname{im} G$ is closed.

Kreĭn spaces

($W,[\cdot \mid \cdot]$) is not a Kreĭn space - it is a degenerate space, because its Gramm operator $G:=j \circ D \quad\left(j: W^{\prime} \longrightarrow W\right.$ is the canonical isomorphism) has large kernel:

$$
\operatorname{ker} G=W_{0}
$$

Theorem. If G is the Gramm operator of the space W, then the quotient space $\hat{W}:=W / \operatorname{ker} G$ is a Krě̆n space if and only if $\operatorname{im} G$ is closed.
$\hat{W}:=W / W_{0}$ is the Kreĭn space, with

$$
[\hat{u} \mid \hat{v}] \hat{} \quad=[u \mid v], \quad u, v \in W
$$

Kreĭn spaces

($W,[\cdot \mid \cdot]$) is not a Kreĭn space - it is a degenerate space, because its Gramm operator $G:=j \circ D \quad\left(j: W^{\prime} \longrightarrow W\right.$ is the canonical isomorphism) has large kernel:

$$
\operatorname{ker} G=W_{0}
$$

Theorem. If G is the Gramm operator of the space W, then the quotient space $\hat{W}:=W / \operatorname{ker} G$ is a Krě̆n space if and only if $\operatorname{im} G$ is closed.
$\hat{W}:=W / W_{0}$ is the Kreĭn space, with

$$
[\hat{u} \mid \hat{v}]:=[u \mid v], \quad u, v \in W
$$

Important: $\operatorname{im} D$ is closed and $\operatorname{ker} D=W_{0}$.

Quotient Kreĭn space

Lemma. Let $U \supseteq W_{0}$ and Y be subspaces of W. Then
a) U is closed if and only if $\hat{U}:=\{\hat{v}: v \in U\}$ is closed in \hat{W};
b) $(\widehat{U+Y})=\left\{u+v+W_{0}: u \in U, v \in Y\right\}=\hat{U}+\hat{Y}$;
c) $U+Y$ is closed if and only if $\hat{U}+\hat{Y}$ is closed;
d) $(\hat{Y})^{[\perp \hat{\jmath}}=\widehat{Y^{[\perp]}}$.
e) if Y is maximal non-negative (non-positive) in W, than \hat{Y} is maximal non-negative (non-positive) in \hat{W};
f) if \hat{U} is maximal non-negative (non-positive) in \hat{W}, then U is maximal non-negative (non-positive) in W.

Theorem. a) If subspaces V and \tilde{V} satisfy (V1)-(V2), then V is maximal non-negative in W (satisfies (X1)-(X2)) and \tilde{V} is maximal non-positive in W.
b) If V is maximal non-negative in W, then V and $\tilde{V}:=V^{[\perp]}$ satisfy (V1)-(V2).

Theorem. [EGC] (T1)-(T3) and $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfy (M) imply

$$
V:=\operatorname{ker}(D-M) \quad \text { and } \quad \tilde{V}:=\operatorname{ker}\left(D+M^{*}\right) \quad \text { satisfy }(V) .
$$

Corollary. Under above assumptions
$T_{\left.\right|_{\operatorname{ker}(D-M)}}: \operatorname{ker}(D-M) \longrightarrow L \quad i \quad \tilde{T}_{\left.\right|_{\operatorname{ker}\left(D+M^{*}\right)}}: \operatorname{ker}\left(D+M^{*}\right) \longrightarrow L$ are isomorphisms.
$(\mathrm{M} 1)-(\mathrm{M} 2) \quad \longleftarrow \quad(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (recall $)$
Theorem. Let V and \tilde{V} satisfy (V1)-(V2), and suppose that there exist operators $P \in \mathcal{L}(W ; V)$ and $Q \in \mathcal{L}(W ; \tilde{V})$ such that

$$
\begin{array}{ll}
(\forall v \in V) & D(v-P v)=0, \\
(\forall v \in \tilde{V}) & D(v-Q v)=0, \\
& D P Q=D Q P .
\end{array}
$$

Let us define $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ (for $\left.u, v \in W\right)$ with

$$
\begin{aligned}
& W_{W^{\prime}}\langle M u, v\rangle_{W}={ }_{W^{\prime}}\langle D P u, P v\rangle_{W}-{ }_{W^{\prime}}\langle D Q u, Q v\rangle_{W} \\
& \quad+{ }_{W^{\prime}}\langle D(P+Q-P Q) u, v\rangle_{W}-{ }_{W^{\prime}}\langle D u,(P+Q-P Q) v\rangle_{W} .
\end{aligned}
$$

Then $V:=\operatorname{ker}(D-M), \tilde{V}:=\operatorname{ker}\left(D+M^{*}\right)$, and M satisfies (M1)-(M2).
Lemma. Suppose additionally that $V+\tilde{V}$ is closed. Then the operators P and Q from previous theorem do exist.
$(\mathrm{M} 1)-(\mathrm{M} 2) \quad \longleftarrow \quad(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (recall $)$
Theorem. Let V and \tilde{V} satisfy (V1)-(V2), and suppose that there exist operators $P \in \mathcal{L}(W ; V)$ and $Q \in \mathcal{L}(W ; \tilde{V})$ such that

$$
\begin{array}{ll}
(\forall v \in V) & D(v-P v)=0, \\
(\forall v \in \tilde{V}) & D(v-Q v)=0, \\
& D P Q=D Q P .
\end{array}
$$

Let us define $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ (for $\left.u, v \in W\right)$ with

$$
\begin{aligned}
& W_{W^{\prime}}\langle M u, v\rangle_{W}={ }_{W^{\prime}}\langle D P u, P v\rangle_{W}-{ }_{W^{\prime}}\langle D Q u, Q v\rangle_{W} \\
& \quad+{ }_{W^{\prime}}\langle D(P+Q-P Q) u, v\rangle_{W}-{ }_{W^{\prime}}\langle D u,(P+Q-P Q) v\rangle_{W} .
\end{aligned}
$$

Then $V:=\operatorname{ker}(D-M), \tilde{V}:=\operatorname{ker}\left(D+M^{*}\right)$, and M satisfies (M1)-(M2).
Lemma. Suppose additionally that $V+\tilde{V}$ is closed. Then the operators P and Q from previous theorem do exist.

Closedness of $V+\tilde{V}$ is actually equivalent to the existence of operators P and Q.

On existence of P and Q

Our original approach was indirect:
Firstly, the existence of P and Q implies the existence of certain projectors in the quotient Kreĭn space; more precisely:

$$
\hat{P} \hat{w}:=\widehat{P w}, \quad \hat{Q} \hat{w}:=\widehat{Q w}, \quad w \in W
$$

the projectors $\hat{P}, \hat{Q}: \hat{W} \longrightarrow \hat{W}$ are defined, satisfying

$$
\begin{gathered}
\hat{P}^{2}=\hat{P} \quad \text { and } \quad \hat{Q}^{2}=\hat{Q}, \\
\text { im } \hat{P}=\hat{V} \quad \text { and } \quad \operatorname{im} \hat{Q}=\hat{\tilde{V}}, \\
\hat{P} \hat{Q}=\hat{Q} \hat{P} .
\end{gathered}
$$

Secondly, this allowed us to prove the existence of corresponding projectors on W.
$(\mathrm{M} 1)-(\mathrm{M} 2) \Longleftarrow(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (direct proof)

Theorem. If V, \tilde{V} are two closed subspaces of W that satisfy $W_{0} \subseteq V \cap \tilde{V}$, then the following statements are equivalent:
a) There exist operators $P \in \mathcal{L}(W ; V)$ and $Q \in \mathcal{L}(W ; \tilde{V})$, such that

$$
\begin{array}{ll}
(\forall v \in V) & D(v-P v)=0 \\
(\forall v \in \tilde{V}) & D(v-Q v)=0 \\
& D P Q=D Q P
\end{array}
$$

$(\mathrm{M} 1)-(\mathrm{M} 2) \Longleftarrow(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (direct proof)

Theorem. If V, \tilde{V} are two closed subspaces of W that satisfy $W_{0} \subseteq V \cap \tilde{V}$, then the following statements are equivalent:
a) There exist operators $P \in \mathcal{L}(W ; V)$ and $Q \in \mathcal{L}(W ; \tilde{V})$, such that

$$
\begin{array}{ll}
(\forall v \in V) & D(v-P v)=0 \\
(\forall v \in \tilde{V}) & D(v-Q v)=0 \\
& D P Q=D Q P
\end{array}
$$

b) There exist projectors $P^{\prime}, Q^{\prime} \in \mathcal{L}(W ; W)$, such that

$$
\begin{gathered}
P^{\prime 2}=P^{\prime} \quad \text { and } \quad Q^{\prime 2}=Q^{\prime} \\
\operatorname{im} P^{\prime}=V \quad \text { and } \quad \operatorname{im} Q^{\prime}=\tilde{V} \\
P^{\prime} Q^{\prime}=Q^{\prime} P^{\prime}
\end{gathered}
$$

$(\mathrm{M} 1)-(\mathrm{M} 2) \Longleftarrow(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (direct proof)

Theorem. If V, \tilde{V} are two closed subspaces of W that satisfy $W_{0} \subseteq V \cap \tilde{V}$, then the following statements are equivalent:
a) There exist operators $P \in \mathcal{L}(W ; V)$ and $Q \in \mathcal{L}(W ; \tilde{V})$, such that

$$
\begin{array}{ll}
(\forall v \in V) & D(v-P v)=0, \\
(\forall v \in \tilde{V}) & D(v-Q v)=0, \\
& D P Q=D Q P .
\end{array}
$$

b) There exist projectors $P^{\prime}, Q^{\prime} \in \mathcal{L}(W ; W)$, such that

$$
\begin{gathered}
P^{\prime 2}=P^{\prime} \text { and } Q^{\prime 2}=Q^{\prime}, \\
\operatorname{im} P^{\prime}=V \text { and } \operatorname{im} Q^{\prime}=\tilde{V}, \\
P^{\prime} Q^{\prime}=Q^{\prime} P^{\prime} .
\end{gathered}
$$

(b) is equivalent to closedness of $V+\tilde{V}$.

$(\mathrm{M} 1)-(\mathrm{M} 2) \Longleftarrow(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (cont. $)$

Theorem.
a) $V, \tilde{V} \leqslant W$ satisfy (V), and exists a closed subspace $W_{2} \subseteq C^{-}$of W, $V \dot{+} W_{2}=W$, then there exist an operator $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M) and $V=\operatorname{ker}(D-M)$.
If we define W_{1} as orthogonal complement of W_{0} in V, so that $W=W_{1} \dot{+} W_{0} \dot{+} W_{2}$, and denote by R_{1}, R_{0}, R_{2} projectors that correspond to above direct sum, then one such operator is given with $M=D\left(R_{1}-R_{2}\right)$.

$(\mathrm{M} 1)-(\mathrm{M} 2) \Longleftarrow(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (cont. $)$

Theorem.

a) $V, \tilde{V} \leqslant W$ satisfy (V), and exists a closed subspace $W_{2} \subseteq C^{-}$of W, $V \dot{+} W_{2}=W$, then there exist an operator $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M) and $V=\operatorname{ker}(D-M)$.
If we define W_{1} as orthogonal complement of W_{0} in V, so that $W=W_{1} \dot{+} W_{0} \dot{+} W_{2}$, and denote by R_{1}, R_{0}, R_{2} projectors that correspond to above direct sum, then one such operator is given with $M=D\left(R_{1}-R_{2}\right)$.
b) $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ an operator satisfying (M1)-(M2), $V:=\operatorname{ker}(D-M)$.

For W_{2}, the orthogonal complement of W_{0} in $\operatorname{ker}(D+M), W_{2} \subseteq C^{-}$is closed, $V \dot{+} W_{2}=W$, and M coincide with the operator in (a).

$(\mathrm{M} 1)-(\mathrm{M} 2) \Longleftarrow(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (cont. $)$

Theorem.

a) $V, \tilde{V} \leqslant W$ satisfy (V), and exists a closed subspace $W_{2} \subseteq C^{-}$of W, $V \dot{+} W_{2}=W$, then there exist an operator $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M) and $V=\operatorname{ker}(D-M)$.
If we define W_{1} as orthogonal complement of W_{0} in V, so that $W=W_{1} \dot{+} W_{0} \dot{+} W_{2}$, and denote by R_{1}, R_{0}, R_{2} projectors that correspond to above direct sum, then one such operator is given with $M=D\left(R_{1}-R_{2}\right)$.
b) $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ an operator satisfying (M1)-(M2), $V:=\operatorname{ker}(D-M)$.

For W_{2}, the orthogonal complement of W_{0} in $\operatorname{ker}(D+M), W_{2} \subseteq C^{-}$is closed, $V \dot{+} W_{2}=W$, and M coincide with the operator in (a).

Lemma. Let $W_{2}^{\prime \prime} \leqslant W$ satisfies $W_{2}^{\prime \prime} \subseteq C^{-}$and $W_{2}^{\prime \prime}+V=W$.
Then there is a closed subspace W_{2} of W, such that $W_{2} \subseteq C^{-}$and $W_{2} \dot{+} V=W$.

$(\mathrm{M} 1)-(\mathrm{M} 2) \Longleftarrow(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (cont. $)$

Lemma. If $U_{1}+U_{2}=W$ for some subspaces $U_{1} \subseteq C^{+}$and $U_{2} \subseteq C^{-}$of W, then $U_{1} \cap U_{2} \subseteq W_{0}$.
If additionally U_{1} is maximal nonnegative and U_{2} maximal nonpositive, then $U_{1} \cap U_{2}=W_{0}$.

$(\mathrm{M} 1)-(\mathrm{M} 2) \Longleftarrow(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (cont. $)$

Lemma. If $U_{1}+U_{2}=W$ for some subspaces $U_{1} \subseteq C^{+}$and $U_{2} \subseteq C^{-}$of W, then $U_{1} \cap U_{2} \subseteq W_{0}$.
If additionally U_{1} is maximal nonnegative and U_{2} maximal nonpositive, then $U_{1} \cap U_{2}=W_{0}$.

Theorem. For a maximal nonnegative subspace V of W, it is equivalent:
a) There is a maximal nonpositive subspace W_{2} of W, such that $W_{2}+V=W$;
b) There is a nonpositive subspace $W_{\hat{2}}$ of \hat{W}, such that $W_{\hat{2}}+\hat{V}=\hat{W}$.

$(\mathrm{M} 1)-(\mathrm{M} 2) \Longleftarrow(\mathrm{V} 1)-(\mathrm{V} 2) \quad$ (cont.)

Lemma. If $U_{1}+U_{2}=W$ for some subspaces $U_{1} \subseteq C^{+}$and $U_{2} \subseteq C^{-}$of W, then $U_{1} \cap U_{2} \subseteq W_{0}$.
If additionally U_{1} is maximal nonnegative and U_{2} maximal nonpositive, then $U_{1} \cap U_{2}=W_{0}$.

Theorem. For a maximal nonnegative subspace V of W, it is equivalent:
a) There is a maximal nonpositive subspace W_{2} of W, such that $W_{2}+V=W$;
b) There is a nonpositive subspace $W_{\hat{2}}$ of \hat{W}, such that $W_{\hat{2}}+\hat{V}=\hat{W}$.

Corollary. The conditions (V) and (M) are equivalent.

Some used properties

Theorem. a) [.| $\cdot]$-orthogonal complement of a maximal non-negative (non-positive) subspace is non-positive (non-negative).
b) Each maximal semi-definite subspace contains all isotropic vectors in W.
c) If L is a non-negative (non-positive) subspace of a Krein space, such that $L^{[\perp]}$ is non-positive (non-negative), then $\mathrm{Cl} L$ is maximal non-negative (non-positive).
d) Each maximal semi-definite subspace of a Krein space is closed.
e) A subspace L of a Krein space is closed if and only if $L=L^{[\perp][\perp]}$.
f) For a subspace L of a Krein space W it holds

$$
L \cap L^{[\perp]}=\{0\} \quad \Longleftrightarrow \quad \mathrm{Cl}\left(L+L^{[\perp]}\right)=W
$$

Why should one be interested in Friedrichs systems?
Symmetric hyperbolic systems
Symmetric positive systems
Classical theory
Boundary conditions for Friedrichs systems
Existence, uniqueness, well-posedness
Abstract formulation
Graph spaces
Cone formalism of Ern, Guermond and Caplain
Interdependence of different representations of boundary conditions
Kreĭn space formalism
Kreĭn spaces
Equivalence of boundary conditions
What can we say for the Friedrichs operator now?
Sufficient assumptions
An example: elliptic equation
Other second order equations
Two-field theory
Non-stationary theory
Homogenisation of Friedrichs systems
Homogenisation
Examples: Stationary diffusion and heat equation
Concluding remarks

Posing and solving the problem

Problem: for given $f \in L$ find $u \in W$ such that $T u=f$.

Posing and solving the problem

Problem: for given $f \in L$ find $u \in W$ such that $T u=f$.
Boundary operator $D \in \mathcal{L}\left(W ; W^{\prime}\right)$:

$$
W_{W^{\prime}}\langle D u, v\rangle_{W}:=\langle T u \mid v\rangle_{L}-\langle u \mid \tilde{T} v\rangle_{L}, \quad u, v \in W .
$$

Posing and solving the problem

Problem: for given $f \in L$ find $u \in W$ such that $T u=f$.
Boundary operator $D \in \mathcal{L}\left(W ; W^{\prime}\right)$:

$$
{ }_{W^{\prime}}\langle D u, v\rangle_{W}:=\langle T u \mid v\rangle_{L}-\langle u \mid \tilde{T} v\rangle_{L}, \quad u, v \in W
$$

Theorem. Assume (T1) - (T3) and the existence of $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying

$$
\begin{gather*}
(\forall u \in W) \quad W^{\prime}\langle M u, u\rangle_{W} \geqslant 0, \tag{M1}\\
W=\operatorname{ker}(D-M)+\operatorname{ker}(D+M) .
\end{gather*}
$$

Then the operator $T_{\left.\right|_{\operatorname{ker}(D-M)}}: \operatorname{ker}(D-M) \longrightarrow L$ is an isomorphism.

Application to the classical theory

Let $\mathcal{D}:=\mathrm{C}_{c}^{\infty}\left(\Omega ; \mathbf{R}^{r}\right), L=\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right)$ and $T, \tilde{T}: \mathcal{D} \longrightarrow L$ be defined by

$$
\begin{aligned}
T \mathbf{u} & :=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \\
\tilde{T} \mathbf{u} & :=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{\top} \mathbf{u}\right)+\left(\mathbf{C}^{\top}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}^{\top}\right) \mathbf{u},
\end{aligned}
$$

where \mathbf{A}_{k} and \mathbf{C} are as before (they satisfy (F1)-(F2)).
Then T and \tilde{T} satisfy (T1)-(T3)

Application to the classical theory

Let $\mathcal{D}:=\mathrm{C}_{c}^{\infty}\left(\Omega ; \mathbf{R}^{r}\right), L=\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right)$ and $T, \tilde{T}: \mathcal{D} \longrightarrow L$ be defined by

$$
\begin{aligned}
T \mathbf{u} & :=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}, \\
\tilde{T} \mathbf{u} & :=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{\top} \mathbf{u}\right)+\left(\mathbf{C}^{\top}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}^{\top}\right) \mathbf{u},
\end{aligned}
$$

where \mathbf{A}_{k} and \mathbf{C} are as before (they satisfy (F1)-(F2)).
Then T and \tilde{T} satisfy (T1)-(T3) and

$$
W=\left\{\mathbf{u} \in \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right): \sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u} \in \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right)\right\} .
$$

Correlation of boundary conditions

$$
\text { Classical theory: } \quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0,
$$

Correlation of boundary conditions

Classical theory: $\quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0$,
with $\mathbf{M} \in \mathrm{L}^{\infty}\left(\partial \Omega ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfying (for ae $\mathbf{x} \in \Gamma$)
(FM1)

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0,
$$

(FM2)

$$
\mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right) .
$$

Correlation of boundary conditions

Classical theory: $\quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0$,
with $\mathbf{M} \in \mathrm{L}^{\infty}\left(\partial \Omega ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfying (for ae $\mathbf{x} \in \Gamma$)
(FM1)

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0,
$$

(FM2)

$$
\mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right) .
$$

Abstract theory: $\mathrm{u} \in \operatorname{ker}(D-M)$,

Correlation of boundary conditions

Classical theory: $\quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0$,
with $\mathbf{M} \in \mathrm{L}^{\infty}\left(\partial \Omega ; \mathrm{M}_{r}(\mathbf{R})\right.$) satisfying (for ae $\mathbf{x} \in \Gamma$)
(FM1)

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0,
$$

(FM2)

$$
\mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right) .
$$

Abstract theory: $\mathrm{u} \in \operatorname{ker}(D-M)$, with $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying

$$
\begin{gather*}
(\forall u \in W) \quad W^{\prime}\langle M u, u\rangle_{W} \geqslant 0, \tag{M1}\\
W=\operatorname{ker}(D-M)+\operatorname{ker}(D+M) .
\end{gather*}
$$

Correlation of boundary conditions

Classical theory: $\quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0$,
with $\mathbf{M} \in L^{\infty}\left(\partial \Omega ; \mathbf{M}_{r}(\mathbf{R})\right)$ satisfying (for ae $\mathbf{x} \in \Gamma$)
(FM1)

$$
\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{r}\right) \quad \mathbf{M}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 0,
$$

(FM2)

$$
\mathbf{R}^{r}=\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})-\mathbf{M}(\mathbf{x})\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x})+\mathbf{M}(\mathbf{x})\right) .
$$

Abstract theory: $\mathrm{u} \in \operatorname{ker}(D-M)$, with $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying

$$
\begin{gather*}
(\forall u \in W) \quad W^{\prime}\langle M u, u\rangle_{W} \geqslant 0, \tag{M1}\\
W=\operatorname{ker}(D-M)+\operatorname{ker}(D+M) .
\end{gather*}
$$

For given matrix field M is there an operator M determined by M in some natural way?

What is a natural way?

Abstract well-posedness result:
$T_{\operatorname{ker}(D-M)}: \operatorname{ker}(D-M) \longrightarrow L$ is an isomorphism.

What is a natural way?

Abstract well-posedness result:
$T_{\left.\right|_{\operatorname{ker}(D-M)}}: \operatorname{ker}(D-M) \longrightarrow L$ is an isomorphism.
should correspond to the
Weak well-posedness result for the original problem:

$$
\left\{\begin{array}{l}
T \mathrm{u}=\mathrm{f} \\
\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0
\end{array}\right.
$$

meaning that any smooth weak solution is also a classical solution

What is a natural way?

Abstract well-posedness result:
$T_{\left.\right|_{\operatorname{ker}(D-M)}}: \operatorname{ker}(D-M) \longrightarrow L$ is an isomorphism.
should correspond to the Weak well-posedness result for the original problem:

$$
\left\{\begin{array}{l}
T \mathrm{u}=\mathrm{f} \\
\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0
\end{array}\right.
$$

meaning that any smooth weak solution is also a classical solution
i.e. smooth $u \in \operatorname{ker}(A-M)$ should satisfy $\left(\mathbf{A}_{\nu}-\mathbf{M}\right) u_{u_{\partial \Omega}}=0$

Representation of D and M via matrix fields

For $\mathrm{u}, \mathrm{v} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ we have

$$
{ }_{W^{\prime}}\langle D \mathbf{u}, \mathbf{v}\rangle_{W}=\int_{\Gamma} \mathbf{A}_{\nu}(\mathbf{x}) \mathbf{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathrm{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x})
$$

Representation of D and M via matrix fields

For $\mathrm{u}, \mathrm{v} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ we have

$$
{ }_{W}\left\langle\langle D \mathbf{u}, \mathbf{v}\rangle_{W}=\int_{\Gamma} \mathbf{A}_{\nu}(\mathbf{x}) \mathbf{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathrm{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x}) .\right.
$$

For a given field \mathbf{M}, it is reasonable to seek an operator M of the form

$$
\begin{equation*}
{ }_{W}\left\langle\langle M \mathbf{u}, \mathbf{v}\rangle_{W}=\int_{\Gamma} \mathbf{M}(\mathbf{x}) \mathbf{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathbf{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x})\right. \tag{m}
\end{equation*}
$$

Representation of D and M via matrix fields

For $\mathrm{u}, \mathrm{v} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ we have

$$
{ }_{W^{\prime}}\langle D \mathrm{u}, \mathrm{v}\rangle_{W}=\int_{\Gamma} \mathbf{A}_{\nu}(\mathbf{x}) \mathbf{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathrm{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x}) .
$$

For a given field M , it is reasonable to seek an operator M of the form

$$
\begin{equation*}
{ }_{W}\left\langle\langle M \mathbf{u}, \mathrm{v}\rangle_{W}=\int_{\Gamma} \mathbf{M}(\mathbf{x}) \mathrm{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathrm{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x}) .\right. \tag{m}
\end{equation*}
$$

\ldots then smooth $\mathrm{u} \in \operatorname{ker}(D-M)$ would satisfy $\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0$

Representation of D and M via matrix fields

For $\mathrm{u}, \mathrm{v} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ we have

$$
{ }_{W^{\prime}}\langle D \mathbf{u}, \mathbf{v}\rangle_{W}=\int_{\Gamma} \mathbf{A}_{\nu}(\mathbf{x}) \mathbf{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathbf{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x}) .
$$

For a given field \mathbf{M}, it is reasonable to seek an operator M of the form

$$
\begin{equation*}
{ }_{W}\left\langle\langle M \mathbf{u}, \mathrm{v}\rangle_{W}=\int_{\Gamma} \mathbf{M}(\mathbf{x}) \mathrm{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathrm{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x}) .\right. \tag{m}
\end{equation*}
$$

\ldots then smooth $\mathrm{u} \in \operatorname{ker}(D-M)$ would satisfy $\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathbf{u}_{\left.\right|_{\Gamma}}=0$
Question: Do (FM) and (m) define $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M)?

Representation of D and M via matrix fields

For $\mathrm{u}, \mathrm{v} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ we have

$$
{ }_{W^{\prime}}\langle D \mathbf{u}, \mathbf{v}\rangle_{W}=\int_{\Gamma} \mathbf{A}_{\nu}(\mathbf{x}) \mathbf{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathbf{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x}) .
$$

For a given field \mathbf{M}, it is reasonable to seek an operator M of the form

$$
\begin{equation*}
{ }_{W^{\prime}}\langle M \mathbf{u}, \mathrm{v}\rangle_{W}=\int_{\Gamma} \mathbf{M}(\mathbf{x}) \mathrm{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathrm{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x}) . \tag{m}
\end{equation*}
$$

\ldots then smooth $\mathrm{u} \in \operatorname{ker}(D-M)$ would satisfy $\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0$
Question: Do (FM) and (m) define $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M)?
Answer: not in general (by a counterexample)

Representation of D and M via matrix fields

For $\mathrm{u}, \mathrm{v} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ we have

$$
{ }_{W^{\prime}}\langle D \mathbf{u}, \mathbf{v}\rangle_{W}=\int_{\Gamma} \mathbf{A}_{\nu}(\mathbf{x}) \mathbf{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathbf{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x}) .
$$

For a given field \mathbf{M}, it is reasonable to seek an operator M of the form

$$
\begin{equation*}
{ }_{W^{\prime}}\langle M \mathbf{u}, \mathrm{v}\rangle_{W}=\int_{\Gamma} \mathbf{M}(\mathbf{x}) \mathrm{u}_{\left.\right|_{\Gamma}}(\mathbf{x}) \cdot \mathrm{v}_{\left.\right|_{\Gamma}}(\mathbf{x}) d S(\mathbf{x}) . \tag{m}
\end{equation*}
$$

\ldots then smooth $\mathrm{u} \in \operatorname{ker}(D-M)$ would satisfy $\left(\mathbf{A}_{\nu}-\mathbf{M}\right) \mathrm{u}_{\left.\right|_{\Gamma}}=0$
Question: Do (FM) and (m) define $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M)?
Answer: not in general (by a counterexample)
Question: ... perhaps under some additional assumptions. . . ?

Idea: represent \mathbf{M} by \mathbf{A}_{ν}

Lemma. If \mathbf{M} satisfies ($F M$), then (for ae $\mathbf{x} \in \Gamma$) there is a pair of projectors $\mathbf{S}_{+}(\mathbf{x}), \mathbf{S}_{-}(\mathbf{x})$ (i.e. $\mathbf{S}_{+}(\mathbf{x})+\mathbf{S}_{-}(\mathbf{x})=\mathbf{I}$ and $\left.\mathbf{S}_{+}(\mathbf{x}) \mathbf{S}_{-}(\mathbf{x})=\mathbf{S}_{-}(\mathbf{x}) \mathbf{S}_{+}(\mathbf{x})=\mathbf{0}\right)$, s.t.

$$
\left(\mathbf{A}_{\nu}+\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{+}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x}) \quad \& \quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{-}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x})
$$

Idea: represent \mathbf{M} by \mathbf{A}_{ν}

Lemma. If \mathbf{M} satisfies ($F M$), then (for ae $\mathbf{x} \in \Gamma$) there is a pair of projectors $\mathbf{S}_{+}(\mathbf{x}), \mathbf{S}_{-}(\mathbf{x})$
(i.e. $\mathbf{S}_{+}(\mathbf{x})+\mathbf{S}_{-}(\mathbf{x})=\mathbf{I}$ and $\left.\mathbf{S}_{+}(\mathbf{x}) \mathbf{S}_{-}(\mathbf{x})=\mathbf{S}_{-}(\mathbf{x}) \mathbf{S}_{+}(\mathbf{x})=\mathbf{0}\right)$, s.t.

$$
\left(\mathbf{A}_{\nu}+\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{+}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x}) \quad \& \quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{-}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x})
$$

Therefore

$$
\mathbf{M}(\mathbf{x})=\left(\mathbf{I}-2 \mathbf{S}_{-}^{\top}(\mathbf{x})\right) \mathbf{A}_{\nu}(\mathbf{x})
$$

Idea: represent \mathbf{M} by \mathbf{A}_{ν}

Lemma. If \mathbf{M} satisfies ($F M$), then (for ae $\mathbf{x} \in \Gamma$) there is a pair of projectors $\mathbf{S}_{+}(\mathbf{x}), \mathbf{S}_{-}(\mathbf{x})$
(i.e. $\mathbf{S}_{+}(\mathbf{x})+\mathbf{S}_{-}(\mathbf{x})=\mathbf{I}$ and $\left.\mathbf{S}_{+}(\mathbf{x}) \mathbf{S}_{-}(\mathbf{x})=\mathbf{S}_{-}(\mathbf{x}) \mathbf{S}_{+}(\mathbf{x})=\mathbf{0}\right)$, s.t.

$$
\left(\mathbf{A}_{\nu}+\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{+}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x}) \quad \& \quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{-}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x})
$$

Therefore

$$
\mathbf{M}(\mathbf{x})=\left(\mathbf{I}-2 \mathbf{S}_{-}^{\top}(\mathbf{x})\right) \mathbf{A}_{\nu}(\mathbf{x})
$$

... under additional regularity on $\mathbf{S}_{\text {- expect continuity of } M \ldots}$

Idea: represent \mathbf{M} by \mathbf{A}_{ν}

Lemma. If \mathbf{M} satisfies ($F M$), then (for ae $\mathbf{x} \in \Gamma$) there is a pair of projectors $\mathbf{S}_{+}(\mathbf{x}), \mathbf{S}_{-}(\mathbf{x})$
(i.e. $\mathbf{S}_{+}(\mathbf{x})+\mathbf{S}_{-}(\mathbf{x})=\mathbf{I}$ and $\left.\mathbf{S}_{+}(\mathbf{x}) \mathbf{S}_{-}(\mathbf{x})=\mathbf{S}_{-}(\mathbf{x}) \mathbf{S}_{+}(\mathbf{x})=\mathbf{0}\right)$, s.t.

$$
\left(\mathbf{A}_{\nu}+\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{+}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x}) \quad \& \quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{-}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x})
$$

Therefore

$$
\mathbf{M}(\mathbf{x})=\left(\mathbf{I}-2 \mathbf{S}_{-}^{\top}(\mathbf{x})\right) \mathbf{A}_{\nu}(\mathbf{x})
$$

... under additional regularity on $\mathbf{S}_{\text {- expect continuity of } M \ldots}$
\ldots (M1) then trivially follows from (FM1)...

Idea: represent \mathbf{M} by \mathbf{A}_{ν}

Lemma. If \mathbf{M} satisfies ($F M$), then (for ae $\mathbf{x} \in \Gamma$) there is a pair of projectors $\mathbf{S}_{+}(\mathbf{x}), \mathbf{S}_{-}(\mathbf{x})$
(i.e. $\mathbf{S}_{+}(\mathbf{x})+\mathbf{S}_{-}(\mathbf{x})=\mathbf{I}$ and $\left.\mathbf{S}_{+}(\mathbf{x}) \mathbf{S}_{-}(\mathbf{x})=\mathbf{S}_{-}(\mathbf{x}) \mathbf{S}_{+}(\mathbf{x})=\mathbf{0}\right)$, s.t.

$$
\left(\mathbf{A}_{\nu}+\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{+}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x}) \quad \& \quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{-}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x})
$$

Therefore

$$
\mathbf{M}(\mathbf{x})=\left(\mathbf{I}-2 \mathbf{S}_{-}^{\top}(\mathbf{x})\right) \mathbf{A}_{\nu}(\mathbf{x})
$$

... under additional regularity on \mathbf{S}_{-}expect continuity of $M \ldots$
\ldots (M1) then trivially follows from (FM1)...
... perhaps this regularity is strong enough to derive (M2) from (FM2)?

Idea: represent \mathbf{M} by \mathbf{A}_{ν}

Lemma. If \mathbf{M} satisfies ($F M$), then (for ae $\mathbf{x} \in \Gamma$) there is a pair of projectors $\mathbf{S}_{+}(\mathbf{x}), \mathbf{S}_{-}(\mathbf{x})$
(i.e. $\mathbf{S}_{+}(\mathbf{x})+\mathbf{S}_{-}(\mathbf{x})=\mathbf{I}$ and $\left.\mathbf{S}_{+}(\mathbf{x}) \mathbf{S}_{-}(\mathbf{x})=\mathbf{S}_{-}(\mathbf{x}) \mathbf{S}_{+}(\mathbf{x})=\mathbf{0}\right)$, s.t.

$$
\left(\mathbf{A}_{\nu}+\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{+}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x}) \quad \& \quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{-}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x})
$$

Therefore

$$
\mathbf{M}(\mathbf{x})=\left(\mathbf{I}-2 \mathbf{S}_{-}^{\top}(\mathbf{x})\right) \mathbf{A}_{\nu}(\mathbf{x})
$$

... under additional regularity on \mathbf{S}_{-}expect continuity of $M \ldots$
\ldots (M1) then trivially follows from (FM1)...
... perhaps this regularity is strong enough to derive (M2) from (FM2)?
N. Antonić, K. Burazin: Boundary operator from matrix field formulation of boundary conditions for Friedrichs systems, Journal of Differential Equations 250 (2011) 3630-3651.

Idea: represent \mathbf{M} by \mathbf{A}_{ν}

Lemma. If \mathbf{M} satisfies ($F M$), then (for ae $\mathbf{x} \in \Gamma$) there is a pair of projectors $\mathbf{S}_{+}(\mathbf{x}), \mathbf{S}_{-}(\mathbf{x})$
(i.e. $\mathbf{S}_{+}(\mathbf{x})+\mathbf{S}_{-}(\mathbf{x})=\mathbf{I}$ and $\left.\mathbf{S}_{+}(\mathbf{x}) \mathbf{S}_{-}(\mathbf{x})=\mathbf{S}_{-}(\mathbf{x}) \mathbf{S}_{+}(\mathbf{x})=\mathbf{0}\right)$, s.t.

$$
\left(\mathbf{A}_{\nu}+\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{+}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x}) \quad \& \quad\left(\mathbf{A}_{\nu}-\mathbf{M}\right)(\mathbf{x})=2 \mathbf{S}_{-}^{\top}(\mathbf{x}) \mathbf{A}_{\nu}(\mathbf{x})
$$

Therefore

$$
\mathbf{M}(\mathbf{x})=\left(\mathbf{I}-2 \mathbf{S}_{-}^{\top}(\mathbf{x})\right) \mathbf{A}_{\nu}(\mathbf{x})
$$

... under additional regularity on \mathbf{S}_{-}expect continuity of $M \ldots$
\ldots (M1) then trivially follows from (FM1)...
... perhaps this regularity is strong enough to derive (M2) from (FM2)?
N. Antonić, K. Burazin: Boundary operator from matrix field formulation of boundary conditions for Friedrichs systems, Journal of Differential Equations 250 (2011) 3630-3651.
... not good enough for applications to hyperbolic equations

\mathbf{P} is not necessarily a projector

Lemma

For a matrix field M the following statements are equivalent.

- M satisfies (FM2).
- There is a matrix field \mathbf{P} such that $\mathbf{M}=\mathbf{A}_{\nu}(\mathbf{I}-2 \mathbf{P})$ and $\operatorname{ker}\left(\mathbf{A}_{\nu} \mathbf{P}\right)+\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{I}-\mathbf{P})\right)=\mathbf{R}^{r}$ ae in $\partial \Omega$.

Main result for Friedrichs systems

Theorem. Let matrix field $\mathrm{M} \in \mathrm{L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfy (FM), and let S_{-}be extendable to a measurable function on $\mathrm{Cl} \Omega$, and satisfy: (S1) The multiplication operator $\mathcal{S}_{-, p}$ is in $\mathcal{L}(W)$.

$$
\left(\mathcal{S}_{-, p}(\mathrm{v}):=\mathbf{S}_{-, p} \mathrm{v} \text { for } \mathrm{v} \in W\right)
$$

(S2) $\left(\forall v \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right)\right) \mathbf{S}_{-, p} \mathrm{v} \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right) \& \mathcal{T}_{\mathrm{H}^{1}}\left(\mathbf{S}_{-, p} \mathrm{v}\right)=\mathbf{S}_{-} \mathcal{T}_{\mathrm{H}^{1} \mathrm{v}}$.

Main result for Friedrichs systems

Theorem. Let matrix field $\mathrm{M} \in \mathrm{L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfy (FM), and let S_{-}be extendable to a measurable function on $\mathrm{Cl} \Omega$, and satisfy: (S1) The multiplication operator $\mathcal{S}_{-, p}$ is in $\mathcal{L}(W)$.

$$
\left(\mathcal{S}_{-, p}(\mathrm{v}):=\mathbf{S}_{-, p} v \text { for } v \in W\right)
$$

(S2) $\left(\forall \mathrm{v} \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right)\right) \mathbf{S}_{-, p} \mathbf{v} \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right) \& \mathcal{T}_{\mathrm{H}^{1}}\left(\mathbf{S}_{-, p} \mathrm{v}\right)=\mathbf{S}_{-} \mathcal{T}_{\mathrm{H}^{1}} \mathrm{v}$.
Then (m) defines operator $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M1).

Main result for Friedrichs systems

Theorem. Let matrix field $\mathrm{M} \in \mathrm{L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfy (FM), and let S_{-}be extendable to a measurable function on $\mathrm{Cl} \Omega$, and satisfy: (S1) The multiplication operator $\mathcal{S}_{-, p}$ is in $\mathcal{L}(W)$.

$$
\left(\mathcal{S}_{-, p}(\mathrm{v}):=\mathbf{S}_{-, p} v \text { for } v \in W\right)
$$

(S2) $\left(\forall \mathrm{v} \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right)\right) \mathbf{S}_{-, p} \mathrm{v} \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right) \& \mathcal{T}_{\mathrm{H}^{1}}\left(\mathbf{S}_{-, p} \mathrm{v}\right)=\mathbf{S}_{-} \mathcal{T}_{\mathrm{H}^{1}} \mathrm{v}$.
Then (m) defines operator $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M1).
Furthermore, such M satisfies (M2).

Main result for Friedrichs systems

Theorem. Let matrix field $\mathrm{M} \in \mathrm{L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfy (FM), and let S_{-}be extendable to a measurable function on $\mathrm{CI} \Omega$, and satisfy:
(S1) The multiplication operator $\mathcal{S}_{-, p}$ is in $\mathcal{L}(W)$.

$$
\left(\mathcal{S}_{-, p}(\mathrm{v}):=\mathbf{S}_{-, p} v \text { for } v \in W\right)
$$

(S2) $\left(\forall \mathrm{v} \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right)\right) \mathbf{S}_{-, p} \mathrm{v} \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right) \& \mathcal{T}_{\mathrm{H}^{1}}\left(\mathbf{S}_{-, p} \mathrm{v}\right)=\mathbf{S}_{-} \mathcal{T}_{\mathrm{H}^{1}} \mathrm{v}$.
Then (m) defines operator $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M1).
Furthermore, such M satisfies (M2).

Test on examples ...

Main result for Friedrichs systems

Theorem. Let matrix field $\mathrm{M} \in \mathrm{L}^{\infty}\left(\Gamma ; \mathrm{M}_{r}(\mathbf{R})\right)$ satisfy (FM), and let S_{-}be extendable to a measurable function on $\mathrm{Cl} \Omega$, and satisfy:
(S1) The multiplication operator $\mathcal{S}_{-, p}$ is in $\mathcal{L}(W)$.

$$
\left(\mathcal{S}_{-, p}(\mathrm{v}):=\mathbf{S}_{-, p} v \text { for } v \in W\right)
$$

(S2) $\left(\forall \mathrm{v} \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right)\right) \mathbf{S}_{-, p} \mathrm{v} \in \mathrm{H}^{1}\left(\Omega ; \mathbf{R}^{r}\right) \& \mathcal{T}_{\mathrm{H}^{1}}\left(\mathbf{S}_{-, p} \mathrm{v}\right)=\mathbf{S}_{-} \mathcal{T}_{\mathrm{H}^{1}} \mathrm{v}$.
Then (m) defines operator $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M1).
Furthermore, such M satisfies (M2).

Test on examples ... assumptions are reasonable ...

An example - scalar elliptic equation
$\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
-\triangle u+\mu u=f
$$

An example - scalar elliptic equation

$\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
-\Delta u+\mu u=f
$$

can be written as a first-order system

$$
\left\{\begin{array}{l}
\mathrm{p}+\nabla u=0 \\
\mu u+\operatorname{divp}=f
\end{array}\right.
$$

An example - scalar elliptic equation

$\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
-\triangle u+\mu u=f
$$

can be written as a first-order system

$$
\left\{\begin{array}{l}
\mathrm{p}+\nabla u=0 \\
\mu u+\operatorname{divp}=f
\end{array}\right.
$$

which is a Friedrichs system with the choice of

$$
\mathbf{A}_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad \mathbf{A}_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mu
\end{array}\right] .
$$

An example - scalar elliptic equation

$\Omega \subseteq \mathbf{R}^{2}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
-\triangle u+\mu u=f
$$

can be written as a first-order system

$$
\left\{\begin{array}{l}
\mathrm{p}+\nabla u=0 \\
\mu u+\operatorname{divp}=f
\end{array}\right.
$$

which is a Friedrichs system with the choice of

$$
\mathbf{A}_{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad \mathbf{A}_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mu
\end{array}\right]
$$

Note

$$
\mathbf{A}_{\nu}=\nu_{1} \mathbf{A}_{1}+\nu_{2} \mathbf{A}_{2}=\left[\begin{array}{ccc}
0 & 0 & \nu_{1} \\
0 & 0 & \nu_{2} \\
\nu_{1} & \nu_{2} & 0
\end{array}\right] .
$$

Elliptic equation - different boundary conditions

$$
\begin{array}{ccc}
\mathbf{M} & \mathbf{A}_{\nu}-\mathbf{M} & \left(\mathbf{A}_{\nu}-\mathbf{M}\right)\left[\begin{array}{l}
\mathbf{p} \\
u
\end{array}\right]_{\left.\right|_{\Gamma}}=0 \\
{\left[\begin{array}{ccc}
0 & 0 & -\nu_{1} \\
0 & 0 & -\nu_{2} \\
\nu_{1} & \nu_{2} & 0
\end{array}\right]} & {\left[\begin{array}{ccc}
0 & 0 & 2 \nu_{1} \\
0 & 0 & 2 \nu_{2} \\
0 & 0 & 0
\end{array}\right]} & u_{\mid \Gamma}=0
\end{array}
$$

Elliptic equation - different boundary conditions

$$
\begin{gathered}
\mathbf{M}
\end{gathered} \begin{array}{cc}
\mathbf{A}_{\nu}-\mathbf{M} & \left(\mathbf{A}_{\nu}-\mathbf{M}\right)\left[\begin{array}{l}
\mathrm{p} \\
u
\end{array}\right]_{\left.\right|_{\Gamma}}=0 \\
{\left[\begin{array}{ccc}
0 & 0 & -\nu_{1} \\
0 & 0 & -\nu_{2} \\
\nu_{1} & \nu_{2} & 0
\end{array}\right]} & {\left[\begin{array}{ccc}
0 & 0 & 2 \nu_{1} \\
0 & 0 & 2 \nu_{2} \\
0 & 0 & 0
\end{array}\right]}
\end{array}
$$

Elliptic equation - different boundary conditions

$$
\begin{aligned}
& \text { M } \\
& \mathbf{A}_{\nu}-\mathbf{M} \\
& {\left[\begin{array}{ccc}
0 & 0 & 2 \nu_{1} \\
0 & 0 & 2 \nu_{2} \\
0 & 0 & 0
\end{array}\right] \quad u_{\left.\right|_{\Gamma}}=0} \\
& {\left[\begin{array}{ccc}
0 & 0 & \nu_{1} \\
0 & 0 & \nu_{2} \\
-\nu_{1} & -\nu_{2} & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 \nu_{1} & 2 \nu_{2} & 0
\end{array}\right]} \\
& \left.\boldsymbol{\nu} \cdot(\nabla u)\right|_{\Gamma}=0 \\
& {\left[\begin{array}{ccc}
0 & 0 & \nu_{1} \\
0 & 0 & \nu_{2} \\
-\nu_{1} & -\nu_{2} & 2 \alpha
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 \nu_{1} & 2 \nu_{2} & 2 \alpha
\end{array}\right]} \\
& \boldsymbol{\nu} \cdot(\nabla u)_{\left.\right|_{\Gamma}}+\left.\alpha u\right|_{\Gamma}=0
\end{aligned}
$$

Elliptic equation - different boundary conditions

$$
\begin{aligned}
& \text { M } \\
& {\left[\begin{array}{ccc}
0 & 0 & -\nu_{1} \\
0 & 0 & -\nu_{2} \\
\nu_{1} & \nu_{2} & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & 0 & 2 \nu_{1} \\
0 & 0 & 2 \nu_{2} \\
0 & 0 & 0
\end{array}\right]} \\
& {\left.\left[\begin{array}{ccc}
0 & 0 & \nu_{1} \\
0 & 0 & \nu_{2} \\
-\nu_{1} & -\nu_{2} & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 \nu_{1} & 2 \nu_{2} & 0
\end{array}\right] \quad \boldsymbol{\nu} \cdot(\nabla u)\right|_{\Gamma}=0} \\
& {\left[\begin{array}{ccc}
0 & 0 & \nu_{1} \\
0 & 0 & \nu_{2} \\
-\nu_{1} & -\nu_{2} & 2 \alpha
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
2 \nu_{1} & 2 \nu_{2} & 2 \alpha
\end{array}\right] \quad \nu \cdot(\nabla u)_{\Gamma}+\alpha u_{\left.\right|_{\Gamma}}=0}
\end{aligned}
$$

All above matrices M satisfy (FM).

Elliptic equation - projector \mathbf{S}_{-}

Dirichlet:

$$
\mathbf{S}_{-}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Elliptic equation - projector \mathbf{S}_{-}

Dirichlet:

$$
\mathbf{S}_{-}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Neumann:

$$
\mathbf{S}_{-}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Elliptic equation - projector \mathbf{S}_{-}

Dirichlet:

$$
\mathbf{S}_{-}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Neumann:

$$
\mathbf{S}_{-}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Robin:

$$
\mathbf{S}_{-}=\left[\begin{array}{ccc}
0 & 0 & -\alpha \nu_{1} \\
0 & 0 & -\alpha \nu_{2} \\
0 & 0 & 1
\end{array}\right]
$$

Elliptic equation - projector \mathbf{S}_{-}

Dirichlet:

$$
\mathbf{S}_{-}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Neumann:

$$
\mathbf{S}_{-}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Robin:

$$
\mathbf{S}_{-}=\left[\begin{array}{ccc}
0 & 0 & -\alpha \nu_{1} \\
0 & 0 & -\alpha \nu_{2} \\
0 & 0 & 1
\end{array}\right]
$$

Constants can easily be extended, but we need $\boldsymbol{\nu}: \Gamma \longrightarrow \mathbf{R}^{r}$ to be Lipschitz in order to have bounded multiplication for the Robin b.c.

Practical sufficient conditions

Lemma

For constant $\mathbf{A}_{k} \in \mathrm{M}_{r}(\mathbf{R})$ and $\mathbf{P} \in \mathrm{M}_{r}(\mathbf{R})$ the multiplication operator $\mathrm{u} \mapsto \mathbf{P u}$ belongs to $\mathcal{L}(W)$ if and only if there exists $\mathbf{S} \in \mathrm{M}_{r}(\mathbf{R})$ such that $\mathbf{A}_{k} \mathbf{P}=\mathbf{S A}_{k}$ for $k \in 1 . . d$.

Practical sufficient conditions

Lemma
For constant $\mathbf{A}_{k} \in \mathrm{M}_{r}(\mathbf{R})$ and $\mathbf{P} \in \mathrm{M}_{r}(\mathbf{R})$ the multiplication operator $\mathrm{u} \mapsto \mathbf{P u}$ belongs to $\mathcal{L}(W)$ if and only if there exists $\mathbf{S} \in \mathrm{M}_{r}(\mathbf{R})$ such that $\mathbf{A}_{k} \mathbf{P}=\mathbf{S A}_{k}$ for $k \in 1 . . d$.

Theorem (sufficient conditions)
Let $\mathbf{P}: \mathrm{Cl} \Omega \longrightarrow \mathrm{M}_{r}(\mathbf{R})$ be a Lipschitz matrix function satisfying:
$-\left(\exists \mathbf{S} \in \mathrm{W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right)\right)(\forall k \in 1 . . d) \quad \mathbf{A}_{k} \mathbf{P}=\mathbf{S A}_{k}$

Practical sufficient conditions

Lemma
For constant $\mathbf{A}_{k} \in \mathrm{M}_{r}(\mathbf{R})$ and $\mathbf{P} \in \mathrm{M}_{r}(\mathbf{R})$ the multiplication operator $\mathrm{u} \mapsto \mathbf{P u}$ belongs to $\mathcal{L}(W)$ if and only if there exists $\mathbf{S} \in \mathrm{M}_{r}(\mathbf{R})$ such that $\mathbf{A}_{k} \mathbf{P}=\mathbf{S A}_{k}$ for $k \in 1 . . d$.

Theorem (sufficient conditions)
Let $\mathbf{P}: \mathrm{Cl} \Omega \longrightarrow \mathrm{M}_{r}(\mathbf{R})$ be a Lipschitz matrix function satisfying:
$-\left(\exists \mathbf{S} \in \mathrm{W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right)\right)(\forall k \in 1 . . d) \quad \mathbf{A}_{k} \mathbf{P}=\mathbf{S A}_{k}$,

- for almost every $\mathbf{x} \in \partial \Omega$ the matrix $\mathbf{A}_{\nu}(\mathbf{x})(\mathbf{I}-2 \mathbf{P}(\mathbf{x}))$ is positive semidefinite

Practical sufficient conditions

Lemma
For constant $\mathbf{A}_{k} \in \mathrm{M}_{r}(\mathbf{R})$ and $\mathbf{P} \in \mathrm{M}_{r}(\mathbf{R})$ the multiplication operator $\mathrm{u} \mapsto \mathbf{P u}$ belongs to $\mathcal{L}(W)$ if and only if there exists $\mathbf{S} \in \mathrm{M}_{r}(\mathbf{R})$ such that $\mathbf{A}_{k} \mathbf{P}=\mathbf{S A}_{k}$ for $k \in 1 . . d$.

Theorem (sufficient conditions)
Let $\mathbf{P}: \mathrm{Cl} \Omega \longrightarrow \mathrm{M}_{r}(\mathbf{R})$ be a Lipschitz matrix function satisfying:
$-\left(\exists \mathbf{S} \in \mathrm{W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right)\right)(\forall k \in 1 . . d) \quad \mathbf{A}_{k} \mathbf{P}=\mathbf{S A}_{k}$,

- for almost every $\mathbf{x} \in \partial \Omega$ the matrix $\mathbf{A}_{\nu}(\mathbf{x})(\mathbf{I}-2 \mathbf{P}(\mathbf{x}))$ is positive semidefinite, and
- for almost every $\mathbf{x} \in \partial \Omega$ it holds
$\operatorname{ker}\left(\mathbf{A}_{\nu}(\mathbf{x}) \mathbf{P}(\mathbf{x})\right)+\operatorname{ker}\left(\left(\mathbf{A}_{\nu}(\mathbf{x})(\mathbf{I}-\mathbf{P}(\mathbf{x}))\right)=\mathbf{R}^{r}\right.$.

Practical sufficient conditions

Lemma
For constant $\mathbf{A}_{k} \in \mathrm{M}_{r}(\mathbf{R})$ and $\mathbf{P} \in \mathrm{M}_{r}(\mathbf{R})$ the multiplication operator $\mathrm{u} \mapsto \mathbf{P u}$ belongs to $\mathcal{L}(W)$ if and only if there exists $\mathbf{S} \in \mathrm{M}_{r}(\mathbf{R})$ such that $\mathbf{A}_{k} \mathbf{P}=\mathbf{S A}_{k}$ for $k \in 1 . . d$.

Theorem (sufficient conditions)
Let $\mathbf{P}: \mathrm{Cl} \Omega \longrightarrow \mathrm{M}_{r}(\mathbf{R})$ be a Lipschitz matrix function satisfying:
$-\left(\exists \mathbf{S} \in \mathrm{W}^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right)\right)(\forall k \in 1 . . d) \quad \mathbf{A}_{k} \mathbf{P}=\mathbf{S A}_{k}$,

- for almost every $\mathbf{x} \in \partial \Omega$ the matrix $\mathbf{A}_{\nu}(\mathbf{x})(\mathbf{I}-2 \mathbf{P}(\mathbf{x}))$ is positive semidefinite , and
- for almost every $\mathbf{x} \in \partial \Omega$ it holds
$\operatorname{ker}\left(\mathbf{A}_{\boldsymbol{\nu}}(\mathbf{x}) \mathbf{P}(\mathbf{x})\right)+\operatorname{ker}\left(\left(\mathbf{A}_{\boldsymbol{\nu}}(\mathbf{x})(\mathbf{I}-\mathbf{P}(\mathbf{x}))\right)=\mathbf{R}^{r}\right.$.
Then formula (m), for $\mathbf{M}(\mathbf{x}):=\mathbf{A}_{\nu}(\mathbf{x})(\mathbf{I}-2 \mathbf{P}(\mathbf{x}))$ on $\partial \Omega$, defines a bounded operator $M \in \mathcal{L}\left(W ; W^{\prime}\right)$ satisfying (M).

Tests on examples

Applications on hyperbolic equations (transport and wave equation)

Tests on examples

Applications on hyperbolic equations (transport and wave equation)
N. Antonić, K. Burazin, M. Vrdoljak: Second-order equations as Friedrichs systems, Nonlin. Analysis B: Real World Appl. 14 (2014) 290-305.

Tests on examples

Applications on hyperbolic equations (transport and wave equation)
N. Antonić, K. Burazin, M. Vrdoljak: Second-order equations as Friedrichs systems, Nonlin. Analysis B: Real World Appl. 14 (2014) 290-305.
. . still unable do get good results for mixed type problems

Heat equation

... with zero initial and Dirichlet boundary condition:

$$
\left\{\begin{array}{l}
\partial_{t} u-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A} \nabla_{\mathbf{x}} u\right)+\mathbf{b} \cdot \nabla_{\mathbf{x}} u+c u=f \text { in } \Omega_{T} \\
u=0 \text { on } \partial \Omega \times\langle 0, T\rangle \\
u(\cdot, 0)=0 \text { on } \Omega
\end{array}\right.
$$

Heat equation

... with zero initial and Dirichlet boundary condition:

$$
\left\{\begin{array}{l}
\partial_{t} u-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A} \nabla_{\mathbf{x}} u\right)+\mathbf{b} \cdot \nabla_{\mathbf{x}} u+c u=f \text { in } \Omega_{T} \\
u=0 \text { on } \partial \Omega \times\langle 0, T\rangle \\
u(\cdot, 0)=0 \text { on } \Omega
\end{array}\right.
$$

...as a Friedrichs system:

$$
\left\{\begin{array}{l}
\nabla_{\mathbf{x}} u_{d+1}+\mathbf{A}^{-1} \mathbf{u}_{d}=0 \\
\partial_{t} u_{d+1}+\operatorname{div}_{\mathbf{x}} \mathbf{u}_{d}+c u_{d+1}-\mathbf{A}^{-1} \mathbf{b} \cdot \mathbf{u}_{d}=f
\end{array}\right.
$$

(note that we use $\mathrm{u}=\left(\mathrm{u}_{d}, u_{d+1}\right)^{\top}$).

Friedrichs operator and the graph space

The operator T is given by

$$
T\left[\begin{array}{c}
\mathbf{u}_{d} \\
u_{d+1}
\end{array}\right]=\left[\begin{array}{c}
\nabla_{\mathbf{x}} u_{d+1}+\mathbf{A}^{-1} \mathbf{u}_{d} \\
\partial_{t} u_{d+1}+\operatorname{div}_{\mathbf{x}} \mathbf{u}_{d}+c u_{d+1}-\mathbf{A}^{-1} \mathbf{b} \cdot \mathbf{u}_{d}
\end{array}\right]
$$

Friedrichs operator and the graph space

The operator T is given by

$$
T\left[\begin{array}{c}
\mathbf{u}_{d} \\
u_{d+1}
\end{array}\right]=\left[\begin{array}{c}
\nabla_{\mathbf{x}} u_{d+1}+\mathbf{A}^{-1} \mathbf{u}_{d} \\
\partial_{t} u_{d+1}+\operatorname{div}_{\mathbf{x}} \mathbf{u}_{d}+c u_{d+1}-\mathbf{A}^{-1} \mathbf{b} \cdot \mathbf{u}_{d}
\end{array}\right],
$$

while the corresponding graph space is

$$
\begin{aligned}
& W=\left\{\mathrm{u} \in \mathrm{~L}^{2}\left(\Omega_{T} ; \mathbf{R}^{d+1}\right): \nabla_{\mathbf{x}} u_{d+1} \in \mathrm{~L}^{2}\left(\Omega_{T} ; \mathbf{R}^{d}\right)\right. \\
&\left.\& \partial_{t} u_{d+1}+\operatorname{div}_{\mathbf{x}} \mathrm{u}_{d} \in \mathrm{~L}^{2}\left(\Omega_{T}\right)\right\} \\
&=\left\{\mathrm{u} \in \mathrm{~L}_{\mathrm{div}}^{2}\left(\Omega_{T}\right): \nabla_{\mathbf{x}} u_{d+1} \in \mathrm{~L}^{2}\left(\Omega_{T} ; \mathbf{R}^{d}\right)\right\} \\
&=\left\{\mathrm{u} \in \mathrm{~L}_{\mathrm{div}}^{2}\left(\Omega_{T}\right): u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}^{1}(\Omega)\right)\right\} .
\end{aligned}
$$

Properties of the last component

Lemma. The projection $\mathrm{u}=\left(\mathrm{u}_{d}, u_{d+1}\right)^{\top} \mapsto u_{d+1}$ is a continuous linear operator from W to $W(0, T)$, which is continuously embedded to $\mathrm{C}\left([0, T] ; \mathrm{L}^{2}(\Omega)\right)$.

Properties of the last component

Lemma. The projection $\mathbf{u}=\left(\mathrm{u}_{d}, u_{d+1}\right)^{\top} \mapsto u_{d+1}$ is a continuous linear operator from W to $W(0, T)$, which is continuously embedded to $\mathrm{C}\left([0, T] ; \mathrm{L}^{2}(\Omega)\right)$.

The space

$$
W(0, T)=\left\{u \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}^{1}(\Omega)\right): \partial_{t} u \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}^{-1}(\Omega)\right)\right\}
$$

is a Banach space when equipped by norm

$$
\|\mathbf{u}\|_{W(0, T)}=\sqrt{\|u\|_{\mathrm{L}^{2}\left(0, T ; \mathrm{H}^{1}(\Omega)\right)}^{2}+\left\|\partial_{t} u\right\|_{\mathrm{L}^{2}\left(0, T ; \mathrm{H}^{-1}(\Omega)\right)}^{2}} .
$$

Main result

Let

$$
\begin{aligned}
& V=\left\{\mathrm{u} \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\} \\
& \tilde{V}=\left\{\mathrm{v} \in W: v_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad v_{d+1}(\cdot, T)=0 \text { a.e. on } \Omega\right\} .
\end{aligned}
$$

Main result

Let

$$
\begin{array}{ll}
V=\left\{\mathrm{u} \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right),\right. & \left.u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\}, \\
\widetilde{V}=\left\{\mathrm{v} \in W: v_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right),\right. & \left.v_{d+1}(\cdot, T)=0 \text { a.e. on } \Omega\right\} .
\end{array}
$$

Do they satisfy (V1)-(V2)?

Main result

Let

$$
\begin{array}{ll}
V=\left\{\mathrm{u} \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right),\right. & \left.u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\}, \\
\widetilde{V}=\left\{\mathrm{v} \in W: v_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right),\right. & \left.v_{d+1}(\cdot, T)=0 \text { a.e. on } \Omega\right\} .
\end{array}
$$

Do they satisfy (V1)-(V2)? Technical...

Main result

Let

$$
\begin{aligned}
& V=\left\{\mathrm{u} \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\} \\
& \widetilde{V}=\left\{\mathrm{v} \in W: v_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad v_{d+1}(\cdot, T)=0 \text { a.e. on } \Omega\right\}
\end{aligned}
$$

Do they satisfy (V1)-(V2)? Technical...
Theorem
The above V and \widetilde{V} satisfy (V1)-(V2), and therefore the operator $T_{\left.\right|_{V}}: V \longrightarrow L$ is an isomorphism.

Two-field theory...

Heat equation with $\mathrm{b}=0$ and $c=0$:

$$
\left\{\begin{aligned}
& \partial_{t} u-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A} \nabla_{\mathbf{x}} u\right)=f \text { in } \Omega_{T} \\
& u=0 \text { on } \Gamma \times\langle 0, T\rangle \\
& u(\cdot, 0)=0 \text { on } \Omega
\end{aligned}\right.
$$

Two-field theory. . .

Heat equation with $\mathrm{b}=0$ and $c=0$:

$$
\left\{\begin{array}{l}
\partial_{t} u-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A} \nabla_{\mathbf{x}} u\right)=f \text { in } \Omega_{T} \\
u=0 \text { on } \Gamma \times\langle 0, T\rangle \\
u(\cdot, 0)=0 \text { on } \Omega
\end{array}\right.
$$

Two field theory:

Two-field theory...

Heat equation with $\mathrm{b}=0$ and $c=0$:

$$
\left\{\begin{array}{l}
\partial_{t} u-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A} \nabla_{\mathbf{x}} u\right)=f \text { in } \Omega_{T} \\
u=0 \text { on } \Gamma \times\langle 0, T\rangle \\
u(\cdot, 0)=0 \text { on } \Omega
\end{array}\right.
$$

Two field theory:
developed by Ern and Guermond for elliptic problems

Two-field theory...

Heat equation with $\mathrm{b}=0$ and $c=0$:

$$
\left\{\begin{aligned}
& \partial_{t} u-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A} \nabla_{\mathbf{x}} u\right)=f \text { in } \Omega_{T} \\
& u=0 \text { on } \Gamma \times\langle 0, T\rangle \\
& u(\cdot, 0)=0 \text { on } \Omega
\end{aligned}\right.
$$

Two field theory:
developed by Ern and Guermond for elliptic problems
matrices need to be of the form

$$
\mathbf{A}^{k}=\left[\begin{array}{cc}
\mathbf{0} & \mathrm{B}^{k} \\
\left(\mathrm{~B}^{k}\right)^{\top} & a^{k}
\end{array}\right] \quad \text { and } \quad \mathbf{C}=\left[\begin{array}{cc}
\mathbf{C}^{d} & 0 \\
0^{\top} & c^{d+1}
\end{array}\right]
$$

where $\mathrm{B}^{k} \in \mathbf{R}^{d}$ are constant vectors, $a^{k} \in \mathrm{~W}^{1, \infty}\left(\Omega_{T}\right), \mathbf{C}^{d} \in \mathrm{~L}^{\infty}\left(\Omega_{T} ; \mathrm{M}_{d}(\mathbf{R})\right)$ and $c^{d+1} \in \mathrm{~L}^{\infty}\left(\Omega_{T}\right), k \in 1 . .(d+1)$.

Two-field theory...

Heat equation with $\mathrm{b}=0$ and $c=0$:

$$
\left\{\begin{aligned}
& \partial_{t} u-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A} \nabla_{\mathbf{x}} u\right)=f \text { in } \Omega_{T} \\
& u=0 \text { on } \Gamma \times\langle 0, T\rangle \\
& u(\cdot, 0)=0 \text { on } \Omega
\end{aligned}\right.
$$

Two field theory:
developed by Ern and Guermond for elliptic problems
matrices need to be of the form

$$
\mathbf{A}^{k}=\left[\begin{array}{cc}
\mathbf{0} & \mathrm{B}^{k} \\
\left(\mathrm{~B}^{k}\right)^{\top} & a^{k}
\end{array}\right] \quad \text { and } \quad \mathbf{C}=\left[\begin{array}{cc}
\mathbf{C}^{d} & 0 \\
0^{\top} & c^{d+1}
\end{array}\right]
$$

where $\mathrm{B}^{k} \in \mathbf{R}^{d}$ are constant vectors, $a^{k} \in \mathrm{~W}^{1, \infty}\left(\Omega_{T}\right), \mathbf{C}^{d} \in \mathrm{~L}^{\infty}\left(\Omega_{T} ; \mathrm{M}_{d}(\mathbf{R})\right)$ and $c^{d+1} \in \mathrm{~L}^{\infty}\left(\Omega_{T}\right), k \in 1 . .(d+1)$.

For the heat equation matrices have this form!

Instead of coercivity (positivity) condition (F2), the following is required:

$$
\begin{aligned}
& \left(\exists \mu_{1}>0\right)\left(\forall \boldsymbol{\xi}=\left(\boldsymbol{\xi}_{d}, \xi_{d+1}\right) \in \mathbf{R}^{d+1}\right) \\
& \left.\qquad\left(\mathbf{C}+\mathbf{C}^{\top}+\sum_{k=1}^{d+1} \partial_{k} \mathbf{A}_{k}\right) \xi \cdot \boldsymbol{\xi} \geqslant 2 \mu_{1}\left|\boldsymbol{\xi}_{d}\right|^{2} \quad \text { (a.e. on } \Omega\right),
\end{aligned}
$$

Instead of coercivity (positivity) condition (F2), the following is required:

$$
\begin{aligned}
& \left.\begin{array}{l}
\left(\exists \mu_{1}>0\right)(\forall \boldsymbol{\xi}
\end{array}=\left(\boldsymbol{\xi}_{d}, \xi_{d+1}\right) \in \mathbf{R}^{d+1}\right) \\
& \left.\quad\left(\mathbf{C}+\mathbf{C}^{\top}+\sum_{k=1}^{d+1} \partial_{k} \mathbf{A}_{k}\right) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 2 \mu_{1}\left|\boldsymbol{\xi}_{d}\right|^{2} \quad \text { (a.e. on } \Omega\right), \\
& \left(\exists \mu_{2}>0\right)(\forall \mathbf{u} \in V \cup \tilde{V})
\end{aligned}
$$

$$
\sqrt{\langle\mathcal{L} \mathbf{u} \mid \mathbf{u}\rangle_{\mathrm{L}^{2}\left(\Omega_{T} ; \mathbf{R}^{d+1}\right)}}+\left\|\mathrm{B} u_{d+1}\right\|_{\mathrm{L}^{2}\left(\Omega_{T} ; \mathbf{R}^{d}\right)} \geqslant \mu_{2}\left\|u_{d+1}\right\|_{\mathrm{L}^{2}\left(\Omega_{T}\right)},
$$

where $\mathrm{B} u_{d+1}:=\sum_{k=1}^{d+1} \mathrm{~B}^{k} \partial_{k} u_{d+1}=\nabla_{\mathbf{x}} u_{d+1}$.

Instead of coercivity (positivity) condition (F2), the following is required:

$$
\begin{aligned}
& \left(\exists \mu_{1}>0\right)\left(\forall \boldsymbol{\xi}=\left(\boldsymbol{\xi}_{d}, \xi_{d+1}\right) \in \mathbf{R}^{d+1}\right) \\
& \left.\quad\left(\mathbf{C}+\mathbf{C}^{\top}+\sum_{k=1}^{d+1} \partial_{k} \mathbf{A}_{k}\right) \xi \cdot \boldsymbol{\xi} \geqslant 2 \mu_{1}\left|\boldsymbol{\xi}_{d}\right|^{2} \quad \quad \text { (a.e. on } \Omega\right), \\
& \left(\exists \mu_{2}>0\right)(\forall \mathbf{u} \in V \cup \tilde{V}) \\
& \quad \sqrt{\langle\mathcal{L} \mathbf{u} \mid \mathbf{u}\rangle_{\mathrm{L}^{2}\left(\Omega_{T} ; \mathbf{R}^{d+1}\right)}}+\left\|\mathrm{B} u_{d+1}\right\|_{\mathrm{L}^{2}\left(\Omega_{T} ; \mathbf{R}^{d}\right)} \geqslant \mu_{2}\left\|u_{d+1}\right\|_{\mathrm{L}^{2}\left(\Omega_{T}\right)},
\end{aligned}
$$

where $\mathrm{B} u_{d+1}:=\sum_{k=1}^{d+1} \mathrm{~B}^{k} \partial_{k} u_{d+1}=\nabla_{\mathrm{x}} u_{d+1}$.
For our system both conditions are trivially fulfilled.

Instead of coercivity (positivity) condition (F2), the following is required:

$$
\begin{aligned}
& \left(\exists \mu_{1}>0\right)\left(\forall \boldsymbol{\xi}=\left(\boldsymbol{\xi}_{d}, \xi_{d+1}\right) \in \mathbf{R}^{d+1}\right) \\
& \left.\quad\left(\mathbf{C}+\mathbf{C}^{\top}+\sum_{k=1}^{d+1} \partial_{k} \mathbf{A}_{k}\right) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geqslant 2 \mu_{1}\left|\boldsymbol{\xi}_{d}\right|^{2} \quad \quad \text { (a.e. on } \Omega\right), \\
& \left(\exists \mu_{2}>0\right)(\forall \mathbf{u} \in V \cup \tilde{V}) \\
& \quad \sqrt{\langle\mathcal{L} \mathbf{u} \mid \mathbf{u}\rangle_{\mathrm{L}^{2}\left(\Omega_{T} ; \mathbf{R}^{d+1}\right)}}+\left\|\mathrm{B} u_{d+1}\right\|_{\mathrm{L}^{2}\left(\Omega_{T} ; \mathbf{R}^{d}\right)} \geqslant \mu_{2}\left\|u_{d+1}\right\|_{\mathrm{L}^{2}\left(\Omega_{T}\right)},
\end{aligned}
$$

where $\mathrm{B} u_{d+1}:=\sum_{k=1}^{d+1} \mathrm{~B}^{k} \partial_{k} u_{d+1}=\nabla_{\mathrm{x}} u_{d+1}$.
For our system both conditions are trivially fulfilled.
Therefore, we have the well-posedness result.

An example - stationary diffusion equation
We consider the equation

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$,

An example - stationary diffusion equation
We consider the equation

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$, where $f \in \mathrm{~L}^{2}(\Omega), c \in \mathrm{~L}^{\infty}(\Omega)$ with $\frac{1}{\beta^{\prime}} \leqslant c \leqslant \frac{1}{\alpha^{\prime}}$, for some $\beta^{\prime} \geq \alpha^{\prime}>0$,

An example - stationary diffusion equation

We consider the equation

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$, where $f \in \mathrm{~L}^{2}(\Omega), c \in \mathrm{~L}^{\infty}(\Omega)$ with $\frac{1}{\beta^{\prime}} \leqslant c \leqslant \frac{1}{\alpha^{\prime}}$, for some
$\beta^{\prime} \geq \alpha^{\prime}>0$, and
$\mathbf{A} \in \mathcal{M}_{d}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right):=\left\{\mathbf{A} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{d}(\mathbf{R})\right):\right.$

$$
\left.\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right) \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \alpha^{\prime}|\boldsymbol{\xi}|^{2} \& \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \frac{1}{\beta^{\prime}}|\mathbf{A} \boldsymbol{\xi}|^{2}\right\}
$$

An example - stationary diffusion equation

We consider the equation

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$, where $f \in \mathrm{~L}^{2}(\Omega), c \in \mathrm{~L}^{\infty}(\Omega)$ with $\frac{1}{\beta^{\prime}} \leqslant c \leqslant \frac{1}{\alpha^{\prime}}$, for some $\beta^{\prime} \geq \alpha^{\prime}>0$, and

$$
\mathbf{A} \in \mathcal{M}_{d}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right):=\left\{\mathbf{A} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{d}(\mathbf{R})\right):\right.
$$

$$
\left.\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right) \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \alpha^{\prime}|\boldsymbol{\xi}|^{2} \& \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \frac{1}{\beta^{\prime}}|\mathbf{A} \boldsymbol{\xi}|^{2}\right\}
$$

New unknown vector function taking values in \mathbf{R}^{d+1} :

$$
\mathrm{u}=\left[\begin{array}{c}
\mathrm{u}_{d} \\
u_{d+1}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{A} \nabla_{\mathbf{x}} u \\
u
\end{array}\right]
$$

An example - stationary diffusion equation

We consider the equation

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$, where $f \in \mathrm{~L}^{2}(\Omega), c \in \mathrm{~L}^{\infty}(\Omega)$ with $\frac{1}{\beta^{\prime}} \leqslant c \leqslant \frac{1}{\alpha^{\prime}}$, for some $\beta^{\prime} \geq \alpha^{\prime}>0$, and

$$
\mathbf{A} \in \mathcal{M}_{d}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right):=\left\{\mathbf{A} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{d}(\mathbf{R})\right):\right.
$$

$$
\left.\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right) \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \alpha^{\prime}|\boldsymbol{\xi}|^{2} \& \mathbf{A} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \frac{1}{\beta^{\prime}}|\mathbf{A} \boldsymbol{\xi}|^{2}\right\}
$$

New unknown vector function taking values in \mathbf{R}^{d+1} :

$$
\mathrm{u}=\left[\begin{array}{c}
\mathrm{u}_{d} \\
u_{d+1}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{A} \nabla_{\mathbf{x}} u \\
u
\end{array}\right]
$$

Then the starting equation can be written as a first-order system

$$
\left\{\begin{array}{l}
\nabla_{\mathbf{x}} u_{d+1}+\mathbf{A}^{-1} \mathbf{u}_{d}=0 \\
\operatorname{div} \mathbf{u}_{d}+c u_{d+1}=f
\end{array}\right.
$$

An example - stationary diffusion equation (cont.)

which is a Friedrichs system with the choice of

$$
\mathbf{A}_{k}=\mathbf{e}_{k} \otimes \mathbf{e}_{d+1}+\mathbf{e}_{d+1} \otimes \mathbf{e}_{k} \in \mathrm{M}_{d+1}(\mathbf{R}), \quad \mathbf{C}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & 0 \\
0 & c
\end{array}\right]
$$

An example - stationary diffusion equation (cont.)

which is a Friedrichs system with the choice of

$$
\mathbf{A}_{k}=\mathbf{e}_{k} \otimes \mathbf{e}_{d+1}+\mathbf{e}_{d+1} \otimes \mathbf{e}_{k} \in \mathrm{M}_{d+1}(\mathbf{R}), \quad \mathbf{C}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & 0 \\
0 & c
\end{array}\right]
$$

The graph space: $W=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$.

An example - stationary diffusion equation (cont.)

which is a Friedrichs system with the choice of

$$
\mathbf{A}_{k}=\mathbf{e}_{k} \otimes \mathbf{e}_{d+1}+\mathbf{e}_{d+1} \otimes \mathbf{e}_{k} \in \mathrm{M}_{d+1}(\mathbf{R}), \quad \mathbf{C}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & 0 \\
0 & c
\end{array}\right]
$$

The graph space: $W=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$.
Dirichlet, Neumann and Robin boundary conditions are imposed by the following choice of V and \widetilde{V} :

$$
\begin{aligned}
V_{D}=\widetilde{V}_{D} & :=\mathrm{L}_{\mathrm{div}}^{2}(\Omega) \times \mathrm{H}_{0}^{1}(\Omega), \\
V_{N}=\widetilde{V}_{N} & :=\left\{\left(\mathrm{u}_{d}, u_{d+1}\right)^{\top} \in W: \boldsymbol{\nu} \cdot \mathrm{u}_{d}=0\right\}, \\
V_{R} & :=\left\{\left(\mathrm{u}_{d}, u_{d+1}\right)^{\top} \in W: \boldsymbol{\nu} \cdot \mathbf{u}_{d}=\left.a u_{d+1}\right|_{\Gamma}\right\}, \\
\widetilde{V}_{R} & :=\left\{\left(\mathrm{u}_{d}, u_{d+1}\right)^{\top} \in W: \boldsymbol{\nu} \cdot \mathrm{u}_{d}=-\left.a u_{d+1}\right|_{\Gamma}\right\} .
\end{aligned}
$$

Non-stationary problem

Marko Erceg, Krešimir Burazin: Non-stationary abstract Friedrichs systems via semigroup theory, submitted

Non-stationary problem

Marko Erceg, Krešimir Burazin: Non-stationary abstract Friedrichs systems via semigroup theory, submitted
L real Hilbert space, as before $\left(L^{\prime} \equiv L\right), T>0$
We consider an abstract Cauchy problem in L :
(P)

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T \mathbf{u}(t) & =\mathbf{f}(t) \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

Non-stationary problem

Marko Erceg, Krešimir Burazin: Non-stationary abstract Friedrichs systems via semigroup theory, submitted
L real Hilbert space, as before $\left(L^{\prime} \equiv L\right), T>0$
We consider an abstract Cauchy problem in L :
(P)

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T \mathbf{u}(t) & =\mathbf{f}(t) \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

where

- $\mathrm{f}:\langle 0, T\rangle \longrightarrow L, \mathrm{u}_{0} \in L$ are given,
- T (not depending on t) satisfies (T1), (T2) and
(T3')

$$
(\forall \varphi \in \mathcal{D}) \quad\langle(T+\tilde{T}) \varphi \mid \varphi\rangle_{L} \geqslant 0
$$

$-\mathrm{u}:[0, T\rangle \longrightarrow L$ is unknown.

Non-stationary problem

Marko Erceg, Krešimir Burazin: Non-stationary abstract Friedrichs systems via semigroup theory, submitted
L real Hilbert space, as before $\left(L^{\prime} \equiv L\right), T>0$
We consider an abstract Cauchy problem in L :
(P)

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T \mathbf{u}(t) & =\mathbf{f}(t) \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

where

- $\mathrm{f}:\langle 0, T\rangle \longrightarrow L, \mathrm{u}_{0} \in L$ are given,
- T (not depending on t) satisfies (T1), (T2) and

$$
\left(\mathrm{T}^{\prime}\right) \quad(\forall \varphi \in \mathcal{D}) \quad\langle(T+\tilde{T}) \varphi \mid \varphi\rangle_{L} \geqslant 0
$$

- u: $[0, T\rangle \longrightarrow L$ is unknown.

Numerics:
E. Burman, A. Ern, M. A. Fernandez, SIAM JNA, 2010.
D. A. Di Pietro, A. Ern, 2012.

Semigroup setting

A priori estimate:

$$
(\forall t \in[0, T]) \quad\|\mathbf{u}(t)\|_{L}^{2} \leqslant e^{t}\left(\left\|\mathbf{u}_{0}\right\|_{L}^{2}+\int_{0}^{t}\|\mathbf{f}(s)\|_{L}^{2}\right) .
$$

Semigroup setting

A priori estimate:

$$
(\forall t \in[0, T]) \quad\|\mathbf{u}(t)\|_{L}^{2} \leqslant e^{t}\left(\left\|\mathbf{u}_{0}\right\|_{L}^{2}+\int_{0}^{t}\|\mathbf{f}(s)\|_{L}^{2}\right) .
$$

Let $\mathcal{A}: V \subseteq L \longrightarrow L, \mathcal{A}:=-\left.T\right|_{V}$
Then (P) becomes:
(P^{\prime})

$$
\left\{\begin{array}{rl}
\mathrm{u}^{\prime}(t)-\mathcal{A} \mathbf{u}(t) & =\mathrm{f}(t) \\
\mathrm{u}(0) & =\mathrm{u}_{0}
\end{array} .\right.
$$

Semigroup setting

A priori estimate:

$$
(\forall t \in[0, T]) \quad\|\mathbf{u}(t)\|_{L}^{2} \leqslant e^{t}\left(\left\|\mathbf{u}_{0}\right\|_{L}^{2}+\int_{0}^{t}\|\mathbf{f}(s)\|_{L}^{2}\right) .
$$

Let $\mathcal{A}: V \subseteq L \longrightarrow L, \mathcal{A}:=-T_{\mid}$
Then (P) becomes:
(P^{\prime})

$$
\left\{\begin{array}{rl}
\mathrm{u}^{\prime}(t)-\mathcal{A} \mathrm{u}(t) & =\mathrm{f}(t) \\
\mathrm{u}(0) & =\mathrm{u}_{0}
\end{array} .\right.
$$

Theorem. The operator \mathcal{A} is an infinitesimal generator of a C_{0}-semigroup on L.

Existence and uniqueness result

Corollary. Let T be an operator that satisfies (T1)-(T2) and (T3)', let V be a subspace of its graph space satisfying (V1)-(V2), and $\mathrm{f} \in \mathrm{L}^{1}(\langle 0, T\rangle ; L)$.

Existence and uniqueness result

Corollary. Let T be an operator that satisfies (T1)-(T2) and (T3)', let V be a subspace of its graph space satisfying (V1)-(V2), and $\mathrm{f} \in \mathrm{L}^{1}(\langle 0, T\rangle ; L)$. Then for every $\mathrm{u}_{0} \in L$ the problem (P) has the unique mild solution $\mathrm{u} \in \mathrm{C}([0, T] ; L)$ given with

$$
\mathrm{u}(t)=\mathcal{T}(t) \mathrm{u}_{0}+\int_{0}^{t} \mathcal{T}(t-s) \mathrm{f}(s) d s, \quad t \in[0, T]
$$

where $(\mathcal{T}(t))_{t \geqslant 0}$ is the semigroup generated by \mathcal{A}.

Existence and uniqueness result

Corollary. Let T be an operator that satisfies (T1)-(T2) and (T3)', let V be a subspace of its graph space satisfying (V1)-(V2), and $\mathrm{f} \in \mathrm{L}^{1}(\langle 0, T\rangle ; L)$.
Then for every $\mathrm{u}_{0} \in L$ the problem (P) has the unique mild solution $\mathrm{u} \in \mathrm{C}([0, T] ; L)$ given with

$$
\mathrm{u}(t)=\mathcal{T}(t) \mathrm{u}_{0}+\int_{0}^{t} \mathcal{T}(t-s) \mathrm{f}(s) d s, \quad t \in[0, T]
$$

where $(\mathcal{T}(t))_{t \geqslant 0}$ is the semigroup generated by \mathcal{A}.
If additionally $\mathrm{f} \in \mathrm{C}([0, T] ; L) \cap\left(\mathrm{W}^{1,1}(\langle 0, T\rangle ; L) \cup \mathrm{L}^{1}(\langle 0, T\rangle ; V)\right)$ with V equipped with the graph norm and $\mathrm{u}_{0} \in V$, then the above mild solution is the classical solution of (P) on $[0, T\rangle$.

Mild solution

Theorem. Let $\mathrm{u}_{0} \in L, \mathrm{f} \in \mathrm{L}^{1}(\langle 0, T\rangle ; L)$ and let

$$
\mathrm{u}(t)=\mathcal{T}(t) \mathbf{u}_{0}+\int_{0}^{t} \mathcal{T}(t-s) \mathbf{f}(s) d s, \quad t \in[0, T]
$$

be the mild solution of (P).

Mild solution

Theorem. Let $\mathrm{u}_{0} \in L, \mathrm{f} \in \mathrm{L}^{1}(\langle 0, T\rangle ; L)$ and let

$$
\mathrm{u}(t)=\mathcal{T}(t) \mathbf{u}_{0}+\int_{0}^{t} \mathcal{T}(t-s) \mathbf{f}(s) d s, \quad t \in[0, T]
$$

be the mild solution of (P).
Then $\mathrm{u}^{\prime}, T \mathrm{u}, \mathrm{f} \in \mathrm{L}^{1}\left(\langle 0, T\rangle ; W_{0}^{\prime}\right)$ and

$$
\mathbf{u}^{\prime}+T \mathbf{u}=\mathbf{f}
$$

in $\mathrm{L}^{1}\left(\langle 0, T\rangle ; W_{0}^{\prime}\right)$.

Bound on solution

From

$$
\mathrm{u}(t)=\mathcal{T}(t) \mathbf{u}_{0}+\int_{0}^{t} \mathcal{T}(t-s) \mathfrak{f}(s) d s, \quad t \in[0, T]
$$

we get:

$$
(\forall t \in[0, T]) \quad\|\mathbf{u}(t)\|_{L} \leqslant\left\|\mathbf{u}_{0}\right\|_{L}+\int_{0}^{t}\|\mathbf{f}(s)\|_{L} d s
$$

Bound on solution

From

$$
\mathrm{u}(t)=\mathcal{T}(t) \mathbf{u}_{0}+\int_{0}^{t} \mathcal{T}(t-s) \mathfrak{f}(s) d s, \quad t \in[0, T]
$$

we get:

$$
(\forall t \in[0, T]) \quad\|\mathbf{u}(t)\|_{L} \leqslant\left\|\mathbf{u}_{0}\right\|_{L}+\int_{0}^{t}\|\mathbf{f}(s)\|_{L} d s
$$

A priori estimate was:

$$
(\forall t \in[0, T]) \quad\|\mathbf{u}(t)\|_{L}^{2} \leqslant e^{t}\left(\left\|\mathbf{u}_{0}\right\|_{L}^{2}+\int_{0}^{t}\|\mathbf{f}(s)\|_{L}^{2}\right)
$$

Non-stationary Maxwell system 1/5

Let $\Omega \subseteq \mathbf{R}^{3}$ be open and bounded with a Lipschitz boundary Γ, $\mu, \varepsilon \in \mathrm{W}^{1, \infty}(\Omega)$ positive and away from zero, $\boldsymbol{\Sigma}_{i j} \in \mathrm{~L}^{\infty}\left(\Omega ; \mathrm{M}_{3}(\mathbf{R})\right)$, $i, j \in\{1,2\}$, and $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{~L}^{1}\left(\langle 0, T\rangle ; \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$.

Non-stationary Maxwell system 1/5

Let $\Omega \subseteq \mathbf{R}^{3}$ be open and bounded with a Lipschitz boundary Γ, $\mu, \varepsilon \in \mathrm{W}^{1, \infty}(\Omega)$ positive and away from zero, $\boldsymbol{\Sigma}_{i j} \in \mathrm{~L}^{\infty}\left(\Omega ; \mathrm{M}_{3}(\mathbf{R})\right)$, $i, j \in\{1,2\}$, and $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{~L}^{1}\left(\langle 0, T\rangle ; \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$.
We consider a generalized non-stationary Maxwell system
(MS) $\left\{\begin{aligned} \mu \partial_{t} \mathrm{H}+\operatorname{rot} \mathrm{E}+\boldsymbol{\Sigma}_{11} \mathrm{H}+\boldsymbol{\Sigma}_{12} \mathrm{E}=\mathrm{f}_{1} \\ \varepsilon \partial_{t} \mathrm{E}-\operatorname{rot} \mathrm{H}+\boldsymbol{\Sigma}_{21} \mathrm{H}+\boldsymbol{\Sigma}_{22} \mathrm{E}=\mathrm{f}_{2}\end{aligned} \quad\right.$ in $\langle 0, T\rangle \times \Omega$,

Non-stationary Maxwell system 1/5

Let $\Omega \subseteq \mathbf{R}^{3}$ be open and bounded with a Lipschitz boundary Γ, $\mu, \varepsilon \in \mathrm{W}^{1, \infty}(\Omega)$ positive and away from zero, $\boldsymbol{\Sigma}_{i j} \in \mathrm{~L}^{\infty}\left(\Omega ; \mathrm{M}_{3}(\mathbf{R})\right)$, $i, j \in\{1,2\}$, and $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{~L}^{1}\left(\langle 0, T\rangle ; \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$.
We consider a generalized non-stationary Maxwell system
(MS) $\quad\left\{\begin{array}{l}\mu \partial_{t} \mathrm{H}+\operatorname{rot} \mathrm{E}+\boldsymbol{\Sigma}_{11} \mathrm{H}+\boldsymbol{\Sigma}_{12} \mathrm{E}=\mathrm{f}_{1} \\ \varepsilon \partial_{t} \mathrm{E}-\operatorname{rot} \mathrm{H}+\boldsymbol{\Sigma}_{21} \mathrm{H}+\boldsymbol{\Sigma}_{22} \mathrm{E}=\mathrm{f}_{2}\end{array} \quad\right.$ in $\langle 0, T\rangle \times \Omega$,
where $\mathrm{E}, \mathrm{H}:[0, T\rangle \times \Omega \longrightarrow \mathbf{R}^{3}$ are unknown functions.

Non-stationary Maxwell system 1/5

Let $\Omega \subseteq \mathbf{R}^{3}$ be open and bounded with a Lipschitz boundary Γ, $\mu, \varepsilon \in \mathrm{W}^{1, \infty}(\Omega)$ positive and away from zero, $\boldsymbol{\Sigma}_{i j} \in \mathrm{~L}^{\infty}\left(\Omega ; \mathrm{M}_{3}(\mathbf{R})\right)$, $i, j \in\{1,2\}$, and $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{~L}^{1}\left(\langle 0, T\rangle ; \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$.
We consider a generalized non-stationary Maxwell system
(MS)

$$
\left\{\begin{aligned}
& \mu \partial_{t} \mathrm{H}+\operatorname{rot} \mathrm{E}+\boldsymbol{\Sigma}_{11} \mathrm{H}+\boldsymbol{\Sigma}_{12} \mathrm{E}=\mathrm{f}_{1} \\
& \varepsilon \partial_{t} \mathrm{E}-\operatorname{rot} \mathrm{H}+\boldsymbol{\Sigma}_{21} \mathrm{H}+\boldsymbol{\Sigma}_{22} \mathrm{E}=\mathrm{f}_{2}
\end{aligned} \quad \text { in }\langle 0, T\rangle \times \Omega,\right.
$$

where $\mathrm{E}, \mathrm{H}:[0, T\rangle \times \Omega \longrightarrow \mathbf{R}^{3}$ are unknown functions.
Change of variable

$$
\mathrm{u}:=\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{\mu} \mathrm{H} \\
\sqrt{\varepsilon} \mathrm{E}
\end{array}\right], \quad c:=\frac{1}{\sqrt{\mu \varepsilon}} \in \mathrm{~W}^{1, \infty}(\Omega),
$$

Non-stationary Maxwell system 1/5

Let $\Omega \subseteq \mathbf{R}^{3}$ be open and bounded with a Lipschitz boundary Γ, $\mu, \varepsilon \in \mathrm{W}^{1, \infty}(\Omega)$ positive and away from zero, $\boldsymbol{\Sigma}_{i j} \in \mathrm{~L}^{\infty}\left(\Omega ; \mathrm{M}_{3}(\mathbf{R})\right)$, $i, j \in\{1,2\}$, and $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{~L}^{1}\left(\langle 0, T\rangle ; \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$.
We consider a generalized non-stationary Maxwell system
(MS)

$$
\left\{\begin{aligned}
& \mu \partial_{t} \mathrm{H}+\operatorname{rot} \mathrm{E}+\boldsymbol{\Sigma}_{11} \mathrm{H}+\boldsymbol{\Sigma}_{12} \mathrm{E}=\mathrm{f}_{1} \\
& \varepsilon \partial_{t} \mathrm{E}-\operatorname{rot} \mathrm{H}+\boldsymbol{\Sigma}_{21} \mathrm{H}+\boldsymbol{\Sigma}_{22} \mathrm{E}=\mathrm{f}_{2}
\end{aligned} \quad \text { in }\langle 0, T\rangle \times \Omega,\right.
$$

where $\mathrm{E}, \mathrm{H}:[0, T\rangle \times \Omega \longrightarrow \mathbf{R}^{3}$ are unknown functions.
Change of variable

$$
\mathrm{u}:=\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{\mu} \mathrm{H} \\
\sqrt{\varepsilon} \mathrm{E}
\end{array}\right], \quad c:=\frac{1}{\sqrt{\mu \varepsilon}} \in \mathrm{~W}^{1, \infty}(\Omega),
$$

turns (MS) to the Friedrichs system

$$
\partial_{t} \mathbf{u}+T \mathbf{u}=\mathrm{F},
$$

Non-stationary Maxwell system 2/5
with

$$
\begin{aligned}
& \mathbf{A}_{1}:=c\left[\begin{array}{cccccc}
& & & 0 & 0 & 0 \\
& \mathbf{0} & & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & & \mathbf{0} & \\
0 & -1 & 0 & & &
\end{array}\right], \quad \mathbf{A}_{2}:=c\left[\begin{array}{ccccc}
& & & 0 & 0 \\
& 0 & & 0 & 0 \\
& & & & 0 \\
& & 0 & 0 \\
0 & 0 & -1 & & \\
0 & 0 & 0 & & \mathbf{0} \\
1 & 0 & 0 & &
\end{array}\right], \\
& \mathbf{A}_{3}:=c\left[\begin{array}{cccccc}
& & & 0 & -1 & 0 \\
& \mathbf{0} & & 1 & 0 & 0 \\
0 & 1 & 0 & & 0 & 0 \\
0 & 1 & 0 & 0 & & \mathbf{0}
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{c}
\frac{1}{\sqrt{\mu}} f_{1} \\
\frac{1}{\sqrt{\varepsilon}} f_{2}
\end{array}\right], \quad \mathbf{C}:=\ldots .
\end{aligned}
$$

Non-stationary Maxwell system 2/5
with

$$
\begin{aligned}
& \mathbf{A}_{3}:=c\left[\begin{array}{cccccc}
& & & 0 & -1 & 0 \\
& 0 & & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 & & & \\
-1 & 0 & 0 & & \mathbf{0} \\
0 & 0 & 0 & &
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{c}
\frac{1}{\sqrt{\mu}} f_{1} \\
\frac{1}{\sqrt{\varepsilon}} f_{2}
\end{array}\right], \quad \mathbf{C}:=\ldots .
\end{aligned}
$$

(F1) and (F2) are satisfied (with change $v:=e^{-\lambda t} \mathbf{u}$ for large $\lambda>0$, if needed)

Non-stationary Maxwell system 3/5

The spaces involved:

$$
\begin{aligned}
L & =\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \\
W & =\mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \\
W_{0} & =\mathrm{L}_{\mathrm{rot}, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}_{\mathrm{rot}, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right)=\mathrm{Cl}_{W} \mathrm{C}_{c}^{\infty}\left(\Omega ; \mathbf{R}^{6}\right),
\end{aligned}
$$

where $\mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right)$ is the graph space of the rot operator.

Non-stationary Maxwell system 3/5

The spaces involved:

$$
\begin{aligned}
L & =\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \\
W & =\mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \\
W_{0} & =\mathrm{L}_{\mathrm{rot}, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}_{\mathrm{rot}, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right)=\mathrm{Cl}_{W} \mathrm{C}_{c}^{\infty}\left(\Omega ; \mathbf{R}^{6}\right),
\end{aligned}
$$

where $L_{\text {rot }}^{2}\left(\Omega ; \mathbf{R}^{3}\right)$ is the graph space of the rot operator.
The boundary condition

$$
\nu \times \mathrm{E}_{\left.\right|_{\Gamma}}=0
$$

corresponds to the following choice of spaces $V, \widetilde{V} \subseteq W$:

Non-stationary Maxwell system 3/5

The spaces involved:

$$
\begin{aligned}
L & =\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \\
W & =\mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \\
W_{0} & =\mathrm{L}_{\mathrm{rot}, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}_{\mathrm{rot}, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right)=\mathrm{Cl}_{W} \mathrm{C}_{c}^{\infty}\left(\Omega ; \mathbf{R}^{6}\right),
\end{aligned}
$$

where $L_{\text {rot }}^{2}\left(\Omega ; \mathbf{R}^{3}\right)$ is the graph space of the rot operator.
The boundary condition

$$
\nu \times \mathrm{E}_{\left.\right|_{\Gamma}}=0
$$

corresponds to the following choice of spaces $V, \widetilde{V} \subseteq W$:

$$
\begin{aligned}
V=\tilde{V} & =\left\{\mathbf{u} \in W: \boldsymbol{\nu} \times \mathbf{u}_{2}=0\right\} \\
& =\{\mathbf{u} \in W: \boldsymbol{\nu} \times \mathrm{E}=0\} \\
& =\mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right) \times \mathrm{L}_{\mathrm{rot}, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right)
\end{aligned}
$$

Non-stationary Maxwell system 4/5

Theorem. Let $\mathrm{E}_{0} \in \mathrm{~L}_{\text {rot }, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right), \mathrm{H}_{0} \in \mathrm{~L}_{\text {rot }}^{2}\left(\Omega ; \mathbf{R}^{3}\right)$ and let
$\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{C}\left([0, T] ; \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$ satisfy at least one of the following conditions:
$-\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{~W}^{1,1}\left(\langle 0, T\rangle ; \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$;
$-\mathrm{f}_{1} \in \mathrm{~L}^{1}\left(\langle 0, T\rangle ; \mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right), \mathrm{f}_{2} \in \mathrm{~L}^{1}\left(\langle 0, T\rangle ; \mathrm{L}_{\mathrm{rot}, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$.

Non-stationary Maxwell system 4/5

Theorem. Let $\mathrm{E}_{0} \in \mathrm{~L}_{\text {rot }, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right), \mathrm{H}_{0} \in \mathrm{~L}_{\text {rot }}^{2}\left(\Omega ; \mathbf{R}^{3}\right)$ and let $\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{C}\left([0, T] ; \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$ satisfy at least one of the following conditions:
$-\mathrm{f}_{1}, \mathrm{f}_{2} \in \mathrm{~W}^{1,1}\left(\langle 0, T\rangle ; \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$;
$-\mathrm{f}_{1} \in \mathrm{~L}^{1}\left(\langle 0, T\rangle ; \mathrm{L}_{\mathrm{rot}}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right), \mathrm{f}_{2} \in \mathrm{~L}^{1}\left(\langle 0, T\rangle ; \mathrm{L}_{\mathrm{rot}, 0}^{2}\left(\Omega ; \mathbf{R}^{3}\right)\right)$.
Then the abstract initial-boundary value problem

$$
\left\{\begin{array}{l}
\mu \mathrm{H}^{\prime}+\operatorname{rot} \mathrm{E}+\boldsymbol{\Sigma}_{11} H+\boldsymbol{\Sigma}_{12} E=\mathrm{f}_{1} \\
\varepsilon \mathrm{E}^{\prime}-\operatorname{rot} \mathrm{H}+\boldsymbol{\Sigma}_{21} H+\boldsymbol{\Sigma}_{22} E=\mathrm{f}_{2} \\
\mathrm{E}(0)=\mathrm{E}_{0} \\
\mathrm{H}(0)=\mathrm{H}_{0} \\
\boldsymbol{\nu} \times \mathrm{E}_{\left.\right|_{\Gamma}}=0
\end{array}\right.
$$

Non-stationary Maxwell system 5/5

Theorem. ... has unique classical solution given by

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbf{H} \\
\mathbf{E}
\end{array}\right](t)=} & {\left[\begin{array}{cc}
\frac{1}{\sqrt{\mu}} \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \frac{1}{\sqrt{\varepsilon}} \mathbf{I}
\end{array}\right] \mathcal{T}(t)\left[\begin{array}{c}
\sqrt{\mu} \mathbf{H}_{0} \\
\sqrt{\varepsilon} \mathrm{E}_{0}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
\frac{1}{\sqrt{\mu}} \mathbf{I} & \mathbf{0} \\
\mathbf{0} & \frac{1}{\sqrt{\varepsilon}} \mathbf{I}
\end{array}\right] \int_{0}^{t} \mathcal{T}(t-s)\left[\begin{array}{c}
\frac{1}{\sqrt{\mu}} \mathrm{f}_{1}(s) \\
\frac{1}{\sqrt{\varepsilon}} \mathrm{f}_{2}(s)
\end{array}\right] d s, \quad t \in[0, T],
\end{aligned}
$$

where $(\mathcal{T}(t))_{t \geqslant 0}$ is the contraction C_{0}-semigroup generated by $-T$.

Other examples

- Symmetric hyperbolic system

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}=\mathrm{f} \quad \text { in }\langle 0, T\rangle \times \mathbf{R}^{d} \\
\mathbf{u}(0, \cdot)=\mathbf{u}_{0}
\end{array}\right.
$$

Other examples

- Symmetric hyperbolic system

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}=\mathrm{f} \quad \text { in }\langle 0, T\rangle \times \mathbf{R}^{d} \\
\mathbf{u}(0, \cdot)=\mathbf{u}_{0}
\end{array}\right.
$$

- Non-stationary div-grad problem

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{q}+\nabla p=\mathrm{f}_{1} \quad \text { in }\langle 0, T\rangle \times \Omega, \quad \Omega \subseteq \mathbf{R}^{d}, \\
\frac{1}{c_{0}^{2}} \partial_{t} p+\operatorname{div} \mathbf{q}=f_{2} \quad \text { in }\langle 0, T\rangle \times \Omega \\
p_{\left.\right|_{\partial \Omega}}=0, \quad p(0)=p_{0}, \quad \mathrm{q}(0)=\mathrm{q}_{0}
\end{array}\right.
$$

Other examples

- Symmetric hyperbolic system

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{C u}=\mathrm{f} \quad \text { in }\langle 0, T\rangle \times \mathbf{R}^{d} \\
\mathbf{u}(0, \cdot)=\mathbf{u}_{0}
\end{array}\right.
$$

- Non-stationary div-grad problem

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{q}+\nabla p=\mathbf{f}_{1} \quad \text { in }\langle 0, T\rangle \times \Omega, \quad \Omega \subseteq \mathbf{R}^{d}, \\
\frac{1}{c_{0}^{2}} \partial_{t} p+\operatorname{div} \mathbf{q}=f_{2} \quad \text { in }\langle 0, T\rangle \times \Omega \\
p_{\left.\right|_{\partial \Omega}}=0, \quad p(0)=p_{0}, \quad \mathbf{q}(0)=\mathrm{q}_{0}
\end{array}\right.
$$

- Wave equation

$$
\left\{\begin{array}{l}
\partial_{t t} u-c^{2} \triangle u=f \quad \text { in }\langle 0, T\rangle \times \mathbf{R}^{d} \\
u(0, \cdot)=u_{0}, \quad \partial_{t} u(0, \cdot)=u_{0}^{1}
\end{array}\right.
$$

Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, $L^{\prime} \equiv L$ its antidual, $\mathcal{D} \subseteq L, T, \tilde{T}: L \longrightarrow L$ linear operators that satisfy (T1)-(T3) (or T3' instead of T3).

Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, $L^{\prime} \equiv L$ its antidual, $\mathcal{D} \subseteq L, T, \tilde{T}: L \longrightarrow L$ linear operators that satisfy (T1)-(T3) (or T3' instead of T3).

Technical differences with respect to the real case, but results remain the same...

Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, $L^{\prime} \equiv L$ its antidual, $\mathcal{D} \subseteq L, T, \tilde{T}: L \longrightarrow L$ linear operators that satisfy (T1)-(T3) (or T3' instead of T3).

Technical differences with respect to the real case, but results remain the same...

For the classical Friedrichs operator we require

$$
\begin{equation*}
\text { matrix functions } \mathbf{A}_{k} \text { are selfadjoint: } \mathbf{A}_{k}=\mathbf{A}_{k}^{*} \tag{F1}
\end{equation*}
$$

Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, $L^{\prime} \equiv L$ its antidual, $\mathcal{D} \subseteq L, T, \tilde{T}: L \longrightarrow L$ linear operators that satisfy (T1)-(T3) (or T3' instead of T3).

Technical differences with respect to the real case, but results remain the same...

For the classical Friedrichs operator we require matrix functions \mathbf{A}_{k} are selfadjoint: $\mathbf{A}_{k}=\mathbf{A}_{k}^{*}$,

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} \quad(\text { ae on } \Omega) \tag{F1}
\end{equation*}
$$

Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, $L^{\prime} \equiv L$ its antidual, $\mathcal{D} \subseteq L, T, \tilde{T}: L \longrightarrow L$ linear operators that satisfy (T1)-(T3) (or T3' instead of T3).

Technical differences with respect to the real case, but results remain the same...

For the classical Friedrichs operator we require
(F1) matrix functions \mathbf{A}_{k} are selfadjoint: $\mathbf{A}_{k}=\mathbf{A}_{k}^{*}$,
(F2) $\quad\left(\exists \mu_{0}>0\right) \quad \mathbf{C}+\mathbf{C}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} \quad($ ae on $\Omega)$,
and again (F1)-(F2) imply (T1)-(T3).

Application to Dirac system 1/2

We consider the Cauchy problem

Application to Dirac system 1/2

We consider the Cauchy problem
(DS) $\left\{\begin{array}{l}\partial_{t} \mathbf{u}+\sum_{k=1}^{3} \mathbf{A}_{k} \partial_{k} \mathbf{u}+\mathbf{C u}=\mathrm{f} \quad \text { in }\langle 0, T\rangle \times \mathbf{R}^{3}, \\ \mathbf{u}(0)=\mathbf{u}_{0},\end{array}\right.$

Application to Dirac system 1/2

We consider the Cauchy problem

$$
\text { (DS) } \quad\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\overbrace{\sum_{k=1}^{3} \mathbf{A}_{k} \partial_{k} \mathbf{u}+\mathbf{C u}}^{T \mathrm{u}}=\mathrm{f} \quad \text { in }\langle 0, T\rangle \times \mathbf{R}^{3}, \\
\mathbf{u}(0)=\mathbf{u}_{0}
\end{array}\right.
$$

Application to Dirac system 1/2

We consider the Cauchy problem
(DS) $\left\{\begin{array}{l}\partial_{t} \mathbf{u}+\overbrace{\sum_{k=1}^{3} \mathbf{A}_{k} \partial_{k} \mathbf{u}+\mathbf{C}} u=\mathrm{f} \text { in }\langle 0, T\rangle \times \mathbf{R}^{3}, \\ \mathbf{u}(0)=\mathbf{u}_{0},\end{array}\right.$
where u: $[0, T\rangle \times \mathbf{R}^{3} \longrightarrow \mathbf{C}^{4}$ is an unknown function, $\mathrm{u}_{0}: \mathbf{R}^{3} \longrightarrow \mathbf{C}^{4}$, $\mathrm{f}:[0, T\rangle \times \mathbf{R}^{3} \longrightarrow \mathbf{C}^{4}$ are given, and

Application to Dirac system 1/2

We consider the Cauchy problem
(DS) $\left\{\begin{array}{l}\partial_{t} \mathbf{u}+\overbrace{\sum_{k=1}^{s} \mathbf{A}_{k} \partial_{k} \mathbf{u}+\mathbf{C u}}^{T u}=\mathrm{f} \quad \text { in }\langle 0, T\rangle \times \mathbf{R}^{3}, \\ \mathbf{u}(0)=\mathbf{u}_{0},\end{array}\right.$
where $\mathbf{u}:[0, T\rangle \times \mathbf{R}^{3} \longrightarrow \mathbf{C}^{4}$ is an unknown function, $\mathrm{u}_{0}: \mathbf{R}^{3} \longrightarrow \mathbf{C}^{4}$, $\mathrm{f}:[0, T\rangle \times \mathbf{R}^{3} \longrightarrow \mathbf{C}^{4}$ are given, and

$$
\mathbf{A}_{k}:=\left[\begin{array}{cc}
\mathbf{0} & \boldsymbol{\sigma}_{k} \\
\boldsymbol{\sigma}_{k} & \mathbf{0}
\end{array}\right], k \in 1 . .3, \quad \mathbf{C}:=\left[\begin{array}{cc}
c_{1} \mathbf{I} & \mathbf{0} \\
\mathbf{0} & c_{2} \mathbf{I}
\end{array}\right],
$$

Application to Dirac system 1/2

We consider the Cauchy problem
(DS) $\left\{\begin{array}{l}\partial_{t} \mathbf{u} \overbrace{+\sum_{k=1}^{s} \mathbf{A}_{k} \partial_{k} \mathbf{u}+\mathbf{C u}}^{T u}=\mathrm{f} \quad \text { in }\langle 0, T\rangle \times \mathbf{R}^{3}, \\ \mathbf{u}(0)=\mathbf{u}_{0},\end{array}\right.$
where $u:[0, T\rangle \times \mathbf{R}^{3} \longrightarrow \mathbf{C}^{4}$ is an unknown function, $u_{0}: \mathbf{R}^{3} \longrightarrow \mathbf{C}^{4}$, $\mathrm{f}:[0, T\rangle \times \mathbf{R}^{3} \longrightarrow \mathbf{C}^{4}$ are given, and

$$
\mathbf{A}_{k}:=\left[\begin{array}{cc}
\mathbf{0} & \boldsymbol{\sigma}_{k} \\
\boldsymbol{\sigma}_{k} & \mathbf{0}
\end{array}\right], k \in 1 . .3, \quad \mathbf{C}:=\left[\begin{array}{cc}
c_{1} \mathbf{I} & \mathbf{0} \\
\mathbf{0} & c_{2} \mathbf{I}
\end{array}\right],
$$

where

$$
\begin{align*}
& \qquad \boldsymbol{\sigma}_{1}:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \boldsymbol{\sigma}_{2}:=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \boldsymbol{\sigma}_{3}:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \\
& \text { are Pauli matrices, and } c_{1}, c_{2} \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{3} ; \mathbf{C}\right) \tag{F1}
\end{align*}
$$

Application to Dirac system 2/2

Theorem. Let $\mathrm{u}_{0} \in W$ and let $\mathrm{f} \in \mathrm{C}\left([0, T] ; \mathrm{L}^{2}\left(\mathbf{R}^{3} ; \mathbf{C}^{4}\right)\right)$ satisfies at least one of the following conditions:

- $\mathrm{f} \in \mathrm{W}^{1,1}\left(\langle 0, T\rangle ; \mathrm{L}^{2}\left(\mathbf{R}^{3} ; \mathbf{C}^{4}\right)\right)$;
- $\mathrm{f} \in \mathrm{L}^{1}(\langle 0, T\rangle ; W)$.

Then the abstract Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+\sum_{k=1}^{3} \mathbf{A}_{k} \partial_{k} \mathbf{u}+\mathbf{C u}=\mathrm{f} \\
\mathbf{u}(0)=\mathbf{u}_{0}
\end{array}\right.
$$

has unique classical solution given with

$$
\mathrm{u}(t)=\mathcal{T}(t) \mathrm{u}_{0}+\int_{0}^{t} \mathcal{T}(t-s) \mathrm{f}(s) d s, \quad t \in[0, T]
$$

where $(\mathcal{T}(t))_{t \geqslant 0}$ is the contraction C_{0}-semigroup generated by $-T$.

TODO: Time-dependent coefficients

The operator T depends on t (i.e. the matrix coefficients \mathbf{A}_{k} and \mathbf{C} depend on t if T is a classical Friedrichs operator):

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T(t) \mathbf{u}(t) & =\mathbf{f}(t) \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

TODO: Time-dependent coefficients

The operator T depends on t (i.e. the matrix coefficients \mathbf{A}_{k} and \mathbf{C} depend on t if T is a classical Friedrichs operator):

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T(t) \mathbf{u}(t) & =\mathbf{f}(t) \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

- Semigroup theory can treat time-dependent case, but conditions that ensure existence/uniqueness result are rather complicated to verify...

TODO: Semilinear problem

Consider

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T \mathbf{u}(t) & =\mathbf{f}(t, \mathbf{u}(t)) \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

where $\mathrm{f}:[0, T\rangle \times L \longrightarrow L$.

TODO: Semilinear problem

Consider

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T \mathbf{u}(t) & =\mathbf{f}(t, \mathbf{u}(t)) \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

where $\mathrm{f}:[0, T\rangle \times L \longrightarrow L$.

- semigroup theory gives existence and uniqueness of solution

TODO: Semilinear problem

Consider

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T \mathbf{u}(t) & =\mathbf{f}(t, \mathbf{u}(t)) \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

where $\mathrm{f}:[0, T\rangle \times L \longrightarrow L$.

- semigroup theory gives existence and uniqueness of solution
- it requires (locally) Lipschitz continuity of f in variable u

TODO: Semilinear problem

Consider

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t)+T \mathbf{u}(t) & =\mathbf{f}(t, \mathbf{u}(t)) \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

where $\mathrm{f}:[0, T\rangle \times L \longrightarrow L$.

- semigroup theory gives existence and uniqueness of solution
- it requires (locally) Lipschitz continuity of f in variable u
- if $L=\mathrm{L}^{2}$ it is not appropriate assumption, as power functions do not satisfy it; $L=\mathrm{L}^{\infty}$ is better...

TODO: Banach space setting

TODO: Banach space setting

Let L be a reflexive complex Banach space, L^{\prime} its antidual, $\mathcal{D} \subseteq L$, $T, \tilde{T}: \mathcal{D} \longrightarrow L^{\prime}$ linear operators that satisfy a modified versions of (T1)-(T3)

TODO: Banach space setting

Let L be a reflexive complex Banach space, L^{\prime} its antidual, $\mathcal{D} \subseteq L$, $T, \tilde{T}: \mathcal{D} \longrightarrow L^{\prime}$ linear operators that satisfy a modified versions of (T1)-(T3), e.g.
(T1)

$$
(\forall \varphi, \psi \in \mathcal{D}) \quad{ }_{L^{\prime}}\langle T \varphi, \psi\rangle_{L}=\overline{L_{L^{\prime}}\langle\tilde{T} \psi, \phi\rangle_{L}} .
$$

TODO: Banach space setting

Let L be a reflexive complex Banach space, L^{\prime} its antidual, $\mathcal{D} \subseteq L$, $T, \tilde{T}: \mathcal{D} \longrightarrow L^{\prime}$ linear operators that satisfy a modified versions of (T1)-(T3), e.g.

$$
\begin{equation*}
(\forall \varphi, \psi \in \mathcal{D}) \quad{ }_{L^{\prime}}\langle T \varphi, \psi\rangle_{L}=\overline{{ }_{L^{\prime}}\langle\tilde{T} \psi, \phi\rangle_{L}} \tag{T1}
\end{equation*}
$$

Technical differences with Hilbert space case, but results remain essentially the same for the stationary case...

TODO: Banach space setting

Let L be a reflexive complex Banach space, L^{\prime} its antidual, $\mathcal{D} \subseteq L$, $T, \tilde{T}: \mathcal{D} \longrightarrow L^{\prime}$ linear operators that satisfy a modified versions of (T1)-(T3), e.g.

$$
\begin{equation*}
(\forall \varphi, \psi \in \mathcal{D}) \quad{ }_{L^{\prime}}\langle T \varphi, \psi\rangle_{L}=\overline{L^{\prime}\langle\tilde{T} \psi, \phi\rangle_{L}} \tag{T1}
\end{equation*}
$$

Technical differences with Hilbert space case, but results remain essentially the same for the stationary case...

Problems:

- in the classical case (F1)-(F2) need not to imply (T2) and (T3): instead of (T3) we get

$$
\mathrm{L}_{p^{p^{\prime}}}\langle(\tilde{T}) \varphi, \varphi\rangle_{\mathrm{L}^{p}} \geqslant\|\varphi\|_{\mathrm{L}^{2}}
$$

TODO: Banach space setting

Let L be a reflexive complex Banach space, L^{\prime} its antidual, $\mathcal{D} \subseteq L$, $T, \tilde{T}: \mathcal{D} \longrightarrow L^{\prime}$ linear operators that satisfy a modified versions of (T1)-(T3), e.g.

$$
\begin{equation*}
(\forall \varphi, \psi \in \mathcal{D}) \quad{ }_{L^{\prime}}\langle T \varphi, \psi\rangle_{L}=\overline{L_{L^{\prime}}\langle\tilde{T} \psi, \phi\rangle_{L}} \tag{T1}
\end{equation*}
$$

Technical differences with Hilbert space case, but results remain essentially the same for the stationary case. . .

Problems:

- in the classical case (F1)-(F2) need not to imply (T2) and (T3): instead of (T3) we get

$$
\mathrm{L}^{p^{\prime}}\langle(T+\tilde{T}) \varphi, \varphi\rangle_{\mathrm{L}^{p}} \geqslant\|\varphi\|_{\mathrm{L}^{2}}
$$

- for semigroup treatment of non-stationary case we need to have $T: \mathcal{D} \subseteq L \longrightarrow L$

Why should one be interested in Friedrichs systems?
Symmetric hyperbolic systems
Symmetric positive systems
Classical theory
Boundary conditions for Friedrichs systems
Existence, uniqueness, well-posedness
Abstract formulation
Graph spaces
Cone formalism of Ern, Guermond and Caplain
Interdependence of different representations of boundary conditions
Kreĭn space formalism
Kreĭn spaces
Equivalence of boundary conditions
What can we say for the Friedrichs operator now?
Sufficient assumptions
An example: elliptic equation
Other second order equations
Two-field theory
Non-stationary theory
Homogenisation of Friedrichs systems
Homogenisation
Examples: Stationary diffusion and heat equation
Concluding remarks

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems, Comm. Pure Appl. Analysis 13 (2014) 1017-1044.

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems, Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
A sequence of Friedrichs systems $T_{n} \mathbf{u}_{n}=\mathrm{f}, \mathrm{f} \in L$.

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems, Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
A sequence of Friedrichs systems $T_{n} \mathbf{u}_{n}=\mathrm{f}, \mathrm{f} \in L$.
Here u_{n} naturally belongs to the graph space of T_{n}.

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems, Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
A sequence of Friedrichs systems $T_{n} \mathbf{u}_{n}=\mathrm{f}, \mathrm{f} \in L$.
Here u_{n} naturally belongs to the graph space of T_{n}.
Our assumptions must secure that every u_{n} belongs to the same space, with clearly identified topology that shall be used...

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems, Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
A sequence of Friedrichs systems $T_{n} \mathbf{u}_{n}=\mathrm{f}, \mathrm{f} \in L$.
Here u_{n} naturally belongs to the graph space of T_{n}.
Our assumptions must secure that every u_{n} belongs to the same space, with clearly identified topology that shall be used...

- \mathbf{A}_{k} are symmetric constant matrices in $\mathrm{M}_{r}(R), k \in 1$..d

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems,
Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
A sequence of Friedrichs systems $T_{n} \mathbf{u}_{n}=\mathrm{f}, \mathrm{f} \in L$.
Here u_{n} naturally belongs to the graph space of T_{n}.
Our assumptions must secure that every u_{n} belongs to the same space, with clearly identified topology that shall be used. . .

- \mathbf{A}_{k} are symmetric constant matrices in $\mathrm{M}_{r}(R), k \in 1$..d
$-\mathbf{C} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)=\left\{\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right):\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right)\right.$

$$
\left.\mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \alpha|\boldsymbol{\xi}|^{2} \& \mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \frac{1}{\beta}|\mathbf{C} \boldsymbol{\xi}|^{2}\right\}
$$

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems, Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
A sequence of Friedrichs systems $T_{n} \mathbf{u}_{n}=\mathrm{f}, \mathrm{f} \in L$.
Here u_{n} naturally belongs to the graph space of T_{n}.
Our assumptions must secure that every u_{n} belongs to the same space, with clearly identified topology that shall be used. .

- \mathbf{A}_{k} are symmetric constant matrices in $\mathrm{M}_{r}(R), k \in 1$..d
- $\mathbf{C} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)=\left\{\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right):\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right)\right.$

$$
\begin{aligned}
& \left.\mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \alpha|\boldsymbol{\xi}|^{2} \& \mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \frac{1}{\beta}|\mathbf{C} \boldsymbol{\xi}|^{2}\right\} . \text { and } \\
& T_{0} \mathbf{u}=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)=\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}
\end{aligned}
$$

so that $T:=T_{0}+\mathbf{C}$ is the Friedrichs operator.

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems, Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
A sequence of Friedrichs systems $T_{n} \mathbf{u}_{n}=\mathrm{f}, \mathrm{f} \in L$.
Here u_{n} naturally belongs to the graph space of T_{n}.
Our assumptions must secure that every u_{n} belongs to the same space, with clearly identified topology that shall be used. .

- \mathbf{A}_{k} are symmetric constant matrices in $\mathrm{M}_{r}(R), k \in 1$..d
- $\mathbf{C} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)=\left\{\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right):\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right)\right.$

$$
\left.\mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \alpha|\boldsymbol{\xi}|^{2} \& \mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \frac{1}{\beta}|\mathbf{C} \boldsymbol{\xi}|^{2}\right\} . \text { and }
$$

$$
T_{0} \mathbf{u}=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)=\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}
$$

so that $T:=T_{0}+\mathbf{C}$ is the Friedrichs operator. Its graph space

$$
W:=\{\mathbf{u} \in L: T \mathbf{u} \in L\}
$$

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems, Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
A sequence of Friedrichs systems $T_{n} \mathbf{u}_{n}=\mathrm{f}, \mathrm{f} \in L$.
Here u_{n} naturally belongs to the graph space of T_{n}.
Our assumptions must secure that every u_{n} belongs to the same space, with clearly identified topology that shall be used. .

- \mathbf{A}_{k} are symmetric constant matrices in $\mathrm{M}_{r}(R), k \in 1$..d
- $\mathbf{C} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)=\left\{\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right):\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right)\right.$

$$
\left.\mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \alpha|\boldsymbol{\xi}|^{2} \& \mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \frac{1}{\beta}|\mathbf{C} \boldsymbol{\xi}|^{2}\right\} . \text { and }
$$

$$
T_{0} \mathbf{u}=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)=\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}
$$

so that $T:=T_{0}+\mathbf{C}$ is the Friedrichs operator. Its graph space

$$
W:=\{\mathbf{u} \in L: T \mathbf{u} \in L\}=\left\{\mathbf{u} \in L: T_{0} \mathbf{u} \in L\right\}
$$

Homogenisation setting

Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems,
Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
A sequence of Friedrichs systems $T_{n} \mathbf{u}_{n}=\mathrm{f}, \mathrm{f} \in L$.
Here u_{n} naturally belongs to the graph space of T_{n}.
Our assumptions must secure that every u_{n} belongs to the same space, with clearly identified topology that shall be used...

- \mathbf{A}_{k} are symmetric constant matrices in $\mathrm{M}_{r}(R), k \in 1 . . d$
- $\mathbf{C} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)=\left\{\mathbf{C} \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbf{R})\right):\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right)\right.$

$$
\left.\mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \alpha|\boldsymbol{\xi}|^{2} \& \mathbf{C} \boldsymbol{\xi} \cdot \boldsymbol{\xi} \geq \frac{1}{\beta}|\mathbf{C} \boldsymbol{\xi}|^{2}\right\} . \text { and }
$$

$$
T_{0} \mathbf{u}=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)=\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}
$$

so that $T:=T_{0}+\mathbf{C}$ is the Friedrichs operator. Its graph space

$$
W:=\{\mathbf{u} \in L: T \mathbf{u} \in L\}=\left\{\mathbf{u} \in L: T_{0} \mathbf{u} \in L\right\}
$$

Moreover, we have equivalence of norms $\left(\gamma=\sqrt{\max \left\{2,1+2 \beta^{2}\right\}}\right)$:

$$
\|\mathbf{u}\|_{T} \leqslant \gamma\|\mathbf{u}\|_{T_{0}} \leqslant \gamma^{2}\|\mathbf{u}\|_{T}, \quad \text { for any } \mathbf{C} .
$$

Boundary operator and a priori bound

The boundary operator D corresponding to the operator T does not depend on particular \mathbf{C} from $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$.

Boundary operator and a priori bound

The boundary operator D corresponding to the operator T does not depend on particular \mathbf{C} from $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$.
If V is a subspace of W that satisfies (V), well-posedness result implies that $T_{\left.\right|_{V}}: V \longrightarrow L$ is an isomorphism, with

$$
\|\mathbf{u}\|_{T_{0}} \leqslant \gamma\|\mathbf{u}\|_{T} \leqslant \gamma \sqrt{\frac{1}{\alpha^{2}}+1}\|T \mathbf{u}\|_{L}, \quad \mathbf{u} \in V
$$

Boundary operator and a priori bound

The boundary operator D corresponding to the operator T does not depend on particular \mathbf{C} from $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$.
If V is a subspace of W that satisfies (V), well-posedness result implies that $T_{\left.\right|_{V}}: V \longrightarrow L$ is an isomorphism, with

$$
\|\mathbf{u}\|_{T_{0}} \leqslant \gamma\|\mathbf{u}\|_{T} \leqslant \gamma \sqrt{\frac{1}{\alpha^{2}}+1}\|T \mathbf{u}\|_{L}, \quad \mathbf{u} \in V
$$

Therefore, for fixed T_{0} and V satisfying (V), we have a priori bound

$$
(\exists c>0)\left(\forall \mathbf{C} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)\right)(\forall \mathbf{u} \in V) \quad\|\mathbf{u}\|_{T_{0}} \leq c\left\|\left(\mathcal{L}_{0}+\mathbf{C}\right) \mathbf{u}\right\|_{L}
$$

Note that constant c depends only on T_{0}, α and β.

H-convergence

In the sequel $\mathcal{L}_{0}=\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k}$ and V are fixed.
Definition (H-convergence for Friedrichs systems)
We say that a sequence $\left(\mathbf{C}_{n}\right)$ in $\mathcal{M}_{r}(\alpha, \beta ; \Omega) H$-converges to $\mathbf{C} \in \mathcal{M}_{r}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right)$ with respect to T_{0} and V if, for any $\mathrm{f} \in L$, the sequence $\left(\mathrm{u}_{n}\right)$ in V defined by $\mathrm{u}_{n}:=T_{n}^{-1} \mathrm{f} \in V$, with $T_{n}=\mathcal{L}_{0}+\mathbf{C}_{n}$, satisfies

$$
\begin{array}{r}
\mathbf{u}_{n} \rightharpoonup \mathbf{u} \quad \text { in } L, \\
\mathbf{C}_{n} \mathbf{u}_{n} \longrightarrow \mathbf{C u} \quad \text { in } L,
\end{array}
$$

where $\mathbf{u}=T^{-1} \mathbf{f} \in V$, with $T=\mathcal{L}_{0}+\mathbf{C}$.

H-convergence

In the sequel $\mathcal{L}_{0}=\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k}$ and V are fixed.
Definition (H-convergence for Friedrichs systems)
We say that a sequence $\left(\mathbf{C}_{n}\right)$ in $\mathcal{M}_{r}(\alpha, \beta ; \Omega) H$-converges to $\mathbf{C} \in \mathcal{M}_{r}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right)$ with respect to T_{0} and V if, for any $\mathrm{f} \in L$, the sequence $\left(\mathrm{u}_{n}\right)$ in V defined by $\mathrm{u}_{n}:=T_{n}^{-1} \mathrm{f} \in V$, with $T_{n}=\mathcal{L}_{0}+\mathbf{C}_{n}$, satisfies

$$
\begin{array}{r}
\mathbf{u}_{n} \rightharpoonup \mathbf{u} \quad \text { in } L, \\
\mathbf{C}_{n} \mathbf{u}_{n} \longrightarrow \mathbf{C u} \quad \text { in } L,
\end{array}
$$

where $\mathbf{u}=T^{-1} \mathbf{f} \in V$, with $T=\mathcal{L}_{0}+\mathbf{C}$.
As $T_{0} \mathbf{u}_{n}+\mathbf{C}_{n} \mathbf{u}_{n}=f=T_{0} \mathbf{u}+\mathbf{C u}$, the second convergence implies $T_{0} \mathbf{u}_{n} \longrightarrow T_{0} \mathbf{u}$ in L

H-convergence

In the sequel $\mathcal{L}_{0}=\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k}$ and V are fixed.
Definition (H-convergence for Friedrichs systems)
We say that a sequence $\left(\mathbf{C}_{n}\right)$ in $\mathcal{M}_{r}(\alpha, \beta ; \Omega) H$-converges to $\mathbf{C} \in \mathcal{M}_{r}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right)$ with respect to T_{0} and V if, for any $\mathrm{f} \in L$, the sequence $\left(\mathrm{u}_{n}\right)$ in V defined by $\mathrm{u}_{n}:=T_{n}^{-1} \mathrm{f} \in V$, with $T_{n}=\mathcal{L}_{0}+\mathbf{C}_{n}$, satisfies

$$
\begin{array}{r}
\mathbf{u}_{n} \rightharpoonup \mathbf{u} \quad \text { in } L, \\
\mathbf{C}_{n} \mathbf{u}_{n} \longrightarrow \mathbf{C u} \quad \text { in } L,
\end{array}
$$

where $\mathbf{u}=T^{-1} \mathbf{f} \in V$, with $T=\mathcal{L}_{0}+\mathbf{C}$.
As $T_{0} \mathbf{u}_{n}+\mathbf{C}_{n} \mathbf{u}_{n}=f=T_{0} \mathbf{u}+\mathbf{C u}$, the second convergence implies $T_{0} \mathbf{u}_{n} \longrightarrow T_{0} \mathbf{u}$ in L, which gives the weak convergence $\mathbf{u}_{n} \longrightarrow \mathrm{u}$ in W.

H-convergence and topology. . .

Theorem

Let $F=\left\{\mathrm{f}_{n}: n \in \mathbf{N}\right\}$ be a dense countable family in $\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right)$,
$\mathbf{C}, \mathbf{D} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)$, and $\mathrm{u}_{n}, \mathrm{v}_{n} \in V$ solutions of $\left(T_{0}+\mathbf{C}\right) \mathrm{u}_{n}=\mathrm{f}_{n}$ and $\left(T_{0}+\mathbf{D}\right) \mathrm{v}_{n}=\mathrm{f}_{n}$, respectively. Furthermore, let

$$
d(\mathbf{C}, \mathbf{D}):=\sum_{n=1}^{\infty} 2^{-n} \frac{\left\|\mathbf{u}_{n}-\mathrm{v}_{n}\right\|_{\mathrm{H}^{-1}\left(\Omega ; \mathbf{R}^{r}\right)}+\left\|\mathbf{C u}_{n}-\mathbf{D} \mathrm{v}_{n}\right\|_{\mathrm{H}^{-1}\left(\Omega ; \mathbf{R}^{r}\right)}}{\left\|\mathbf{f}_{n}\right\|_{\mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{r}\right)}}
$$

Then the function $d: \mathcal{M}_{r}(\alpha, \beta ; \Omega) \times \mathcal{M}_{r}(\alpha, \beta ; \Omega) \longrightarrow \mathbf{R}$ forms a metric on the set $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$, and the H-convergence is equivalent to the sequential convergence in this metric space.

Compactness assumptions

Additional assumptions: for every sequence $\mathbf{C}_{n} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)$ and every $\mathrm{f} \in L$, the sequence $\mathrm{u}_{n} \in V$ defined by $\mathrm{u}_{n}:=\left(T_{0}+\mathbf{C}_{n}\right)^{-1} \mathrm{f}$ satisfies the following: if (u_{n}) weakly converges to u in W, then also

$$
\begin{equation*}
{ }_{W}\left\langle D \mathrm{u}_{n}, \mathrm{u}_{n}\right\rangle_{W} \longrightarrow{ }_{W^{\prime}}\langle D \mathrm{u}, \mathrm{u}\rangle_{W}, \tag{K1}
\end{equation*}
$$

or

Compactness assumptions

Additional assumptions: for every sequence $\mathbf{C}_{n} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)$ and every $\mathrm{f} \in L$, the sequence $\mathrm{u}_{n} \in V$ defined by $\mathrm{u}_{n}:=\left(T_{0}+\mathbf{C}_{n}\right)^{-1} \mathrm{f}$ satisfies the following: if (u_{n}) weakly converges to u in W, then also

$$
\begin{equation*}
{ }_{W}\left\langle D \mathrm{u}_{n}, \mathrm{u}_{n}\right\rangle_{W} \longrightarrow{ }_{W}\langle D \mathrm{u}, \mathrm{u}\rangle_{W}, \tag{K1}
\end{equation*}
$$

or
(K2)

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad\left\langle T_{0} \mathbf{u}_{n} \mid \varphi \mathbf{u}_{n}\right\rangle_{L} \longrightarrow\left\langle T_{0} \mathbf{u} \mid \varphi \mathbf{u}\right\rangle_{L} .
$$

Compactness theorems

Compactness theorems

Theorem
For fixed T_{0} and V, if family $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$ satisfies (K1) and (K2), then it is compact with respect to H-convergence, i.e. from any sequence $\left(\mathbf{C}_{n}\right)$ in $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$ one can extract a H-converging subsequence whose limit belongs to $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$.

Compactness theorems

Theorem
For fixed T_{0} and V, if family $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$ satisfies (K1) and (K2), then it is compact with respect to H-convergence, i.e. from any sequence $\left(\mathbf{C}_{n}\right)$ in $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$ one can extract a H-converging subsequence whose limit belongs to $\mathcal{M}_{r}(\alpha, \beta ; \Omega)$.

The proof follows the original proof of Spagnolo in the case of parabolic G-convergence.

Stationary diffusion equation as Friedrichs system

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$,

Stationary diffusion equation as Friedrichs system

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$, with $f \in \mathrm{~L}^{2}(\Omega), \mathbf{A} \in \mathcal{M}_{d}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right)$ and $c \in \mathrm{~L}^{\infty}(\Omega)$ with $\frac{1}{\beta^{\prime}} \leqslant c \leqslant \frac{1}{\alpha^{\prime}}$, for some $\beta^{\prime} \geq \alpha^{\prime}>0$.

Stationary diffusion equation as Friedrichs system

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$, with $f \in \mathrm{~L}^{2}(\Omega), \mathbf{A} \in \mathcal{M}_{d}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right)$ and $c \in \mathrm{~L}^{\infty}(\Omega)$ with
$\frac{1}{\beta^{\prime}} \leqslant c \leqslant \frac{1}{\alpha^{\prime}}$, for some $\beta^{\prime} \geq \alpha^{\prime}>0$. $\mathbf{A}_{k}=\mathbf{e}_{k} \otimes \mathbf{e}_{d+1}+\mathbf{e}_{d+1} \otimes \mathbf{e}_{k} \in \mathrm{M}_{d+1}(\mathbf{R})$, for $k=1, \ldots, d$

$$
\mathbf{C}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0} \\
0 & c
\end{array}\right] \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{d+1}(\mathbf{R})\right)
$$

Stationary diffusion equation as Friedrichs system

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$, with $f \in \mathrm{~L}^{2}(\Omega), \mathbf{A} \in \mathcal{M}_{d}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right)$ and $c \in \mathrm{~L}^{\infty}(\Omega)$ with
$\frac{1}{\beta^{\prime}} \leqslant c \leqslant \frac{1}{\alpha^{\prime}}$, for some $\beta^{\prime} \geq \alpha^{\prime}>0 . \mathbf{A}_{k}=\mathbf{e}_{k} \otimes \mathbf{e}_{d+1}+\mathbf{e}_{d+1} \otimes \mathbf{e}_{k} \in \mathrm{M}_{d+1}(\mathbf{R})$, for $k=1, \ldots, d$

$$
\begin{gathered}
\mathbf{C}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0} \\
0 & c
\end{array}\right] \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{d+1}(\mathbf{R})\right), \\
T \mathbf{u}=\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}+\mathbf{C u}=\mathrm{f} \\
T_{0}\left[\begin{array}{c}
\mathbf{u}_{d} \\
u_{d+1}
\end{array}\right]=\left[\begin{array}{c}
\nabla u_{d+1} \\
\operatorname{div} \mathbf{u}_{d}
\end{array}\right], \quad \mathbf{C u}=\left[\begin{array}{c}
\mathbf{A}^{-1} \mathbf{u}_{d} \\
c u_{d+1}
\end{array}\right] .
\end{gathered}
$$

Stationary diffusion equation as Friedrichs system

$$
-\operatorname{div}(\mathbf{A} \nabla u)+c u=f
$$

in $\Omega \subseteq \mathbf{R}^{d}$, with $f \in \mathrm{~L}^{2}(\Omega), \mathbf{A} \in \mathcal{M}_{d}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right)$ and $c \in \mathrm{~L}^{\infty}(\Omega)$ with
$\frac{1}{\beta^{\prime}} \leqslant c \leqslant \frac{1}{\alpha^{\prime}}$, for some $\beta^{\prime} \geq \alpha^{\prime}>0 . \mathbf{A}_{k}=\mathbf{e}_{k} \otimes \mathbf{e}_{d+1}+\mathbf{e}_{d+1} \otimes \mathbf{e}_{k} \in \mathrm{M}_{d+1}(\mathbf{R})$, for $k=1, \ldots, d$

$$
\begin{gathered}
\mathbf{C}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0} \\
0 & c
\end{array}\right] \in \mathrm{L}^{\infty}\left(\Omega ; \mathrm{M}_{d+1}(\mathbf{R})\right), \\
T \mathbf{u}=\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}+\mathbf{C u}=\mathrm{f} \\
T_{0}\left[\begin{array}{c}
\mathbf{u}_{d} \\
u_{d+1}
\end{array}\right]=\left[\begin{array}{c}
\nabla u_{d+1} \\
\operatorname{div} \mathbf{u}_{d}
\end{array}\right], \quad \mathbf{C u}=\left[\begin{array}{c}
\mathbf{A}^{-1} \mathbf{u}_{d} \\
c u_{d+1}
\end{array}\right] .
\end{gathered}
$$

Graph space $\ldots W=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$

Boundary conditions

Dirichlet

$$
V_{D}=\widetilde{V}_{D}:=\mathrm{L}_{\mathrm{div}}^{2}(\Omega) \times \mathrm{H}_{0}^{1}(\Omega),
$$

Boundary conditions

Dirichlet

$$
V_{D}=\widetilde{V}_{D}:=\mathrm{L}_{\text {div }}^{2}(\Omega) \times \mathrm{H}_{0}^{1}(\Omega),
$$

Neumann

$$
V_{N}=\widetilde{V}_{N}:=\left\{\left(\mathbf{u}_{d}, u_{d+1}\right)^{\top} \in W: \boldsymbol{\nu} \cdot \mathbf{u}_{d}=0\right\},
$$

Boundary conditions

Dirichlet

$$
V_{D}=\widetilde{V}_{D}:=\mathrm{L}_{\mathrm{div}}^{2}(\Omega) \times \mathrm{H}_{0}^{1}(\Omega),
$$

Neumann

$$
V_{N}=\widetilde{V}_{N}:=\left\{\left(\mathbf{u}_{d}, u_{d+1}\right)^{\top} \in W: \boldsymbol{\nu} \cdot \mathbf{u}_{d}=0\right\},
$$

Robin

$$
\begin{aligned}
V_{R} & :=\left\{\left(\mathbf{u}_{d}, u_{d+1}\right)^{\top} \in W: \boldsymbol{\nu} \cdot \mathbf{u}_{d}=\left.a u_{d+1}\right|_{\Gamma}\right\}, \\
\widetilde{V}_{R} & :=\left\{\left(\mathbf{u}_{d}, u_{d+1}\right)^{\top} \in W: \boldsymbol{\nu} \cdot \mathbf{u}_{d}=-\left.a u_{d+1}\right|_{\Gamma}\right\} .
\end{aligned}
$$

Properties (K1) and (K2)

(K1) For any sequence (u_{n}) in V

$$
\mathbf{u}_{n} \longrightarrow \mathbf{u} \quad \Longrightarrow \quad{ }_{W^{\prime}}\left\langle D \mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle_{W} \longrightarrow W^{\prime}\langle D \mathbf{u}, \mathbf{u}\rangle_{W}
$$

Properties (K1) and (K2)

(K1) For any sequence (u_{n}) in V

$$
\mathbf{u}_{n} \longrightarrow \mathbf{u} \quad \Longrightarrow W^{\prime}\left\langle D \mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle_{W} \longrightarrow W^{\prime}\langle D \mathbf{u}, \mathbf{u}\rangle_{W}
$$

$$
\begin{aligned}
& W^{\prime}\langle D \mathrm{u}, \mathbf{u}\rangle_{W}=2_{{ }_{\mathrm{H}^{-\frac{1}{2}}}\left\langle\boldsymbol{\nu} \cdot \mathbf{u}_{d}, u_{d+1}\right\rangle_{\mathrm{H}^{\frac{1}{2}}}} \\
&=\left\{\begin{aligned}
0 & \ldots
\end{aligned} \begin{array}{rl}
& \text { Dirichlet or Neumann } \\
2 a\left\|u_{d+1}\right\|_{\mathrm{L}^{2}(\Gamma)}^{2} & \ldots
\end{array}\right. \\
& \text { Robin } \ldots W=\mathrm{L}_{\mathrm{div}}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)
\end{aligned}
$$

Properties (K1) and (K2)

(K1) For any sequence (u_{n}) in V

$$
\mathbf{u}_{n} \longrightarrow \mathbf{u} \quad \Longrightarrow W^{\prime}\left\langle D \mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle_{W} \longrightarrow W^{\prime}\langle D \mathbf{u}, \mathbf{u}\rangle_{W}
$$

$$
\begin{aligned}
& W^{\prime}\langle D \mathrm{u}, \mathbf{u}\rangle_{W}=2_{{ }_{\mathrm{H}^{-\frac{1}{2}}}\left\langle\boldsymbol{\nu} \cdot \mathbf{u}_{d}, u_{d+1}\right\rangle_{\mathrm{H}^{\frac{1}{2}}}} \\
&=\left\{\begin{aligned}
0 & \ldots
\end{aligned} \begin{array}{rl}
& \text { Dirichlet or Neumann } \\
2 a\left\|u_{d+1}\right\|_{\mathrm{L}^{2}(\Gamma)}^{2} & \ldots
\end{array}\right. \\
& \text { Robin } \ldots W=\mathrm{L}_{\mathrm{div}}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)
\end{aligned}
$$

Properties (K1) and (K2)

(K1) For any sequence (u_{n}) in V

$$
\mathbf{u}_{n} \longrightarrow \mathbf{u} \quad \Longrightarrow W^{\prime}\left\langle D \mathbf{u}_{n}, \mathbf{u}_{n}\right\rangle_{W} \longrightarrow W^{\prime}\langle D \mathbf{u}, \mathbf{u}\rangle_{W}
$$

${ }_{W^{\prime}}\langle D \mathrm{u}, \mathrm{u}\rangle_{W}=2_{\mathrm{H}^{-\frac{1}{2}}}\left\langle\boldsymbol{\nu} \cdot \mathbf{u}_{d}, u_{d+1}\right\rangle_{\mathrm{H}^{\frac{1}{2}}}$

$$
=\left\{\begin{aligned}
0 & \ldots \\
& \text { Dirichlet or Neumann } \\
2 a\left\|u_{d+1}\right\|_{\mathrm{L}^{2}(\Gamma)}^{2} & \ldots
\end{aligned}\right.
$$

(K2) For any sequence (u_{n}) in V and any $\varphi \in \mathrm{C}_{c}^{\infty}(\Omega)$

$$
\mathbf{u}_{n} \longrightarrow \mathbf{u} \quad \Longrightarrow \quad\left\langle T_{0} \mathbf{u}_{n} \mid \varphi \mathbf{u}_{n}\right\rangle_{L} \longrightarrow\left\langle T_{0} \mathbf{u} \mid \varphi \mathbf{u}\right\rangle_{L}
$$

Compensated compactness

$$
\begin{aligned}
\left\langle T_{0} \mathbf{u}_{n} \mid \varphi \mathbf{u}_{n}\right\rangle_{L} & =\int_{\Omega} \sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}_{n} \cdot \varphi \mathbf{u}_{n} d \mathbf{x}, \\
& =-\frac{1}{2} \int_{\Omega} \partial_{k} \varphi \sum_{k=1}^{d} \mathbf{A}_{k} \mathbf{u}_{n} \cdot \mathbf{u}_{n} d \mathbf{x}
\end{aligned}
$$

Compensated compactness

$$
\begin{aligned}
\left\langle T_{0} \mathbf{u}_{n} \mid \varphi \mathbf{u}_{n}\right\rangle_{L} & =\int_{\Omega} \sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}_{n} \cdot \varphi \mathbf{u}_{n} d \mathbf{x} \\
& =-\frac{1}{2} \int_{\Omega} \partial_{k} \varphi \sum_{k=1}^{d} \mathbf{A}_{k} \mathbf{u}_{n} \cdot \mathbf{u}_{n} d \mathbf{x}
\end{aligned}
$$

Theorem (Quadratic theorem)
For $\mathbf{A}_{k} \in \mathrm{M}_{q, p}(\mathbf{R})$ let $\Lambda:=\left\{\boldsymbol{\lambda} \in \mathbf{R}^{p}:(\exists \boldsymbol{\xi} \neq \mathbf{0}) \quad \sum_{k=1}^{d} \xi_{k} \mathbf{A}_{k} \boldsymbol{\lambda}=\mathbf{0}\right\}$

$$
Q(\boldsymbol{\lambda}):=\mathbf{Q} \boldsymbol{\lambda} \cdot \boldsymbol{\lambda}, \text { such that } Q=0 \text { on } \Lambda \text {, }
$$

$$
\mathrm{u}_{n} \longrightarrow \mathrm{u} \text { weakly in } \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{p}\right),
$$

$$
\left(\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}_{n}\right) \quad \text { is relatively compact in } \mathrm{H}^{-1}\left(\Omega ; \mathbf{R}^{q}\right) .
$$

Then $Q \circ \mathbf{u}_{n} \longrightarrow Q \circ \mathbf{u}$ in $\mathcal{D}^{\prime}(\Omega)$.

Compensated compactness

$$
\begin{aligned}
\left\langle T_{0} \mathbf{u}_{n} \mid \varphi \mathbf{u}_{n}\right\rangle_{L} & =\int_{\Omega} \sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}_{n} \cdot \varphi \mathbf{u}_{n} d \mathbf{x}, \quad p=q=d+1 \\
& =-\frac{1}{2} \int_{\Omega} \partial_{k} \varphi \sum_{k=1}^{d} \overbrace{\mathbf{A}_{k} \mathbf{u}_{n} \cdot \mathbf{u}_{n}} d \mathbf{x}
\end{aligned}
$$

Theorem (Quadratic theorem)
For $\mathbf{A}_{k} \in \mathrm{M}_{q, p}(\mathbf{R})$ let $\Lambda:=\left\{\boldsymbol{\lambda} \in \mathbf{R}^{p}:(\exists \boldsymbol{\xi} \neq \mathbf{0}) \quad \sum_{k=1}^{d} \xi_{k} \mathbf{A}_{k} \boldsymbol{\lambda}=\mathbf{0}\right\}$

$$
Q(\boldsymbol{\lambda}):=\mathbf{Q} \boldsymbol{\lambda} \cdot \boldsymbol{\lambda}, \text { such that } Q=0 \text { on } \Lambda \text {, }
$$

$$
\mathrm{u}_{n} \longrightarrow \mathrm{u} \text { weakly in } \mathrm{L}^{2}\left(\Omega ; \mathbf{R}^{p}\right),
$$

$$
\mathcal{L}_{0} \mathrm{u}_{n}=\left(\sum_{k=1}^{d} \mathbf{A}_{k} \partial_{k} \mathbf{u}_{n}\right) \quad \text { is relatively compact in } \quad \mathrm{H}^{-1}\left(\Omega ; \mathbf{R}^{q}\right) .
$$

Then $Q \circ \mathbf{u}_{n} \longrightarrow Q \circ \mathbf{u}$ in $\mathcal{D}^{\prime}(\Omega)$.

Proof of (K2)

$$
\begin{aligned}
\sum_{k=1}^{d} \xi_{k} \mathbf{A}_{k} \boldsymbol{\lambda} & =\left[\begin{array}{c}
\lambda_{d+1} \xi_{1} \\
\vdots \\
\lambda_{d+1} \xi_{d} \\
\sum_{k=1}^{d} \lambda_{k} \xi_{k}
\end{array}\right] \quad \Longrightarrow \quad \Lambda \ldots \lambda_{d+1}=0 \\
Q(\lambda) & =\mathbf{A}_{i} \boldsymbol{\lambda} \cdot \boldsymbol{\lambda}=2 \lambda_{i} \lambda_{d+1}=0, \quad \lambda \in \Lambda
\end{aligned}
$$

Proof of (K2)

$$
\begin{aligned}
\sum_{k=1}^{d} \xi_{k} \mathbf{A}_{k} \boldsymbol{\lambda} & =\left[\begin{array}{c}
\lambda_{d+1} \xi_{1} \\
\vdots \\
\lambda_{d+1} \xi_{d} \\
\sum_{k=1}^{d} \lambda_{k} \xi_{k}
\end{array}\right] \quad \Longrightarrow \quad \Lambda \ldots \lambda_{d+1}=0 \\
Q(\lambda) & =\mathbf{A}_{i} \boldsymbol{\lambda} \cdot \boldsymbol{\lambda}=2 \lambda_{i} \lambda_{d+1}=0, \quad \lambda \in \Lambda
\end{aligned}
$$

Comparison with classical H-convergence

$$
\begin{aligned}
\mathbf{C}_{n}=\left[\begin{array}{cc}
\left(\mathbf{A}^{n}\right)^{-1} & 0 \\
0^{\top} & c_{n}
\end{array}\right] & \in \mathcal{M}_{d+1}(\alpha, \beta ; \Omega) \\
& \Longleftrightarrow\left\{\begin{array}{lll}
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq \alpha|\boldsymbol{\xi}|^{2} \\
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \frac{1}{\beta}\left|\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi}\right|^{2}
\end{array}\right.
\end{aligned}
$$

Comparison with classical H-convergence

$$
\begin{aligned}
\mathbf{C}_{n}=\left[\begin{array}{cc}
\left(\mathbf{A}^{n}\right)^{-1} & 0 \\
0^{\top} & c_{n}
\end{array}\right] & \in \mathcal{M}_{d+1}(\alpha, \beta ; \Omega) \\
& \Longleftrightarrow\left\{\begin{array}{rll}
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq \alpha|\boldsymbol{\xi}|^{2} \\
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \frac{1}{\beta}\left|\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi}\right|^{2}
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{rll}
\alpha \leq & c_{n}(\mathbf{x}) & \leq \beta \\
\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \frac{1}{\beta}|\boldsymbol{\xi}|^{2} \\
\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \alpha\left|\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi}\right|^{2}
\end{array}\right.
\end{aligned}
$$

Comparison with classical H-convergence

$$
\begin{aligned}
\mathbf{C}_{n}=\left[\begin{array}{cc}
\left(\mathbf{A}^{n}\right)^{-1} & 0 \\
0^{\top} & c_{n}
\end{array}\right] & \in \mathcal{M}_{d+1}(\alpha, \beta ; \Omega) \\
& \Longleftrightarrow\left\{\begin{array}{rll}
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq \alpha|\boldsymbol{\xi}|^{2} \\
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \frac{1}{\beta}\left|\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi}\right|^{2}
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{rll}
\alpha \leq & c_{n}(\mathbf{x}) & \leq \beta \\
\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \left.\frac{1}{\beta}|\boldsymbol{\xi}|\right|^{2} \\
\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \alpha\left|\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi}\right|^{2}
\end{array}\right.
\end{aligned}
$$

At a subsequence $\mathbf{C}_{n} \xrightarrow{H} \mathbf{C}$, by compactness theorem.

Comparison with classical H-convergence

$$
\begin{aligned}
\mathbf{C}_{n}=\left[\begin{array}{cc}
\left(\mathbf{A}^{n}\right)^{-1} & 0 \\
0^{\top} & c_{n}
\end{array}\right] & \in \mathcal{M}_{d+1}(\alpha, \beta ; \Omega) \\
& \Longleftrightarrow\left\{\begin{array}{rll}
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \alpha|\boldsymbol{\xi}|^{2} \\
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \frac{1}{\beta}\left|\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi}\right|^{2}
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{rll}
\alpha \leq & c_{n}(\mathbf{x}) \leq \beta \\
\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \frac{1}{\beta}|\boldsymbol{\xi}|^{2} \\
\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \alpha\left|\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi}\right|^{2}
\end{array}\right.
\end{aligned}
$$

At a subsequence $\mathbf{C}_{n} \xrightarrow{H} \mathbf{C}$, by compactness theorem.

- Has the limit \mathbf{C} the same structure?

Comparison with classical H-convergence

$$
\begin{aligned}
\mathbf{C}_{n}=\left[\begin{array}{cc}
\left(\mathbf{A}^{n}\right)^{-1} & 0 \\
0^{\top} & c_{n}
\end{array}\right] & \in \mathcal{M}_{d+1}(\alpha, \beta ; \Omega) \\
& \Longleftrightarrow\left\{\begin{array}{rll}
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \alpha|\boldsymbol{\xi}|^{2} \\
\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \frac{1}{\beta}\left|\mathbf{C}_{n}(\mathbf{x}) \boldsymbol{\xi}\right|^{2}
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{rll}
\alpha \leq & c_{n}(\mathbf{x}) \leq \beta \\
\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \frac{1}{\beta}|\boldsymbol{\xi}|^{2} \\
\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} & \geq & \alpha\left|\mathbf{A}^{n}(\mathbf{x}) \boldsymbol{\xi}\right|^{2}
\end{array}\right.
\end{aligned}
$$

At a subsequence $\mathbf{C}_{n} \xrightarrow{H} \mathbf{C}$, by compactness theorem.

- Has the limit \mathbf{C} the same structure?
- Can we make a connection with H-converging (in classical sense) subsequence of $\left(\mathbf{A}^{n}\right)$?

Characterisation of the H-limit

Theorem

For the Friedrichs system corresponding to the stationary diffusion equation, a sequence $\left(\mathbf{C}_{n}\right)$ in $\mathcal{M}_{d+1}(\alpha, \beta ; \Omega)$ of the form

$$
\mathbf{C}_{n}=\left[\begin{array}{cc}
\left(\mathbf{A}^{n}\right)^{-1} & 0 \\
0^{\top} & c_{n}
\end{array}\right]
$$

H-converges with respect to \mathcal{L}_{0} and V_{D} if and only if $\left(\mathbf{A}^{n}\right)$ classically H-converges to some \mathbf{A} and $\left(c_{n}\right) L^{\infty}$ weakly $*$ converges to some c. In that case, the H-limit is the matrix function

$$
\mathbf{C}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & 0 \\
0^{\top} & c
\end{array}\right]
$$

Heat equation as Friedrichs system
$\Omega \subseteq \mathbf{R}^{d}$ open and bounded set with Lipschitz boundary $\Gamma, T>0$ and $\Omega_{T}:=\Omega \times\langle 0, T\rangle$

$$
\partial_{t} u_{n}-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A}^{n} \nabla_{\mathbf{x}} u_{n}\right)+c u_{n}=f \quad \text { in } \Omega_{T}
$$

Heat equation as Friedrichs system
$\Omega \subseteq \mathbf{R}^{d}$ open and bounded set with Lipschitz boundary $\Gamma, T>0$ and $\Omega_{T}:=\Omega \times\langle 0, T\rangle$

$$
\begin{gathered}
\partial_{t} u_{n}-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A}^{n} \nabla_{\mathbf{x}} u_{n}\right)+c u_{n}=f \quad \text { in } \Omega_{T} \\
\mathbf{u}_{n}=\left[\begin{array}{c}
\mathbf{u}_{d n} \\
u_{d+1}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{A}^{n} \nabla_{\mathbf{x}} u_{n} \\
u_{n}
\end{array}\right]
\end{gathered}
$$

Heat equation as Friedrichs system
$\Omega \subseteq \mathbf{R}^{d}$ open and bounded set with Lipschitz boundary $\Gamma, T>0$ and $\Omega_{T}:=\Omega \times\langle 0, T\rangle$

$$
\begin{gathered}
\partial_{t} u_{n}-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A}^{n} \nabla_{\mathbf{x}} u_{n}\right)+c u_{n}=f \quad \text { in } \Omega_{T} \\
\mathbf{u}_{n}=\left[\begin{array}{c}
\mathbf{u}_{d n} \\
u_{d+1_{n}}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{A}^{n} \nabla_{\mathbf{x}} u_{n} \\
u_{n}
\end{array}\right]
\end{gathered}
$$

The matrices $\mathbf{A}_{k}=\mathbf{e}_{k} \otimes \mathbf{e}_{d+1}+\mathbf{e}_{d+1} \otimes \mathbf{e}_{k} \in \mathrm{M}_{d+1}(\mathbf{R}), k=1, \ldots d$, $\mathbf{A}_{d+1}=\mathbf{e}_{d+1} \otimes \mathbf{e}_{d+1}$ and

$$
\begin{aligned}
\mathbf{C}_{n} & =\left[\begin{array}{cc}
\left(\mathbf{A}^{n}\right)^{-1} & 0 \\
0^{\top} & c
\end{array}\right] \\
T_{0}\left[\begin{array}{c}
\mathrm{u}_{d} \\
u_{d+1}
\end{array}\right] & =\left[\begin{array}{c}
\nabla_{\mathbf{x}} u_{d+1} \\
\partial_{t} u_{d+1}+\operatorname{div}_{\mathbf{x}} \mathbf{u}_{d}
\end{array}\right]
\end{aligned}
$$

Heat equation as Friedrichs system
$\Omega \subseteq \mathbf{R}^{d}$ open and bounded set with Lipschitz boundary $\Gamma, T>0$ and $\Omega_{T}:=\Omega \times\langle 0, T\rangle$

$$
\begin{gathered}
\partial_{t} u_{n}-\operatorname{div}_{\mathbf{x}}\left(\mathbf{A}^{n} \nabla_{\mathbf{x}} u_{n}\right)+c u_{n}=f \quad \text { in } \Omega_{T} \\
\mathbf{u}_{n}=\left[\begin{array}{c}
\mathbf{u}_{d n} \\
u_{d+1_{n}}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{A}^{n} \nabla_{\mathbf{x}} u_{n} \\
u_{n}
\end{array}\right]
\end{gathered}
$$

The matrices $\mathbf{A}_{k}=\mathbf{e}_{k} \otimes \mathbf{e}_{d+1}+\mathbf{e}_{d+1} \otimes \mathbf{e}_{k} \in \mathrm{M}_{d+1}(\mathbf{R}), k=1, \ldots d$, $\mathbf{A}_{d+1}=\mathbf{e}_{d+1} \otimes \mathbf{e}_{d+1}$ and

$$
\begin{aligned}
\mathbf{C}_{n} & =\left[\begin{array}{cc}
\left(\mathbf{A}^{n}\right)^{-1} & 0 \\
0^{\top} & c
\end{array}\right] \\
T_{0}\left[\begin{array}{c}
\mathbf{u}_{d} \\
u_{d+1}
\end{array}\right] & =\left[\begin{array}{c}
\nabla_{\mathbf{x}} u_{d+1} \\
\partial_{t} u_{d+1}+\operatorname{div}_{\mathbf{x}} \mathbf{u}_{d}
\end{array}\right] .
\end{aligned}
$$

Graph space

$$
W=\left\{\mathrm{u} \in \mathrm{~L}_{\mathrm{div}}^{2}\left(\Omega_{T}\right): u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}^{1}(\Omega)\right)\right\}
$$

Compactness result

Dirichlet boundary conditions with zero initial value:

$$
\begin{gathered}
V=\left\{\mathrm{u} \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\}, \\
\widetilde{V}=\left\{\mathrm{v} \in W: v^{u} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad v^{u}(\cdot, T)=0 \text { a.e. on } \Omega\right\} .
\end{gathered}
$$

Compactness result

Dirichlet boundary conditions with zero initial value:

$$
\begin{gathered}
V=\left\{\mathrm{u} \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\}, \\
\widetilde{V}=\left\{\mathrm{v} \in W: v^{u} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad v^{u}(\cdot, T)=0 \text { a.e. on } \Omega\right\} .
\end{gathered}
$$

(K1):

$$
{ }_{W}\langle D \mathrm{u}, \mathrm{u}\rangle_{W}=\left\|u_{d+1}(\cdot, T)\right\|_{\mathrm{L}^{2}(\Omega)}^{2} .
$$

Compactness result

Dirichlet boundary conditions with zero initial value:

$$
\begin{gathered}
V=\left\{\mathrm{u} \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\}, \\
\widetilde{V}=\left\{\mathrm{v} \in W: v^{u} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad v^{u}(\cdot, T)=0 \text { a.e. on } \Omega\right\} .
\end{gathered}
$$

(K1):

$$
{ }_{W}\langle D \mathrm{u}, \mathbf{u}\rangle_{W}=\left\|u_{d+1}(\cdot, T)\right\|_{\mathrm{L}^{2}(\Omega)}^{2} .
$$

Compactness result

Dirichlet boundary conditions with zero initial value:

$$
\begin{gathered}
V=\left\{\mathrm{u} \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\} \\
\tilde{V}=\left\{\mathrm{v} \in W: v^{u} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad v^{u}(\cdot, T)=0 \text { a.e. on } \Omega\right\}
\end{gathered}
$$

(K1):

$$
{ }_{W^{\prime}}\langle D \mathbf{u}, \mathbf{u}\rangle_{W}=\left\|u_{d+1}(\cdot, T)\right\|_{\mathrm{L}^{2}(\Omega)}^{2} .
$$

(K2): similarly to stationary diffusion equation: $\Lambda=\left\{\boldsymbol{\lambda} \in \mathbf{R}^{d+1}: \lambda_{d+1}=0\right\}$

Compactness result

Dirichlet boundary conditions with zero initial value:

$$
\begin{gathered}
V=\left\{u \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\} \\
\widetilde{V}=\left\{v \in W: v^{u} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad v^{u}(\cdot, T)=0 \text { a.e. on } \Omega\right\}
\end{gathered}
$$

(K1):

$$
{ }_{W^{\prime}}\langle D \mathbf{u}, \mathbf{u}\rangle_{W}=\left\|u_{d+1}(\cdot, T)\right\|_{\mathrm{L}^{2}(\Omega)}^{2} .
$$

(K2): similarly to stationary diffusion equation: $\Lambda=\left\{\boldsymbol{\lambda} \in \mathbf{R}^{d+1}: \lambda_{d+1}=0\right\}$

Compactness result

Dirichlet boundary conditions with zero initial value:

$$
\begin{gathered}
V=\left\{\mathrm{u} \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\} \\
\tilde{V}=\left\{\mathrm{v} \in W: v^{u} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad v^{u}(\cdot, T)=0 \text { a.e. on } \Omega\right\}
\end{gathered}
$$

(K1):

$$
{ }_{W^{\prime}}\langle D \mathrm{u}, \mathbf{u}\rangle_{W}=\left\|u_{d+1}(\cdot, T)\right\|_{\mathrm{L}^{2}(\Omega)}^{2} .
$$

(K2): similarly to stationary diffusion equation: $\Lambda=\left\{\boldsymbol{\lambda} \in \mathbf{R}^{d+1}: \lambda_{d+1}=0\right\}$
$\Longrightarrow \mathcal{M}_{d+1}(\alpha, \beta ; \Omega)$ is compact with H-topology for given \mathcal{L}_{0} and V
Comparison with classical parabolic H -convergence. . .

Compactness result

Dirichlet boundary conditions with zero initial value:

$$
\begin{gathered}
V=\left\{u \in W: u_{d+1} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad u_{d+1}(\cdot, 0)=0 \text { a.e. on } \Omega\right\} \\
\widetilde{V}=\left\{v \in W: v^{u} \in \mathrm{~L}^{2}\left(0, T ; \mathrm{H}_{0}^{1}(\Omega)\right), \quad v^{u}(\cdot, T)=0 \text { a.e. on } \Omega\right\}
\end{gathered}
$$

(K1):

$$
{ }_{W^{\prime}}\langle D \mathrm{u}, \mathbf{u}\rangle_{W}=\left\|u_{d+1}(\cdot, T)\right\|_{\mathrm{L}^{2}(\Omega)}^{2} .
$$

(K2): similarly to stationary diffusion equation: $\Lambda=\left\{\boldsymbol{\lambda} \in \mathbf{R}^{d+1}: \lambda_{d+1}=0\right\}$
$\Longrightarrow \mathcal{M}_{d+1}(\alpha, \beta ; \Omega)$ is compact with H-topology for given \mathcal{L}_{0} and V
Comparison with classical parabolic H -convergence. . . similarly as for stationary diffusion equation.

G-convergence

Instead of $\mathbf{C}_{n} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)$ we take

$$
\begin{aligned}
\mathcal{C}_{n} \in \mathcal{F}(\alpha, \beta ; \Omega):= & \{\mathcal{C} \in \mathcal{L}(L):(\forall \mathbf{u} \in L) \\
& \left.\langle\mathcal{C} \mathbf{u} \mid \mathbf{u}\rangle_{L} \geq \alpha\|\mathbf{u}\|_{L}^{2} \quad \& \quad\langle\mathcal{C} \mathbf{u} \mid \mathbf{u}\rangle_{L} \geq \frac{1}{\beta}\|\mathcal{C} \mathbf{u}\|_{L}^{2}\right\} .
\end{aligned}
$$

G-convergence

Instead of $\mathbf{C}_{n} \in \mathcal{M}_{r}(\alpha, \beta ; \Omega)$ we take

$$
\begin{aligned}
\mathcal{C}_{n} \in \mathcal{F}(\alpha, \beta ; \Omega):= & \{\mathcal{C} \in \mathcal{L}(L):(\forall \mathbf{u} \in L) \\
& \left.\langle\mathcal{C} \mathbf{u} \mid \mathbf{u}\rangle_{L} \geq \alpha\|\mathbf{u}\|_{L}^{2} \quad \& \quad\langle\mathcal{C} \mathbf{u} \mid \mathbf{u}\rangle_{L} \geq \frac{1}{\beta}\|\mathcal{C} \mathbf{u}\|_{L}^{2}\right\}
\end{aligned}
$$

Definition (G-convergence for Friedrichs systems)
For $\mathcal{C}_{n} \in \mathcal{F}(\alpha, \beta ; \Omega)$, we say that a sequence of isomorphisms $T_{n}:=T_{0}+\mathcal{C}_{n}: V \rightarrow L G$-converges to an isomorphism $T:=T_{0}+\mathcal{C}: V \rightarrow L$, for some $\mathcal{C} \in \mathcal{F}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right)$ if

$$
(\forall \mathrm{f} \in L) \quad T_{n}^{-1} \mathrm{f} \longrightarrow T^{-1} \mathrm{f} \text { in } W
$$

Theorem

For fixed T_{0} and V, if family $\mathcal{F}(\alpha, \beta ; \Omega)$ satisfies (K1), then for any sequence $\left(\mathcal{C}_{n}\right)$ in $\mathcal{F}(\alpha, \beta ; \Omega)$ there exists a subsequence of $T_{n}:=T_{0}+\mathcal{C}_{n}$ which G-converges to $T:=T_{0}+\mathcal{C}$ with $\mathcal{C} \in \mathcal{F}(\alpha, \beta ; \Omega)$.

Why should one be interested in Friedrichs systems?
Symmetric hyperbolic systems
Symmetric positive systems
Classical theory
Boundary conditions for Friedrichs systems
Existence, uniqueness, well-posedness
Abstract formulation
Graph spaces
Cone formalism of Ern, Guermond and Caplain
Interdependence of different representations of boundary conditions
Kreĭn space formalism
Kreĭn spaces
Equivalence of boundary conditions
What can we say for the Friedrichs operator now?
Sufficient assumptions
An example: elliptic equation
Other second order equations
Two-field theory
Non-stationary theory
Homogenisation of Friedrichs systems
Homogenisation
Examples: Stationary diffusion and heat equation
Concluding remarks

Open problems ...

- Find all representations of a particular equation in the form of a Friedrichs system.
- Application to other equations of practical importance (mixed-type problems).
- Compare the results to those already known in the classical setting.

Literature

T. I. Azizov, I. S. lokhvidov: Linear operators in spaces with an indefinite metric, Wiley, 1989.
J. Bognár: Indefinite inner product spaces, Springer, 1974.
A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Communications in Partial Differential Equations, 32 (2007), 317-341
P. Houston, J. Mackenzie, E. Süli, G. Warnecke: A posteriori error analysis for numerical approximations of Friedrichs systems, Numerische Mathematik 82 (1999) 433-470.
K. O. Friedrichs: Symmetric positive linear differential equations, Communications on Pure and Applied Mathematics 11 (1958), 333-418.
M. Jensen: Discontinuous Galerkin methods for Friedrichs systems with irregular solutions, Ph. D. thesis, University of Oxford, 2004.

Publications

N. A., Krešimir Burazin: On equivalent descriptions of boundary conditions for Friedrichs systems, Math. Montisnigri 22-23 (2009-2010) 5-13.
N. A., Krešimir Burazin: Graph spaces of first-order linear partial differential operators, Math. Communications 14 (2009) 135-155.
N. A., Krešimir Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690-1715.
N. A., Krešimir Burazin: Boundary operator from matrix field formulation of boundary conditions for Friedrichs systems, J. Diff. Eq. 250 (2011) 3630-3651.
N. A., Krešimir Burazin, Marko Vrdoljak: Heat equation as a Friedrichs system, J. Math. Analysis Appl. 404 (2013) 537-553.
N. A., Krešimir Burazin, Marko Vrdoljak: Second-order equations as Friedrichs systems, Nonlin. Analysis B: Real World Appl. 14 (2014) 290-305.
Krešimir Burazin, Marko Vrdoljak: Homogenisation theory for Friedrichs systems, Comm. Pure Appl. Analysis 13 (2014) 1017-1044.
Marko Erceg, Krešimir Burazin: Non-stationary abstract Friedrichs systems via semigroup theory, submitted
Krešimir Burazin: Prilozi teoriji Friedrichsovih i hiperboličkih sustava, Ph.D. thesis, University of Zagreb, 2008.

