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Existence of H-measures

Theorem. If un ⇀ 0 in L2(Ω; Cr), then there exist a subsequence (un′) and
µH ∈Mb(Ω× Sd−1; Mr(C)) such that for every ϕ1, ϕ2 ∈ C0(Ω) and
ψ ∈ C(Sd−1)

lim
n′

Z
Rd

ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)ψ
“ ξ

|ξ|

”
dξ = 〈µH , ϕ1ϕ̄2 � ψ〉 .

Measure µH we call the H-measure corresponding to the (sub)sequence (un).

Above we use the notation

v · u :=
X

viūi , (v ⊗ u)a := (a · u)v ,while (f � g)(x, ξ) := f(x)g(ξ) .

Theorem.

un
L2
loc−−→ 0 ⇐⇒ µH = 0 .

3



Existence of H-measures

Theorem. If un ⇀ 0 in L2
loc(Ω; Cr), then there exist a subsequence (un′) and

µH ∈M(Ω× Sd−1; Mr(C)) such that for every ϕ1, ϕ2 ∈ Cc(Ω) and
ψ ∈ C(Sd−1)

lim
n′

Z
Rd

ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)ψ
“ ξ

|ξ|

”
dξ = 〈µH , ϕ1ϕ̄2 � ψ〉 .

The distribution of order zero µH we call the H-measure corresponding to the
(sub)sequence (un).

Above we use the notation

v · u :=
X
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Example 1: Oscillation
Take a periodic function v ∈ L2(Rd/Zd), extend it to Rd, and write

v(x) =
X
k∈Zd

v̂ke
2πik·x .

Assume that v̂0 = 0, and define un(x) = v(nx) in L2
loc(R

d).
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Associated H-measure

µH =
X

k∈Zd\{0}

|v̂k|2δ k
|k|

(ξ)λ(x) .
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Example 2: Concentration

For U ∈ L2(Rd) define

un(x) = n
d
2U (nx) .
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Associated H-measure

µH =

Z
Rd
|Û(y)|2δ y

|y|
(ξ)δ0(x)dy .
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Variants without a characteristic length

N. A., M. Lazar (2007–13): parabolic H-measures
E. Yu. Panov (2009): ultraparabolic H-measures
I. Ivec, D. Mitrović (2011): for fractional scalar conservation laws
M. Lazar, D. Mitrović (2012): velocity averaging

H-measures can be tailored to the equations, following the above ideas (and
surmounting technical details, which do appear).
The objects are quadratic in nature, and are suited essentially to linear
problems.

N. A., D. Mitrović (2011): H-distributions
The objects are no longer measures, but distributions (of finite order in ξ).

However, we are no longer limited to considering L2 sequences, but pairs of Lp

and Lp
′

sequences.
Applications to compactness by compensation by M. Mǐsur and D. Mitrović
(submitted), and velocity averaging by M. Lazar and D. Mitrović (2013).
Other dualities are also possible, like mixed-norm Lebesgue spaces by N.A. and
I. Ivec (submitted), and Sobolev spaces by J. Aleksić, S. Pilipović and I.
Vojnović.
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Other dualities are also possible, like mixed-norm Lebesgue spaces by N.A. and
I. Ivec (submitted), and Sobolev spaces by J. Aleksić, S. Pilipović and I.
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Vojnović.
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Semiclassical measures

Introduced for problems involving a characteristic length, by Patrick Gérard
(1990).

Luc Tartar (1990) constructed a similar object on an example, but Gérard’s
construction was easier; later they jointly simplified it further.

Pierre-Louis Lions and Thierry Paul (1993) constructed the same objects by
using the Wigner transform, and renamed them as Wigner measures.

A sample problem:
consider T > 0, Ω ⊆ Rd, U := 〈0, T 〉 × Ω, (un) in H1

loc(U),

un
L2
loc(U)
−−−⇀ 0, A ∈W1,∞(U), fn

L2
loc(U)
−−−⇀ 0, and εn ↘ 0

∂tun − εndiv (A∇un) = fn .

What can we say about solutions on the limit n→∞?
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Existence

Theorem. If un ⇀ 0 in L2(Ω; Cr), ωn ↘ 0, then there exist a subsequence
(un′) and µsc ∈Mb(Ω×Rd; Mr(C)) such that for every ϕ1, ϕ2 ∈ C0(Ω) and
ψ ∈ S(Rd)

lim
n′

Z
Rd

ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)ψ(ωn′ξ) dξ = 〈µsc, ϕ1ϕ̄2 � ψ〉 .

Measure µsc we call the semiclassical measure with characteristic length ωn
corresponding to the (sub)sequence (un).

(un) is (ωn)-oscillatory if

(∀ϕ ∈ C∞c (Ω)) lim
R→∞

lim sup
n

Z
|ξ|> R

ωn

|dϕun(ξ)|2 dξ = 0 .

Theorem.

un
L2
loc−→ 0 ⇐⇒ µsc = 0 & (un) is (ωn)− oscillatory .
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Example 1a: Oscillation — one characteristic length

α > 0, k ∈ Zd \ {0}, ωn ↘ 0:

un(x) := e2πin
αk·x L2

loc−−⇀ 0 .

µH = λ(x)� δ k
|k|

(ξ)

µsc = λ(x)�

8<: δ0(ξ), limn n
αωn = 0

δck(ξ), limn n
αωn = c ∈ 〈0,∞〉

0, limn n
αωn =∞

sin( 4
√
nπx)

sin(nπx)
sin(n2πx)

n = 2
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Example 1b: Oscillation — two characteristic lengths

0 < α < β, k, s ∈ Zd \ {0}, ωn ↘ 0:

un(x) := e2πin
αk·x L2

loc−−⇀ 0 ,

vn(x) := e2πin
β s·x L2

loc−−⇀ 0 .

µH (µsc) is H-measure (semiclassical measure with characteristic length
ωn ↘ 0) corresponding to un + vn.

µH = λ(x)�
“
δ k
|k|

+ δ s
|s|

”
(ξ)

µsc = λ(x)�

8>>><>>>:
2δ0(ξ), limn n

βωn = 0
(δcs + δ0)(ξ), limn n

βωn = c ∈ 〈0,∞〉
δ0(ξ), limn n

βωn =∞ & limn n
αωn = 0

δck, limn n
αωn = c ∈ 〈0,∞〉

0, limn n
αωn =∞
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One-scale H-measures

Introduced by Tartar (2009), they are variant H-measures which have the
advantages of both H-measures and semiclassical measures.

First attempts were already made in ”Beyond Young measures” (Tartar, 1995).

Further step would be to introduce multi-scale H-measures.
An attempt was made by Tartar (2014).
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An attempt was made by Tartar (2014).
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Compatification of Rd \ {0}

Rd

Σ∞
Σ0

Σ0 := {0ξ0 : ξ0 ∈ Sd−1}

Σ∞ := {∞ξ0 : ξ0 ∈ Sd−1}

K0,∞(Rd) := (Rd \ {0}) ∪ Σ0 ∪ Σ∞

We have:
a) C0(Rd) ⊆ C(K0,∞(Rd)).
b) ψ ∈ C(Sd−1), ψ ◦ π ∈ C(K0,∞(Rd)), where π(ξ) = ξ/|ξ|.
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Existence and definition of one-scale H-measures
Theorem. If un ⇀ 0 in L2(Ω; Cr), ωn ↘ 0, then there exist a subsequence
(un′) and µsc ∈Mb(Ω×Rd; Mr(C)) such that for every ϕ1, ϕ2 ∈ C0(Ω) and
ψ ∈ S(Rd)

lim
n′

Z
Rd

̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)ψ(ωn′ξ) dξ = 〈µsc, ϕ1ϕ̄2 � ψ〉 .

Measure µsc we call the semiclassical measure with characteristic length ωn
corresponding to the (sub)sequence (un).

Some properties:
Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ S(Rd), ψ̃ ∈ C(Sd−1).

a) 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 = 〈µsc, ϕ1ϕ̄2 � ψ〉 ,
b) 〈µK0,∞ , ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 .

Theorem.

a) µ∗K0,∞ = µK0,∞

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) µK0,∞(Ω× Σ∞) = 0 ⇐⇒ (un) is (ωn)− oscillatory

14



Existence and definition of one-scale H-measures
Theorem. If un ⇀ 0 in L2(Ω; Cr), ωn ↘ 0, then there exist a subsequence
(un′) and µK0,∞ ∈Mb(Ω×K0,∞(Rd); Mr(C)) such that for every

ϕ1, ϕ2 ∈ C0(Ω) and ψ ∈ C(K0,∞(Rd))

lim
n′

Z
Rd

̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)ψ(ωn′ξ) dξ = 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 .

Measure µK0,∞ we call one-scale H-measure with characteristic length ωn
corresponding to the (sub)sequence (un).

Some properties:
Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ S(Rd), ψ̃ ∈ C(Sd−1).

a) 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 = 〈µsc, ϕ1ϕ̄2 � ψ〉 ,
b) 〈µK0,∞ , ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 .

Theorem.

a) µ∗K0,∞ = µK0,∞

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) µK0,∞(Ω× Σ∞) = 0 ⇐⇒ (un) is (ωn)− oscillatory

14



Existence and definition of one-scale H-measures
Theorem. If un ⇀ 0 in L2(Ω; Cr), ωn ↘ 0, then there exist a subsequence
(un′) and µK0,∞ ∈Mb(Ω×K0,∞(Rd); Mr(C)) such that for every

ϕ1, ϕ2 ∈ C0(Ω) and ψ ∈ C(K0,∞(Rd))

lim
n′

Z
Rd

̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)ψ(ωn′ξ) dξ = 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 .

Measure µK0,∞ we call one-scale H-measure with characteristic length ωn
corresponding to the (sub)sequence (un).

Some properties:
Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ S(Rd), ψ̃ ∈ C(Sd−1).

a) 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 = 〈µsc, ϕ1ϕ̄2 � ψ〉 ,
b) 〈µK0,∞ , ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 .

Theorem.

a) µ∗K0,∞ = µK0,∞

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) µK0,∞(Ω× Σ∞) = 0 ⇐⇒ (un) is (ωn)− oscillatory

14



Existence and definition of one-scale H-measures
Theorem. If un ⇀ 0 in L2

loc(Ω; Cr), ωn ↘ 0, then there exist a subsequence
(un′) and µK0,∞ ∈M(Ω×K0,∞(Rd); Mr(C)) such that for every

ϕ1, ϕ2 ∈ Cc(Ω) and ψ ∈ C(K0,∞(Rd))

lim
n′

Z
Rd

̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)ψ(ωn′ξ) dξ = 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 .

The distribution of the zero order µK0,∞ we call one-scale H-measure with

characteristic length ωn corresponding to the (sub)sequence (un).

Some properties:
Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ S(Rd), ψ̃ ∈ C(Sd−1).

a) 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 = 〈µsc, ϕ1ϕ̄2 � ψ〉 ,
b) 〈µK0,∞ , ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 .

Theorem.

a) µ∗K0,∞ = µK0,∞

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) µK0,∞(Ω× Σ∞) = 0 ⇐⇒ (un) is (ωn)− oscillatory

14



Existence and definition of one-scale H-measures
Theorem. If un ⇀ 0 in L2

loc(Ω; Cr), ωn ↘ 0, then there exist a subsequence
(un′) and µK0,∞ ∈M(Ω×K0,∞(Rd); Mr(C)) such that for every

ϕ1, ϕ2 ∈ Cc(Ω) and ψ ∈ C(K0,∞(Rd))

lim
n′

Z
Rd

̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)ψ(ωn′ξ) dξ = 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 .

The distribution of the zero order µK0,∞ we call one-scale H-measure with

characteristic length ωn corresponding to the (sub)sequence (un).

Some properties:
Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ S(Rd), ψ̃ ∈ C(Sd−1).

a) 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 = 〈µsc, ϕ1ϕ̄2 � ψ〉 ,
b) 〈µK0,∞ , ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 .

Theorem.

a) µ∗K0,∞ = µK0,∞

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) µK0,∞(Ω× Σ∞) = 0 ⇐⇒ (un) is (ωn)− oscillatory

14



Existence and definition of one-scale H-measures
Theorem. If un ⇀ 0 in L2

loc(Ω; Cr), ωn ↘ 0, then there exist a subsequence
(un′) and µK0,∞ ∈M(Ω×K0,∞(Rd); Mr(C)) such that for every

ϕ1, ϕ2 ∈ Cc(Ω) and ψ ∈ C(K0,∞(Rd))

lim
n′

Z
Rd

̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)ψ(ωn′ξ) dξ = 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 .

The distribution of the zero order µK0,∞ we call one-scale H-measure with

characteristic length ωn corresponding to the (sub)sequence (un).

Some properties:
Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ S(Rd), ψ̃ ∈ C(Sd−1).

a) 〈µK0,∞ , ϕ1ϕ̄2 � ψ〉 = 〈µsc, ϕ1ϕ̄2 � ψ〉 ,
b) 〈µK0,∞ , ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 .

Theorem.

a) µ∗K0,∞ = µK0,∞

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) µK0,∞(Ω× Σ∞) = 0 ⇐⇒ (un) is (ωn)− oscillatory

14



Example 1a revisited

un(x) = e2πin
αk·x,

µH = λ(x)� δ k
|k|

(ξ)

µsc = λ(x)�

8<: δ0(ξ), limn n
αωn = 0

δck(ξ), limn n
αωn = c ∈ 〈0,∞〉

0, limn n
αωn =∞

µK0,∞ = λ(x)�

8><>:
δ
0

k
|k|

(ξ), limn n
αωn = 0

δck(ξ), limn n
αωn = c ∈ 〈0,∞〉

δ
∞

k
|k|

(ξ), limn n
αωn =∞
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Example 1b revisited

The corresponding measures of un + vn for:

un(x) = e2πin
αk·x , vn(x) = e2πin

β s·x ,

µH = λ(x)�
“
δ k
|k|

+ δ s
|s|

”
(ξ)

µsc = λ(x)�

8>>><>>>:
2δ0(ξ), limn n

βωn = 0
(δ0 + δcs)(ξ), limn n

βωn = c ∈ 〈0,∞〉
δ0(ξ), limn n

βωn =∞ & limn n
αωn = 0

δck, limn n
αωn = c ∈ 〈0,∞〉

0, limn n
αωn =∞

µK0,∞ = λ(x)�

8>>>>>>>><>>>>>>>>:

(δ
0

k
|k|

+ δ
0

s
|s|

)(ξ), limn n
βωn = 0

(δ
0

k
|k|

+ δcs)(ξ), limn n
βωn = c ∈ 〈0,∞〉

(δ
0

k
|k|

+ δ
∞

s
|s|

)(ξ), limn n
βωn =∞ & limn n

αωn = 0

(δck + δ
∞

s
|s|

)(ξ), limn n
αωn = c ∈ 〈0,∞〉

(δ
∞

k
|k|

+ δ
∞

s
|s|

), limn n
αωn =∞
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Other variants

One-scale parabolic H-measures
A similar construction can be carried out by starting with parabolic H-measures
instead of classical H-measures.
The resulting objects will have two scales: one corresponding to t, and another
to x.

One-scale H-distributions
This construction requires much more work. The topological construction is
not enough, as we also have to check the derivatives.
However, the construction is feasible, and we obtain the new objects.
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H-measures, variants and semiclassical measures
Classical H-measures and variants
Semiclassical measures

One-scale H-measures
One-scale H-measures
Other variants

Localisation principle
Motivation
One-scale H-measures
Back to H-measures and semiclassical measures
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Localisation principle

Most of the known applications of H-measures depend in one way or the other
on the localisation principle, which gives the information on the support of
H-measure.
It is indispensable even for the known applications of the propagation principle.

A similar statement holds for semiclassical measures as well.
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Localisation principle for H-measures (symmetric systems)

dX
k=1

∂k(Aku) + Bu = f , Ak ∈ Cb(Ω; Mr×r) Hermitian

Assume:

un
L2

−−⇀ 0 , and defines µH

fn
H−1

loc−−→ 0 .

Theorem. If un satisfies:

dX
k=1

∂k
`
Akun

´
−→ 0 in H−1

loc(Ω; Cr) ,

then for P(x, ξ) :=
Pd
k=1 ξkA

k(x) on Ω× Sd−1 one has:

P(x, ξ)µ>H = 0 .

Thus, the support of H-measure µ is contaned in the set˘
(x, ξ) ∈ Ω× Sd−1 : det P(x, ξ) = 0

¯
of points where P is a singular matrix.

It contains a generalisation of compactness by compensation to variable
coefficients.
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Higher derivatives and parabolic variant

Let Ω ⊆ Rd open, m ∈ N, un ⇀ 0 in L2
loc(Ω; Cr), Aα ∈ C(Ω; Mr(C)) and

Pun =
X
|α|=m

∂α(Aαun) −→ 0 in H−mloc (Ω; Cr) .

Then we have
p(x, ξ)µ>H = 0 ,

where p(x, ξ) =
P
|α|=m ξαAα(x) is the principle simbol of P.

In the parabolic case the details become more involved.

One needs anisotropic Sobolev spaces and fractional derivatives in t.
However, similar results can be achieved.
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Localisation principle for semiclassical measures

Let ε ⊆ Rd open, m ∈ N, Aα ∈ C(ε; Mr(C)), εn ↘ 0, fn −→ 0 in L2
loc(ε; C

r)
and consider:

Pnun =
X
|α|6m

ε|α|n ∂α(Aαun) = fn in ε .

Furthermore, assume that un −⇀ 0 in L2
loc(ε; C

r).

Then we have
p(x, ξ)µ>sc = 0 ,

where p(x, ξ) =
P
|α|6m ξαAα(x), and µsc is the semiclassical measure with

characteristic length (εn), corresponding to (un).

Problem: µsc = 0 is not enough for the strong convergence!
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One-scale H-measures

Let un ⇀ 0 in L2
loc(Ω; Cr), εn ↘ 0, Aα ∈ C(Ω; Mr(C))X

l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

where fn ∈ H−mloc (Ω; Cr) such that

(∀ϕ ∈ C∞c (Ω))
dϕfn

1 +
Pm
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd; Cr) (C(εn))

Lemma.
a) (C(εn)) is equivalent to

(∀ϕ ∈ C∞c (Ω))
dϕfn

1 + |ξ|l + εm−ln |ξ|m
−→ 0 in L2(Rd; Cr) .

b) (∃ k ∈ l..m) fn −→ 0 in H−kloc (Ω; Cr) =⇒ (εk−ln fn) satisfies (C(εn)).
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Localisation principle: Tartar’s result

X
l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

(∀ϕ ∈ C∞c (Ω))
dϕfn

1 +
Pm
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd; Cr) . (C(εn))

Theorem. [Tartar (2009)] Under previous assumptions and l = 1, one-scale
H-measure µK0,∞ with characteristic length εn corresponding to (un) satisfies

supp (pµ>K0,∞) ⊆ Ω× Σ0 ,

where

p(x, ξ) :=
X

16|α|6m

(2πi)|α|
ξα

|ξ|+ |ξ|mAα(x) .
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characteristic length εn corresponding to (un) satisfies

pµ>K0,∞ = 0 ,

where

p(x, ξ) :=
X

l6|α|6m

(2πi)|α|
ξα

|ξ|l + |ξ|mAα(x) .

24



Localisation principle: a generalisation

Theorem. εn −→ 0, un ⇀ 0 in L2
loc(Ω; Cr) andX

l6|α|6m

ε|α|−ln ∂α(Aαun) = fn ,

where Aα ∈ C(Ω; Mr(C)), and fn ∈ H−mloc (Ω; Cr) satisfies (C(εn)).
Then for ωn → 0 such that limn

ωn
εn

= c ∈ [0,∞], the corresponding one-scale
H-measure µK0,∞ with characteristic length ωn satisfies

pµ>K0,∞ = 0 ,

where

p(x, ξ) :=

8>><>>:
P
|α|=l

ξα

|ξ|l+|ξ|mAα(x) , limn
ωn
εn

=∞P
l6|α|6m

“
2πi
c

”|α|
ξα

|ξ|l+|ξ|mAα(x) , limn
ωn
εn

= c ∈ 〈0,∞〉P
|α|=m

ξα

|ξ|l+|ξ|mAα(x) , limn
ωn
εn

= 0
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Sketch of the proof.

Suppose that we have already obtained the result for limn
ωn
εn

= c ∈ 〈0,∞〉.

In the case limn
ωn
εn

=∞ we rewrite equations in the formX
l6|α|6m

ω|α|−ln ∂α(Bαun) = fn ,

for Bα :=
“
εn
ωn

”|α|−l
Aα.

Similary for the case limn
ωn
εn

= 0 we haveX
l6|α|6m

ω|α|−ln ∂α(Bαun) = gn ,

where Bα :=
“
ωn
εn

”m−|α|
Aα, and gn :=

“
ωn
εn

”m−l
fn.
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Proof (Step 1: inserting test function)

X
l6|α|6m

ε|α|−ln ∂α(Aαun) = fn

/ϕ ∈ C∞c (Ω)

=⇒
X

l6|α|6m

X
06β6α

(−1)|β|
 

α

β

!
ε|α|−ln ∂α−β

“
(∂βϕ)Aαun

”
= ϕfn

• ∂α−β

“
(∂βϕ)Aαun

”
has a compact support

=⇒ ∂α−β

“
(∂βϕ)Aαun

”
−→ 0 in H−|α|(Ω; Cr) (un ⇀ 0) , 0 < β 6 α

=⇒ (−1)|β|
 

α

β

!
ε|α|−ln ∂α−β

“
(∂βϕ)Aαun

”
satisfies (C(εn))

We can rewrite X
l6|α|6m

ε|α|−ln ∂α

“
Aαϕun

”
= f̃n

where (̃fn) satisfies (C(εn)).
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Proof (Step 2: Fourier transform)

After applying Fourier transform and multiplying by 1

1+|ξ|l+εm−ln |ξ|m
we get:

X
l6|α|6m

ε|α|−ln (2πi)|α|
ξαÂαϕun

1 + |ξ|l + εm−ln |ξ|m
=

b̃fn
1 + |ξ|l + εm−ln |ξ|m

L2

−→ 0 .

Lemma. (fn) mesurable (vector valued) on Rd, hn > 0 and

(∀ r > 0)(∃ C̃ > 0)(∀n ∈ N)(∀ ξ ∈ Rd \K(0, r)) hn(ξ) > C̃ ,

(un) bounded in L2(Rd; Cr) ∩ L1(Rd; Cr) and fn
1+hn

· ûn −→ 0 in L2(Rd) .

If (h−2
n |fn|2) is equiintegrable then

fn
hn
· ûn −→ 0 in L2(Rd) .

=⇒
X

l6|α|6m

(2πi)|α|
(εnξ)α

|εnξ|l + |εnξ|m Âαϕun −→ 0 in L2(Rd; Cr)

The convergence is expressed in L2.

28



Proof (Step 2: Fourier transform)

After applying Fourier transform and multiplying by 1

1+|ξ|l+εm−ln |ξ|m
we get:

X
l6|α|6m

ε|α|−ln (2πi)|α|
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Proof (Step 3: passing to the limit)

In order to apply the existence theorem, ξ 7→ ε
|α|−l
n ξα

|ξ|l+εm−ln |ξ|m
should be written

as a function in variable ωnξ.

Then, we need to prove (it is trivial for l = m)X
l6|α|6m

(2πi)|α|ψα(ωn·)Âαϕun −→ 0 in L2(Rd; Cr) ,

where ψα(ξ) := cm−|α|ξα

cm−l|ξ|l+|ξ|m , defined for ξ ∈ Rd
∗, can be understood as a

function from C(K0,∞(Rd)).

This requires some calculations . . . (skipped)
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Proof (Step 3: passing to the limit)

Multiplication by ψ(εn·)ϕ̂1un, with ψ ∈ C(K0,∞(Rd)), ϕ1 ∈ C∞c (Ω),
and integration

0 = lim
n

Z
Rd

ψ(εnξ)

 X
l6|α|6m

(2πi)|α|
(εnξ)α

|εnξ|l + |εnξ|m Âαϕun

!
⊗
“
ϕ̂1un

”
dξ

=
D X
l6|α|6m

(2πi)|α|
ξα

|ξ|l + |ξ|mAαµK0,∞ , ϕϕ̄1 � ψ
E
,

where we have used ξ 7→ ξα

|ξ|l+|ξ|m ∈ C(K0,∞(Rd)), l 6 |α| 6 m.

Taking ϕ1 = 1 on suppϕ and using µK0,∞ = µ>K0,∞ we get the result.
Q.E.D.
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Localisation principle - final generalisation
Theorem. εn −→ 0, un ⇀ 0 in L2

loc(Ω; Cr) andX
l6|α|6m

ε|α|−ln ∂α(Aα
n un) = fn ,

where Aα
n ∈ C(Ω; Mr(C)), Aα

n −→ Aα uniformly on compact sets, and
fn ∈ H−mloc (Ω; Cr) satisfies (C(εn)).
Then for ωn → 0 such that limn

ωn
εn

= c ∈ [0,∞], corresponding one-scale
H-measure µK0,∞ with characteristic length ωn satisfies

pµ>K0,∞ = 0 ,

where

p(x, ξ) :=

8>><>>:
P
|α|=l

ξα

|ξ|l+|ξ|mAα(x) , limn
ωn
εn

=∞P
l6|α|6m

“
2πi
c

”|α|
ξα

|ξ|l+|ξ|mAα(x) , limn
ωn
εn

= c ∈ 〈0,∞〉P
|α|=m

ξα

|ξ|l+|ξ|mAα(x) , limn
ωn
εn

= 0

Moreover, if there exists ε0 > 0 such that εn > ε0, n ∈ N, we can take

p(x, ξ) :=
X
|α|=m

ξα

|ξ|mAα(x) .
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Localisation principle (H-measures)

• Using preceding theorem and µK0,∞ = µH on Ω× Sd−1, we can obtained
known localisation principle for H-measures:

P(x, ξ)µ>H = 0 ,

where µH is an H-measure associated to the sequence (un), while the symbol
reads

P(x, ξ) :=
X
|α|=m

(2πi)mξαAα(x) .
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Localisation principle (semiclassical measures)

Under the assumptions of the preceding theorem, we have

p(x, ξ)µ>sc = 0 ,

where

p(x, ξ) :=

8><>:
P
|α|=l ξ

αAα(x) , limn
ωn
εn

=∞P
l6|α|6m

“
2πi
c

”|α|
ξαAα(x) , limn

ωn
εn

= c ∈ 〈0,∞〉P
|α|=m ξαAα(x) , limn

ωn
εn

= 0
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Proof (only the case limn
ωn
εn

= c ∈ 〈0,∞〉)

ψ ∈ S(Rd) =⇒ ξ 7→ (|ξ|l + |ξ|)ψ(ξ) ∈ C(K0,∞(Rd))

0 =
D X
l6|α|6m

“2πi

c

”|α| ξα

|ξ|l + |ξ|mAαµK0,∞ , ϕ� (|ξ|l + |ξ|m)ψ
E

=
D
µK0,∞ ,

X
l6|α|6m

“2πi

c

”|α|
ϕAα � ξαψ

E
=
D
µsc,

X
l6|α|6m

“2πi

c

”|α|
ϕAα � ξαψ

E
=
D X
l6|α|6m

“2πi

c

”|α|
ξαAαµsc, ϕ� ψ

E
,

where we have used ξαψ ∈ S(Rd) and that µK0,∞ and µsc coincide on S(Rd).
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c

”|α|
ξαAαµsc, ϕ� ψ

E
,

where we have used ξαψ ∈ S(Rd) and that µK0,∞ and µsc coincide on S(Rd).
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Summary

• H-measures do not catch frequency
• In some cases, semiclassical measures do not catch direction
• One-scale H-measures are a generalisation of H-measures and semiclassical

measures and do not have the above anomalies

• Localisation principle for one-scale H-measures is obtained
• Localisation principles for H-measures and semiclassical measures is reproven

via localisation principle for one-scale H-measures
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