Localisation principles for variant H -measures

Nenad Antonić
Department of Mathematics
Faculty of Science
University of Zagreb

Calculus of variations and its applications, Caparica, $18^{\text {th }}$ December 2015 (a conference in honour of Luísa Mascarenhas' anniversary)

Joint work with Marko Erceg, Ivan Ivec, Martin Lazar, Marin Mišur and Darko Mitrović

H -measures and variants
H -measures
Existence of H -measures
Localisation principle

H-distributions
Existence
Localisation principle Other variants

One-scale H-measures
Semiclassical measures
One-scale H-measures
Localisation principle

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H),

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects microlocal defect measures).

What are H -measures?

Mathematical objects introduced by:

- Luc Tartar, motivated by intended applications in homogenisation (H), and
- Patrick Gérard, whose motivation were certain problems in kinetic theory (and who called these objects microlocal defect measures).
Start from $u_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \varphi \in \mathrm{C}_{c}\left(\mathbf{R}^{d}\right)$, and take the Fourier transform:

$$
\widehat{\varphi u_{n}}(\boldsymbol{\xi})=\int_{\mathbf{R}^{d}} e^{-2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}}\left(\varphi u_{n}\right)(\mathbf{x}) d \mathbf{x}
$$

As φu_{n} is supported on a fixed compact set K, so $\left|\widehat{\varphi u_{n}}(\boldsymbol{\xi})\right| \leqslant C$.
Furthermore, $u_{n} \longrightarrow 0$, and from the definition $\widehat{\varphi u_{n}}(\boldsymbol{\xi}) \longrightarrow 0$ pointwise.
By the Lebesgue dominated convergence theorem on bounded sets, we get $\widehat{\varphi u_{n}} \longrightarrow 0$ strong, i.e. strongly in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$.
On the other hand, by the Plancherel theorem: $\left\|\widehat{\varphi u_{n}}\right\|_{L^{2}\left(\mathbf{R}^{d}\right)}=\left\|\varphi u_{n}\right\|_{L^{2}\left(\mathbf{R}^{d}\right)}$. If $\varphi u_{n} \ngtr 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$, then $\widehat{\varphi u_{n}} \ngtr 0$; some information must go to infinity. How does it go to infinity in various directions? Take $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$, and consider:

$$
\lim _{n} \int_{\mathbf{R}^{d}} \psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)\left|\widehat{\varphi u_{n}}\right|^{2} d \boldsymbol{\xi}=\int_{\mathrm{S}^{d-1}} \psi(\boldsymbol{\xi}) d \nu_{\varphi}(\boldsymbol{\xi})
$$

The limit is a linear functional in ψ, thus an integral over the sphere of some nonegativne Radon measure (a bounded sequence of Radon measures has an accumulation point), which depends on φ. How does it depent on φ ?

H-measures: Rough geometric idea
Take a sequence $\mathbf{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi u_{n}}\right|^{2}$ along

H-measures: Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi u_{n}}\right|^{2}$ along rays and project onto S^{1}

H-measures: Rough geometric idea
Take a sequence $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathrm{u}_{n}}\right|^{2}$ along rays and project onto S^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):
$\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1$

H-measures: Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi u_{n}}\right|^{2}$ along rays and project onto S^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):
$S^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1$
and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

H-measures: Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi u_{n}}\right|^{2}$ along rays and project onto $\mathrm{S}^{1} \quad$ Heat equation?

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):
$\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1$
and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface): $\quad \partial_{t} u-\partial_{x}^{2} u=0$

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

H-measures: Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi \mathbf{u}_{n}}\right|^{2}$ along rays and project onto S^{1}
parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):
$\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1$
and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

H-measures: Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi u_{n}}\right|^{2}$ along rays and project onto S^{1}
parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):

$$
\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1 \quad \mathrm{P}^{1} \ldots \rho^{2}(\tau, \xi):=(\xi / 2)^{2}+\sqrt{(\xi / 2)^{4}+\tau^{2}}=1
$$

and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

H-measures: Rough geometric idea
Take a sequence $u_{n} \longrightarrow 0$ in $L^{2}\left(\mathbf{R}^{2}\right)$, and integrate $\left|\widehat{\varphi u_{n}}\right|^{2}$ along rays and project onto S^{1}
parabolas and project onto P^{1}

In \mathbf{R}^{2} we have a compact curve (a surface in higher dimensions):

$$
\mathrm{S}^{1} \ldots r^{2}(\tau, \xi):=\tau^{2}+\xi^{2}=1 \quad \mathrm{P}^{1} \ldots \rho^{2}(\tau, \xi):=(\xi / 2)^{2}+\sqrt{(\xi / 2)^{4}+\tau^{2}}=1
$$

and projection $\mathbf{R}_{*}^{2}=\mathbf{R}^{2} \backslash\{0\}$ onto the curve (surface):

$$
p(\tau, \xi):=\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad \pi(\tau, \xi):=\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

H-measures: Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x})$,

H-measures: Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

H-measures: Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.

H-measures: Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$. The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

H-measures: Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π :

H-measures: Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right)
$$

H-measures: Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{L^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad a(\tau, \xi):=\alpha\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

H-measures: Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad a(\tau, \xi):=\alpha\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

The precise scaling is contained in the projections, not the surface.

H-measures: Analytic picture

Multiplication by $b \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right)$, a bounded operator M_{b} on $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$: $\left(M_{b} u\right)(\mathbf{x}):=b(\mathbf{x}) u(\mathbf{x}), \quad$ norm equal to $\|b\|_{\mathbf{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.

Fourier multiplier \mathcal{A}_{a}, for $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{2}\right): \quad \widehat{\mathcal{A}_{a} u}=a \hat{u}$.
The norm is again equal to $\|a\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{2}\right)}$.
Delicate part: a is given only on S^{1} or P^{1}.
We extend it by the projections, p or π : if α is a function defined on a compact surface, we take $a:=\alpha \circ p$ or $a:=\alpha \circ \pi$, i.e.

$$
a(\tau, \xi):=\alpha\left(\frac{\tau}{r(\tau, \xi)}, \frac{\xi}{r(\tau, \xi)}\right) \quad a(\tau, \xi):=\alpha\left(\frac{\tau}{\rho^{2}(\tau, \xi)}, \frac{\xi}{\rho(\tau, \xi)}\right)
$$

The precise scaling is contained in the projections, not the surface.
Now we can state the main theorem, where we use the notation

$$
\mathrm{v} \cdot \mathbf{u}:=\sum v_{i} \bar{u}_{i}, \quad(\mathbf{v} \otimes \mathbf{u}) \mathrm{a}:=(\mathrm{a} \cdot \mathbf{u}) \mathbf{v}, \text { while } \quad(f \boxtimes g)(\mathbf{x}, \boldsymbol{\xi}):=f(\mathbf{x}) g(\boldsymbol{\xi}) .
$$

Existence of H-measures

Theorem. If $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$, then there exists a subsequence and a complex matrix Radon measure $\boldsymbol{\mu}$ on

$$
\mathbf{R}^{d} \times \mathrm{S}^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ p) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& =\int_{\mathbf{R}^{d} \times \mathrm{S}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Existence of H-measures

Theorem. If $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$, then there exists a subsequence and a complex matrix Radon measure $\boldsymbol{\mu}$ on

$$
\mathbf{R}^{d} \times \mathrm{P}^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(\mathrm{P}^{d-1}\right)
$$

one has

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ \pi) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle} \\
=\int_{\mathbf{R}^{d} \times \mathrm{P}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Existence of H -measures

Theorem. If $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$, then there exists a subsequence and a complex matrix Radon measure $\boldsymbol{\mu}$ on

$$
\mathbf{R}^{d} \times \mathrm{S}^{d-1} \quad \mathbf{R}^{d} \times \mathrm{P}^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right) \quad \psi \in \mathrm{C}\left(\mathrm{P}^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ \pi) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& =\int_{\mathbf{R}^{d} \times \mathrm{S}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) \quad=\int_{\mathbf{R}^{d} \times \mathrm{P}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) .
\end{aligned}
$$

Existence of H-measures

Theorem. If $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$, then there exists a subsequence and a complex matrix Radon measure $\boldsymbol{\mu}$ on

$$
\mathbf{R}^{d} \times \mathrm{S}^{d-1} \quad \mathbf{R}^{d} \times \mathrm{P}^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right) \quad \psi \in \mathrm{C}\left(\mathrm{P}^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ \pi) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& =\int_{\mathbf{R}^{d} \times \mathrm{S}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) \quad=\int_{\mathbf{R}^{d} \times \mathrm{P}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) .
\end{aligned}
$$

Taking sequences in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$, one gets unbounded Radon measures (i.e. distributions of order zero) as H -measures.

It holds: $\mathbf{u}_{n} \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$ if and only if $\boldsymbol{\mu}=\mathbf{0}$.

Existence of H -measures

Theorem. If $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$, then there exists a subsequence and a complex matrix Radon measure $\boldsymbol{\mu}$ on

$$
\mathbf{R}^{d} \times \mathrm{S}^{d-1} \quad \mathbf{R}^{d} \times \mathrm{P}^{d-1}
$$

such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and

$$
\psi \in \mathrm{C}\left(\mathrm{~S}^{d-1}\right) \quad \psi \in \mathrm{C}\left(\mathrm{P}^{d-1}\right)
$$

one has

$$
\begin{aligned}
& \lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}} \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\psi \circ \pi) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu},\left(\varphi_{1} \bar{\varphi}_{2}\right) \boxtimes \psi\right\rangle \\
& =\int_{\mathbf{R}^{d} \times \mathbf{S}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \bar{\mu}(\mathbf{x}, \boldsymbol{\xi}) \quad=\int_{\mathbf{R}^{d} \times \mathrm{P}^{d-1}} \varphi_{1}(\mathbf{x}) \bar{\varphi}_{2}(\mathbf{x}) \psi(\boldsymbol{\xi}) d \overline{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}) .
\end{aligned}
$$

There are some other variants (E. Ju. Panov, D. Mitrović \& I. Ivec, M. Erceg \& I. Ivec, ...).

Important lemma
Lemma. (first commutation - Luc Tartar) \quad If $b \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d}\right)$ satisfy the condition

$$
\left.\left(\forall \rho, \varepsilon \in \mathbf{R}^{+}\right)\left(\exists M \in \mathbf{R}^{+}\right) \quad|a(\boldsymbol{\xi})-a(\boldsymbol{\eta})| \leqslant \varepsilon \text { (a.e. }(\boldsymbol{\xi}, \boldsymbol{\eta}) \in Y(M, \rho)\right),
$$

then $C:=\left[\mathcal{A}_{a}, M_{b}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.
For given $M, \rho \in \mathbf{R}^{+}$denote the set

$$
Y=Y(M, \rho)=\left\{(\boldsymbol{\xi}, \boldsymbol{\eta}) \in \mathbf{R}^{2 d}:|\boldsymbol{\xi}|,|\boldsymbol{\eta}| \geqslant M \&|\boldsymbol{\xi}-\boldsymbol{\eta}| \leqslant \rho\right\} .
$$

Important lemma

Lemma. (first commutation - Luc Tartar) \quad If $b \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d}\right)$ satisfy the condition

$$
\left(\forall \rho, \varepsilon \in \mathbf{R}^{+}\right)\left(\exists M \in \mathbf{R}^{+}\right) \quad|a(\boldsymbol{\xi})-a(\boldsymbol{\eta})| \leqslant \varepsilon(\text { a.e. }(\boldsymbol{\xi}, \boldsymbol{\eta}) \in Y(M, \rho)),
$$

then $C:=\left[\mathcal{A}_{a}, M_{b}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.
For given $M, \rho \in \mathbf{R}^{+}$denote the set

$$
Y=Y(M, \rho)=\left\{(\boldsymbol{\xi}, \boldsymbol{\eta}) \in \mathbf{R}^{2 d}:|\boldsymbol{\xi}|,|\boldsymbol{\eta}| \geqslant M \&|\boldsymbol{\xi}-\boldsymbol{\eta}| \leqslant \rho\right\} .
$$

In both cases discussed above, this lemma can also be proven directly, based on elementary inequalities.

Important lemma

Lemma. (first commutation - Luc Tartar) If $b \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $a \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d}\right)$ satisfy the condition

$$
\left(\forall \rho, \varepsilon \in \mathbf{R}^{+}\right)\left(\exists M \in \mathbf{R}^{+}\right) \quad|a(\boldsymbol{\xi})-a(\boldsymbol{\eta})| \leqslant \varepsilon \quad(\text { a.e. }(\boldsymbol{\xi}, \boldsymbol{\eta}) \in Y(M, \rho))
$$

then $C:=\left[\mathcal{A}_{a}, M_{b}\right]$ is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.
For given $M, \rho \in \mathbf{R}^{+}$denote the set

$$
Y=Y(M, \rho)=\left\{(\boldsymbol{\xi}, \boldsymbol{\eta}) \in \mathbf{R}^{2 d}:|\boldsymbol{\xi}|,|\boldsymbol{\eta}| \geqslant M \&|\boldsymbol{\xi}-\boldsymbol{\eta}| \leqslant \rho\right\}
$$

In both cases discussed above, this lemma can also be proven directly, based on elementary inequalities.
Similar results were obtained and used earlier in the theory of pseudodifferential operators.

Localisation principle for classical H-measures

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}\right)+\mathrm{Bu}=\mathrm{f} \quad, \quad \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{l \times r}\right)
$$

Assume:

$$
\begin{aligned}
& \mathbf{u}_{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}_{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0 .
\end{aligned}
$$

Localisation principle for classical H-measures

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right)+\mathrm{Bu}_{n}=\mathrm{f}_{n}, \quad \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{l \times r}\right)
$$

Assume:

$$
\begin{aligned}
& \mathbf{u}_{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}_{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0 .
\end{aligned}
$$

Theorem. (localisation principle) If u_{n} satisfies:

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { in } \mathrm{H}_{\mathrm{loc}}^{-1}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)
$$

then for $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{k=1}^{d} \xi_{k} \mathbf{A}^{k}(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\mu}^{\top}=\mathbf{0}
$$

Localisation principle for classical H-measures

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right)+\mathrm{Bu}_{n}=\mathrm{f}_{n}, \quad \mathbf{A}^{k} \in \mathrm{C}_{b}\left(\mathbf{R}^{d} ; \mathrm{M}_{l \times r}\right)
$$

Assume:

$$
\begin{aligned}
& \mathbf{u}_{n} \xrightarrow{\mathrm{~L}^{2}} 0, \quad \text { and defines } \mu \\
& \mathrm{f}_{n} \xrightarrow{\mathrm{H}_{\text {loc }}^{-1}} 0 .
\end{aligned}
$$

Theorem. (localisation principle) If u_{n} satisfies:

$$
\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { in } \mathrm{H}_{\mathrm{loc}}^{-1}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)
$$

then for $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{k=1}^{d} \xi_{k} \mathbf{A}^{k}(\mathbf{x})$ on $\Omega \times S^{d-1}$ one has:

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\mu}^{\top}=\mathbf{0}
$$

Thus, if $l=r$, the support of H -measure $\boldsymbol{\mu}$ is contaned in the set $\left\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times S^{d-1}: \operatorname{det} \mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=0\right\}$ of points where \mathbf{p} is a singular matrix.
The localisation principle is behind most of the known applications (e.g. to the small-amplitude homogenisation). It contains a generalisation of compactness by compensation to variable coefficients.

Localisation principle for parabolic H-measures
In the parabolic case the details become more involved.
Anisotropic Sobolev spaces $\left(s \in \mathbf{R} ; k_{p}(\tau, \boldsymbol{\xi}):=\sqrt[4]{1+(2 \pi \tau)^{2}+(2 \pi|\boldsymbol{\xi}|)^{4}}\right)$

$$
\mathrm{H}^{\frac{s}{2}, s}\left(\mathbf{R}^{1+d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{p}^{s} \hat{u} \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)\right\}
$$

Localisation principle for parabolic H-measures

In the parabolic case the details become more involved.
Anisotropic Sobolev spaces $\left(s \in \mathbf{R} ; k_{p}(\tau, \boldsymbol{\xi}):=\sqrt[4]{1+(2 \pi \tau)^{2}+(2 \pi|\boldsymbol{\xi}|)^{4}}\right)$

$$
\mathrm{H}^{\frac{s}{2}, s}\left(\mathbf{R}^{1+d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{p}^{s} \hat{u} \in \mathrm{~L}^{2}\left(\mathbf{R}^{1+d}\right)\right\}
$$

Theorem. (localisation principle) Let $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{1+d} ; \mathbf{C}^{r}\right)$, uniformly compactly supported in t, satisfy $(s \in \mathbf{N})$

$$
{\sqrt{\partial_{t}}}^{s}\left(\mathbf{A}^{0} \mathbf{u}_{n}\right)+\sum_{|\boldsymbol{\alpha}|=s} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right) \longrightarrow 0 \quad \text { strongly in } \quad \mathrm{H}_{\mathrm{loc}}^{-\frac{s}{2},-s}\left(\mathbf{R}^{1+d}\right)
$$

where $\mathbf{A}^{0}, \mathbf{A}^{\alpha} \in \mathrm{C}_{b}\left(\mathbf{R}^{1+d} ; \mathrm{M}_{l \times r}(\mathbf{C})\right)$, for some $l \in \mathbf{N}$, while $\sqrt{\partial}_{t}$ is a pseudodifferential operator with symbol $\sqrt{2 \pi i \tau}$, i.e.

$$
\sqrt{\partial}_{t} u=\overline{\mathcal{F}}(\sqrt{2 \pi i \tau} \hat{u}(\tau)) .
$$

Then for a parabolic H -measure $\boldsymbol{\mu}$ associated to (a sub)sequence (of) (u_{n}) one has

$$
\left((\sqrt{2 \pi i \tau})^{s} \mathbf{A}^{0}+\sum_{|\boldsymbol{\alpha}|=s}(2 \pi i \boldsymbol{\xi})^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}\right) \boldsymbol{\mu}^{\top}=\mathbf{0}
$$

Good bounds in the L^{p} case: the Hörmander-Mihlin theorem
$\psi: \mathbf{R}^{d} \rightarrow \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ if

$$
\overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right), \quad \text { for } \theta \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

and

$$
\mathcal{S}\left(\mathbf{R}^{d}\right) \ni \theta \mapsto \overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.

Good bounds in the L^{p} case: the Hörmander-Mihlin theorem

$\psi: \mathbf{R}^{d} \rightarrow \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ if

$$
\overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right), \quad \text { for } \theta \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

and

$$
\mathcal{S}\left(\mathbf{R}^{d}\right) \ni \theta \mapsto \overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.
Theorem. [Hörmander-Mihlin] Let $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ have partial derivatives of order less than or equal to $\kappa=\left[\frac{d}{2}\right]+1$. If for some $k>0$

$$
(\forall r>0)\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}\right) \quad|\boldsymbol{\alpha}| \leqslant \kappa \Longrightarrow \int_{\frac{r}{2} \leqslant|\boldsymbol{\xi}| \leqslant r}\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant k^{2} r^{d-2|\boldsymbol{\alpha}|}
$$

then for any $p \in\langle 1, \infty\rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_{d} (depending only on the dimension d) such that

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathrm{L}^{p} \rightarrow \mathrm{~L}^{p}} \leqslant C_{d} \max \left\{p, \frac{1}{p-1}\right\}\left(k+\|\psi\|_{\infty}\right) .
$$

Good bounds in the L^{p} case: the Hörmander-Mihlin theorem

$\psi: \mathbf{R}^{d} \rightarrow \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ if

$$
\overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right), \quad \text { for } \theta \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

and

$$
\mathcal{S}\left(\mathbf{R}^{d}\right) \ni \theta \mapsto \overline{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)
$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: \mathrm{L}^{p}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.
Theorem. [Hörmander-Mihlin] Let $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ have partial derivatives of order less than or equal to $\kappa=\left[\frac{d}{2}\right]+1$. If for some $k>0$

$$
(\forall r>0)\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}\right) \quad|\boldsymbol{\alpha}| \leqslant \kappa \Longrightarrow \int_{\frac{r}{2} \leqslant|\boldsymbol{\xi}| \leqslant r}\left|\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant k^{2} r^{d-2|\boldsymbol{\alpha}|}
$$

then for any $p \in\langle 1, \infty\rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_{d} (depending only on the dimension d) such that

$$
\left\|\mathcal{A}_{\psi}\right\|_{\mathrm{L}^{p} \rightarrow \mathrm{~L}^{p}} \leqslant C_{d} \max \left\{p, \frac{1}{p-1}\right\}\left(k+\|\psi\|_{\infty}\right) .
$$

For $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$, extended by homogeneity to \mathbf{R}_{*}^{d}, we can take $k=\|\psi\|_{\mathrm{C}^{\kappa}}$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \xrightarrow{*}^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) $\left(u_{n}\right)$ and $\left(v_{n}\right)$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If (u_{n}), $\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If (u_{n}), $\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d}\right)$. For $p \geqslant 2, p^{\prime} \leqslant 2$ and we can take $q \geqslant 2$; this covers the L^{2} case (including $u_{n}=v_{n}$).
The assumptions imply $u_{n}, v_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for $p<2$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle .
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If (u_{n}), $\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d}\right)$. For $p \geqslant 2, p^{\prime} \leqslant 2$ and we can take $q \geqslant 2$; this covers the L^{2} case (including $u_{n}=v_{n}$).
The assumptions imply $u_{n}, v_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for $p<2$.
For vector-valued $\mathrm{u}_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{k}\right)$ and $\mathrm{v}_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d} ; \mathbf{C}^{l}\right)$, the result is a matrix valued distribution $\boldsymbol{\mu}=\left[\mu^{i j}\right], i \in 1 . . k$ and $j \in 1 . . l$.

The main theorem

Theorem. [N.A. \& D. Mitrović (2011)] If $u_{n} \longrightarrow 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n}-{ }^{*} v$ in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ for some $q \geqslant \max \left\{p^{\prime}, 2\right\}$, then there exist subsequences $\left(u_{n^{\prime}}\right),\left(v_{n^{\prime}}\right)$ and a complex valued distribution $\mu \in \mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{S}^{d-1}\right)$ of order not more than $\kappa=[d / 2]+1$ in $\boldsymbol{\xi}$, such that for every $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ we have:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} & =\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}\right)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}\left(\varphi_{2} v_{n^{\prime}}\right)(\mathbf{x})} d \mathbf{x} \\
& =\left\langle\mu, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle .
\end{aligned}
$$

μ is the H-distribution corresponding to (a subsequence of) (u_{n}) and (v_{n}). If $\left(u_{n}\right),\left(v_{n}\right)$ are defined on $\Omega \subseteq \mathbf{R}^{d}$, extension by zero to \mathbf{R}^{d} preserves the convergence, and we can apply the Theorem. μ is supported on $\mathrm{Cl} \Omega \times \mathrm{S}^{d-1}$. We distinguish $u_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d}\right)$ and $v_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d}\right)$. For $p \geqslant 2, p^{\prime} \leqslant 2$ and we can take $q \geqslant 2$; this covers the L^{2} case (including $u_{n}=v_{n}$).
The assumptions imply $u_{n}, v_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)$, resulting in a distribution μ of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for $p<2$.
For vector-valued $\mathrm{u}_{n} \in \mathrm{~L}^{p}\left(\mathbf{R}^{d} ; \mathbf{C}^{k}\right)$ and $\mathrm{v}_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{d} ; \mathbf{C}^{l}\right)$, the result is a matrix valued distribution $\boldsymbol{\mu}=\left[\mu^{i j}\right], i \in 1 . . k$ and $j \in 1 . . l$.
The H -distribution would correspond to a non-diagonal block for an H -measure.

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$.
We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem. Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$. We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.
Lemma. Let $\left(v_{n}\right)$ be bounded in both $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 2, \infty]$, and let $v_{n} \rightharpoonup 0$ in \mathcal{D}^{\prime}. Then the sequence ($C v_{n}$) strongly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, for any $q \in[2, r] \backslash\{\infty\}$.

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$. We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.
Lemma. Let $\left(v_{n}\right)$ be bounded in both $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 2, \infty]$, and let $v_{n} \rightharpoonup 0$ in \mathcal{D}^{\prime}. Then the sequence $\left(C v_{n}\right)$ strongly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, for any $q \in[2, r] \backslash\{\infty\}$.

If $q<r$, we can apply the classical interpolation inequality:

$$
\left\|C v_{n}\right\|_{q} \leqslant\left\|C v_{n}\right\|_{2}^{\alpha}\left\|C v_{n}\right\|_{r}^{1-\alpha}
$$

for $\alpha \in\langle 0,1\rangle$ such that $1 / q=\alpha / 2+(1-\alpha) / r$. As C is compact on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ by Tartar's First commutation lemma, while it is bounded on $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, we get the claim.

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$. We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.

Lemma. Let $\left(v_{n}\right)$ be bounded in both $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 2, \infty]$, and let $v_{n} \rightharpoonup 0$ in \mathcal{D}^{\prime}. Then the sequence ($\left.C v_{n}\right)$ strongly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, for any $q \in[2, r] \backslash\{\infty\}$.

If $q<r$, we can apply the classical interpolation inequality:

$$
\left\|C v_{n}\right\|_{q} \leqslant\left\|C v_{n}\right\|_{2}^{\alpha}\left\|C v_{n}\right\|_{r}^{1-\alpha}
$$

for $\alpha \in\langle 0,1\rangle$ such that $1 / q=\alpha / 2+(1-\alpha) / r$. As C is compact on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ by Tartar's First commutation lemma, while it is bounded on $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, we get the claim.

For the most interesting case, where $q=r$, we need a better result: the Krasnosel'skij theorem (a variant of Riesz-Thorin theorem).

The proof is based on First commutation lemma

$\psi \in \mathrm{C}^{\kappa}\left(\mathrm{S}^{d-1}\right)$ satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, \mathcal{A}_{ψ} and M_{φ} are bounded operators on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$, for any $p \in\langle 1, \infty\rangle$. We are interested in the properties of their commutator, $C=\mathcal{A}_{\psi} M_{\varphi}-M_{\varphi} \mathcal{A}_{\psi}$.

Lemma. Let $\left(v_{n}\right)$ be bounded in both $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ and $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, for some $r \in\langle 2, \infty]$, and let $v_{n} \rightharpoonup 0$ in \mathcal{D}^{\prime}. Then the sequence ($\left.C v_{n}\right)$ strongly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$, for any $q \in[2, r] \backslash\{\infty\}$.

If $q<r$, we can apply the classical interpolation inequality:

$$
\left\|C v_{n}\right\|_{q} \leqslant\left\|C v_{n}\right\|_{2}^{\alpha}\left\|C v_{n}\right\|_{r}^{1-\alpha}
$$

for $\alpha \in\langle 0,1\rangle$ such that $1 / q=\alpha / 2+(1-\alpha) / r$. As C is compact on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ by Tartar's First commutation lemma, while it is bounded on $\mathrm{L}^{r}\left(\mathbf{R}^{d}\right)$, we get the claim.

For the most interesting case, where $q=r$, we need a better result: the Krasnosel'skij theorem (a variant of Riesz-Thorin theorem).
We still need a lemma on compactness of uniformly bounded bilinear forms, and an application of the Schwartz kernel theorem.

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x})
$$

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x}) .
$$

Take an arbitrary (v_{n}) bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$, and by μ denote the H-distribution corresponding to a subsequence of $\left(u_{n}\right)$ and $\left(v_{n}\right)$. Then

$$
(\mathrm{a}(\mathrm{x}) \cdot \boldsymbol{\xi}) \mu(\mathbf{x}, \boldsymbol{\xi})=0
$$

in the sense of distributions on $\mathbf{R}^{d} \times \mathrm{S}^{d-1},(\mathrm{x}, \boldsymbol{\xi}) \mapsto \mathrm{a}(\mathrm{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_{0}^{κ} coefficients.

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x})
$$

Take an arbitrary $\left(v_{n}\right)$ bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$, and by μ denote the H-distribution corresponding to a subsequence of $\left(u_{n}\right)$ and $\left(v_{n}\right)$. Then

$$
(\mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}) \mu(\mathbf{x}, \boldsymbol{\xi})=0
$$

in the sense of distributions on $\mathbf{R}^{d} \times \mathrm{S}^{d-1},(\mathbf{x}, \boldsymbol{\xi}) \mapsto \mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_{0}^{κ} coefficients.

In order to prove the theorem, we need a particular multiplier, the so called (Marcel) Riesz potential $I_{1}:=\mathcal{A}_{|2 \pi \xi|^{-1}}$, and the Riesz transforms $R_{j}:=\mathcal{A}_{\frac{\xi_{j}}{i \xi \mid}}$. Note that

$$
\int I_{1}(\phi) \partial_{j} g=\int\left(R_{j} \phi\right) g, \quad g \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

Using the density argument and that R_{j} is bounded from $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ to itself, we conclude $\partial_{j} I_{1}(\phi)=-R_{j}(\phi)$, for $\phi \in \mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$.

Localisation principle

Theorem. Take $u_{n} \rightharpoonup 0$ in $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), f_{n} \rightarrow 0$ in $\mathrm{W}_{\text {loc }}^{-1, q}\left(\mathbf{R}^{d}\right)$, for some $q \in\langle 1, d\rangle$, such that

$$
\operatorname{div}\left(\mathrm{a}(\mathbf{x}) u_{n}(\mathbf{x})\right)=f_{n}(\mathbf{x})
$$

Take an arbitrary $\left(v_{n}\right)$ bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$, and by μ denote the H-distribution corresponding to a subsequence of $\left(u_{n}\right)$ and $\left(v_{n}\right)$. Then

$$
(\mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}) \mu(\mathbf{x}, \boldsymbol{\xi})=0
$$

in the sense of distributions on $\mathbf{R}^{d} \times \mathrm{S}^{d-1},(\mathbf{x}, \boldsymbol{\xi}) \mapsto \mathrm{a}(\mathbf{x}) \cdot \boldsymbol{\xi}$ being the symbol of the linear PDO with C_{0}^{κ} coefficients.
(an application suggested by Darko Mitrović) For scalar conservation law with discontinuous flux, the most up to date existence result for the equation

$$
u_{t}+\operatorname{div} f(t, \mathbf{x}, u)=0
$$

is obtained under the assumptions

$$
\max _{\lambda \in \mathbf{R}}|\mathbf{f}(t, \mathbf{x}, \lambda)| \in L^{2+\varepsilon}\left(\mathbf{R}_{+}^{d}\right)
$$

Using the H -distributions, it is poossible to prove an existence result for the given equation under the assumption

$$
\max _{\lambda \in \mathbf{R}}|\mathbf{f}(t, \mathbf{x}, \lambda)| \in L^{1+\varepsilon}\left(\mathbf{R}_{+}^{d}\right)
$$

Further variants

N.A. \& I. Ivec: extension to Lebesgue spaces with mixed norm
M. Lazar \& D. Mitrović: applications to velocity averaging
M. Mišur \& D. Mitrović: a form of compactness by compensation
J. Aleksić, S. Pilipović, I. Vojnović (preprint): in $\mathcal{S}-\mathcal{S}^{\prime}$ setting
F. Rindler (ARMA, 2015): microlocal compactness forms

Semiclassical measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}_{\mathrm{b}}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

Measure $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub) sequence $\left(\mathrm{u}_{n}\right)$.

Semiclassical measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution of the zero order $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(u_{n}\right)$.

Semiclassical measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution of the zero order $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(u_{n}\right)$.

Theorem.

$$
\mathrm{u}_{n} \xrightarrow{\mathrm{~L}_{\mathrm{loc}}^{2}} 0 \Longleftrightarrow \boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}=\mathbf{0} \quad \& \quad\left(\mathbf{u}_{n}\right) \text { is }\left(\omega_{n}\right) \text {-oscillatory }
$$

Semiclassical measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\varphi_{1} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi}) \otimes \widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle
$$

The distribution of the zero order $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ we call the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(u_{n}\right)$.

Definition $\left(\mathbf{u}_{n}\right)$ is $\left(\omega_{n}\right)$-oscillatory if $\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \lim _{R \rightarrow \infty} \lim \sup _{n} \int_{|\boldsymbol{\xi}| \geqslant \frac{R}{\omega_{n}}}\left|\widehat{\varphi \mathbf{u}_{n}}(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi}=0$.

Theorem.

$$
\mathbf{u}_{n} \xrightarrow{\mathrm{~L}_{\text {loc }}^{2}} 0 \Longleftrightarrow \boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}=\mathbf{0} \quad \& \quad\left(\mathbf{u}_{n}\right) \text { is }\left(\omega_{n}\right) \text {-oscillatory }
$$

Localisation principle for semiclassical measures

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}$, $\mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\mathbf{P}_{n} \mathbf{u}_{n}:=\sum_{|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$.

Then we have

$$
\mathbf{p} \boldsymbol{\mu}_{s c}^{\top}=\mathbf{0}
$$

where $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=\sum_{|\boldsymbol{\alpha}| \leqslant m} \boldsymbol{\xi}^{\alpha} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})$, and $\boldsymbol{\mu}_{s c}$ is semiclassical measure with characteristic length $\left(\varepsilon_{n}\right)$, corresponding to $\left(\mathbf{u}_{n}\right)$.

Localisation principle for semiclassical measures

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\mathbf{P}_{n} \mathbf{u}_{n}:=\sum_{|\alpha| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega,
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$.

Then we have

$$
\operatorname{supp} \boldsymbol{\mu}_{s c} \subseteq\left\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathbf{R}^{d}: \operatorname{det} \mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=0\right\}
$$

where $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=\sum_{|\boldsymbol{\alpha}| \leqslant m} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})$, and $\boldsymbol{\mu}_{s c}$ is semiclassical measure with characteristic length $\left(\varepsilon_{n}\right)$, corresponding to $\left(\mathbf{u}_{n}\right)$.

Localisation principle for semiclassical measures

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\mathbf{P}_{n} \mathbf{u}_{n}:=\sum_{|\alpha| \leqslant m} \varepsilon_{n}^{|\alpha|} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega,
$$

where

- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$.

Then we have

$$
\operatorname{supp} \boldsymbol{\mu}_{s c} \subseteq\left\{(\mathbf{x}, \boldsymbol{\xi}) \in \Omega \times \mathbf{R}^{d}: \operatorname{det} \mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=0\right\}
$$

where $\mathbf{p}(\mathbf{x}, \boldsymbol{\xi})=\sum_{|\boldsymbol{\alpha}| \leqslant m} \boldsymbol{\xi}^{\boldsymbol{\alpha}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})$, and $\boldsymbol{\mu}_{s c}$ is semiclassical measure with characteristic length $\left(\varepsilon_{n}\right)$, corresponding to $\left(\mathbf{u}_{n}\right)$.

Problem: $\boldsymbol{\mu}_{s c}=\mathbf{0}$ is not enough for the strong convergence!

Compatification of $\mathbf{R}^{d} \backslash\{0\}$

Corollary. a) $\mathrm{C}_{0}\left(\mathbf{R}^{d}\right) \subseteq \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$.
b) $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right), \psi \circ \boldsymbol{\pi} \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$, where $\boldsymbol{\pi}(\boldsymbol{\xi})=\boldsymbol{\xi} /|\boldsymbol{\xi}|$.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightarrow 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)} \in \mathcal{M}_{\mathrm{b}}\left(\Omega \times \mathbf{R}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}^{\infty}(\Omega)$ and $\psi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$

$$
\left.\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes \widehat{\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{s c}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

Measure $\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}$ is called the semiclassical measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(\mathrm{u}_{n}\right)$.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)} \in \mathcal{M}_{\mathrm{b}}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes \widehat{\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

Measure $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(\mathrm{u}_{n}\right)$.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)} \in \mathcal{M}_{\mathrm{b}}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes \widehat{\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

Measure $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H-measure with characteristic length $\left(\omega_{n}\right)$ corresponding to the (sub)sequence $\left(\mathbf{u}_{n}\right)$.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{\mathrm{c}}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes\left(\widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The distribution of the zero order $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H -measure with characteristic length (ω_{n}) corresponding to the (sub)sequence (u_{n}).

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{\mathrm{c}}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes\left(\widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The distribution of the zero order $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H -measure with characteristic length (ω_{n}) corresponding to the (sub)sequence (u_{n}).

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{\mathrm{c}}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi}) \otimes\left(\widehat{\varphi_{2} \mathbf{u}_{n^{\prime}}}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The distribution of the zero order $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H -measure with characteristic length (ω_{n}) corresponding to the (sub)sequence (u_{n}).

Luc Tartar: The general theory of homogenization: A personalized introduction, Springer, 2009.
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77-90.

One-scale H-measures

Theorem. If $\mathrm{u}_{n} \rightarrow 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right), \omega_{n} \rightarrow 0^{+}$, then there exists a subsequence ($\mathrm{u}_{n^{\prime}}$) and $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)} \in \mathcal{M}\left(\Omega \times \mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right) ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{\mathrm{c}}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right)$

$$
\left.\left.\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\widehat{\left(\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right.\right.}\right)(\boldsymbol{\xi}) \otimes \widehat{\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right.}\right)(\boldsymbol{\xi})\right) \psi\left(\omega_{n^{\prime}} \boldsymbol{\xi}\right) d \boldsymbol{\xi}=\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \varphi_{1} \bar{\varphi}_{2} \boxtimes \psi\right\rangle .
$$

The distribution of the zero order $\mu_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is called the one-scale H -measure with characteristic length (ω_{n}) corresponding to the (sub)sequence (u_{n}).

Luc Tartar: The general theory of homogenization: A personalized introduction, Springer, 2009.
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical Systems, S 8 (2015) 77-90.
N. A., Marko Erceg, Martin Lazar: Localisation principle for one-scale H-measures, submitted (arXiv).

Idea of the proof

Tartar's approach:

- $\mathrm{v}_{n}\left(\mathbf{x}, x^{d+1}\right):=\mathrm{u}_{n}(\mathbf{x}) e^{\frac{2 \pi i x^{d+1}}{\omega_{n}}} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega \times \mathbf{R} ; \mathbf{C}^{r}\right)$
- $\nu_{H} \in \mathcal{M}\left(\Omega \times \mathbf{R} \times \mathrm{S}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}$ is obtained from $\boldsymbol{\nu}_{H}$ (suitable projection in x^{d+1} and ξ_{d+1})

Idea of the proof

Tartar's approach:

- $\mathrm{v}_{n}\left(\mathbf{x}, x^{d+1}\right):=\mathrm{u}_{n}(\mathbf{x}) e^{\frac{2 \pi i x^{d+1}}{\omega_{n}}} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega \times \mathbf{R} ; \mathbf{C}^{r}\right)$
- $\boldsymbol{\nu}_{H} \in \mathcal{M}\left(\Omega \times \mathbf{R} \times \mathrm{S}^{d} ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\left(\omega_{n}\right)}$ is obtained from $\boldsymbol{\nu}_{H}$ (suitable projection in x^{d+1} and ξ_{d+1})

Our approach:

- First commutation lemma:

Lemma. Let $\psi \in \mathrm{C}\left(\mathrm{K}_{0, \infty}\left(\mathbf{R}^{d}\right)\right), \varphi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \omega_{n} \rightarrow 0^{+}$, and denote $\psi_{n}(\boldsymbol{\xi}):=\psi\left(\omega_{n} \boldsymbol{\xi}\right)$. Then the commutator can be expressed as a sum

$$
C_{n}:=\left[B_{\varphi}, \mathcal{A}_{\psi_{n}}\right]=\tilde{C}_{n}+K
$$

where K is a compact operator on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$, while $\tilde{C}_{n} \longrightarrow 0$ in the operator norm on $\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right)$.

- standard procedure: (a variant of) the kernel theorem, separability, ...

Some properties of $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$

Theorem.
a)

$$
\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{*}=\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}, \quad \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}} \geqslant \mathbf{0}
$$

b)
$\mathrm{u}_{n} \xrightarrow{\mathrm{~L}_{\text {loo }}^{2}} 0$
\Longleftrightarrow
$\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}=\mathbf{0}$
$\left(\mathrm{u}_{n}\right)$ is $\left(\omega_{n}\right)$-oscillatory

Some properties of $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$

Theorem.
a) $\quad \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{*}=\mu_{\mathrm{K}_{0, \infty}}, \quad \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}} \geqslant \mathbf{0}$
b) $\quad \mathrm{u}_{n} \xrightarrow{\mathrm{~L}_{\text {log }}^{2}} 0$

$\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}=\mathbf{0}$
c) $\quad \operatorname{tr} \mu_{\mathrm{K}_{0, \infty}}\left(\Omega \times \Sigma_{\infty}\right)=0$
$\Longleftrightarrow \quad\left(\mathrm{u}_{n}\right)$ is $\left(\omega_{n}\right)$ - oscillatory

Theorem. $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{c}(\Omega), \psi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \tilde{\psi} \in \mathrm{C}\left(\mathrm{S}^{d-1}\right), \omega_{n} \rightarrow 0^{+}$,
a) $\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \psi\right\rangle \quad=\left\langle\boldsymbol{\mu}_{s c}^{\left(\omega_{n}\right)}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \psi\right\rangle$,
b) $\quad\left\langle\boldsymbol{\mu}_{\mathrm{K}_{0}, \infty}^{\left(\omega_{n}\right)}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \tilde{\psi} \circ \boldsymbol{\pi}\right\rangle \quad=\left\langle\boldsymbol{\mu}_{H}, \varphi_{1} \overline{\varphi_{2}} \boxtimes \tilde{\psi}\right\rangle$,
where $\boldsymbol{\pi}(\boldsymbol{\xi})=\boldsymbol{\xi} /|\boldsymbol{\xi}|$.

Localisation principle

Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

where

- $l \in 0 . . m$
- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\text {loc }}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \mathrm{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) \quad\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)
$$

Localisation principle
Let $\Omega \subseteq \mathbf{R}^{d}$ open, $m \in \mathbf{N}, \mathbf{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

where

- $l \in 0 . . m$
- $\varepsilon_{n} \rightarrow 0^{+}$
- $\mathbf{A}^{\boldsymbol{\alpha}} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right)$
- $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ such that

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \mathrm{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) \quad\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)
$$

Lemma. a) $\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)$ is equivalent to

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \mathrm{f}_{n}}}{1+|\boldsymbol{\xi}|^{l}+\varepsilon_{n}^{m-l}|\boldsymbol{\xi}|^{m}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)
$$

b) $(\exists k \in l . . m) \mathrm{f}_{n} \longrightarrow 0$ in $\mathrm{H}_{\mathrm{loc}}^{-k}\left(\Omega ; \mathbf{C}^{r}\right) \quad \Longrightarrow \quad\left(\varepsilon_{n}^{k-l} \mathrm{f}_{n}\right)$ satisfies $\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)$.

Localisation principle

$$
\begin{aligned}
& \sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega \\
& \frac{\widehat{\varphi \mathbf{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) . \quad\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)
\end{aligned}
$$

Theorem. [Tartar (2009)] Under previous assumptions and $l=1$, one-scale H-measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length (ε_{n}) corresponding to $\left(\mathrm{u}_{n}\right)$ satisfies

$$
\operatorname{supp}\left(\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}\right) \subseteq \Omega \times \Sigma_{0},
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{1 \leqslant|\alpha| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x}) .
$$

Localisation principle

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}^{\alpha} \mathbf{u}_{n}\right)=\mathrm{f}_{n} \quad \text { in } \Omega
$$

$$
\left(\forall \varphi \in \mathrm{C}_{c}^{\infty}(\Omega)\right) \quad \frac{\widehat{\varphi \boldsymbol{f}_{n}}}{1+\sum_{s=l}^{m} \varepsilon_{n}^{s-l}|\boldsymbol{\xi}|^{s}} \longrightarrow 0 \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right) . \quad\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)
$$

Theorem. [N.A., Erceg, Lazar (2015)] Under previous assumptions, one-scale H -measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length (ε_{n}) corresponding to $\left(\mathrm{u}_{n}\right)$ satisfies

$$
\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x})
$$

Localisation principle - final generalisation

Theorem. Take $\varepsilon_{n}>0$ bounded, $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n}
$$

where $\mathbf{A}_{n}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right), \mathbf{A}_{n}^{\alpha} \longrightarrow \mathbf{A}^{\boldsymbol{\alpha}}$ uniformly on compact sets, and $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ satisfies $\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)$.
Then for $\omega_{n} \rightarrow 0^{+}$such that $c:=\lim _{n} \frac{\varepsilon_{n}}{\omega_{n}} \in[0, \infty]$, the corresponding one-scale H-measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\omega_{n}\right)$ satisfies

$$
\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\left\{\begin{array}{ccc}
\sum_{|\boldsymbol{\alpha}|=l} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , & c=0 \\
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i c)^{|\boldsymbol{\alpha}|} \frac{\xi^{\alpha}}{\left|\underline{\boldsymbol{\xi}}+|\boldsymbol{\xi}|^{m}\right.} \mathbf{A}^{\alpha}(\mathbf{x}) & , \quad c \in\langle 0, \infty\rangle \\
\sum_{|\boldsymbol{\alpha}|=m} \frac{\xi^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x}) & , & c=\infty
\end{array}\right.
$$

Moreover, if there exists $\varepsilon_{0}>0$ such that $\varepsilon_{n}>\varepsilon_{0}, n \in \mathbf{N}$, we can take

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{|\alpha|=m} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x})
$$

Localisation principle - final generalisation

Theorem. Take $\varepsilon_{n}>0$ bounded, $\mathrm{u}_{n} \rightharpoonup 0$ in $\mathrm{L}_{\mathrm{loc}}^{2}\left(\Omega ; \mathbf{C}^{r}\right)$ and

$$
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m} \varepsilon_{n}^{|\boldsymbol{\alpha}|-l} \partial_{\boldsymbol{\alpha}}\left(\mathbf{A}_{n}^{\boldsymbol{\alpha}} \mathbf{u}_{n}\right)=\mathrm{f}_{n}
$$

where $\mathbf{A}_{n}^{\alpha} \in \mathrm{C}\left(\Omega ; \mathrm{M}_{\mathrm{r}}(\mathbf{C})\right), \mathbf{A}_{n}^{\alpha} \longrightarrow \mathbf{A}^{\boldsymbol{\alpha}}$ uniformly on compact sets, and $\mathrm{f}_{n} \in \mathrm{H}_{\mathrm{loc}}^{-m}\left(\Omega ; \mathbf{C}^{r}\right)$ satisfies $\left(\mathrm{C}\left(\varepsilon_{n}\right)\right)$.
Then for $\omega_{n} \rightarrow 0^{+}$such that $c:=\lim _{n} \frac{\varepsilon_{n}}{\omega_{n}} \in[0, \infty]$, the corresponding one-scale H-measure $\boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}$ with characteristic length $\left(\omega_{n}\right)$ satisfies

$$
\mathbf{p} \boldsymbol{\mu}_{\mathrm{K}_{0, \infty}}^{\top}=\mathbf{0}
$$

where

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\left\{\begin{array}{ccc}
\sum_{|\boldsymbol{\alpha}|=l} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}) & , & c=0 \\
\sum_{l \leqslant|\boldsymbol{\alpha}| \leqslant m}(2 \pi i c)^{|\boldsymbol{\alpha}|} \frac{\xi^{\alpha}}{\left|\underline{\boldsymbol{\xi}}+|\boldsymbol{\xi}|^{m}\right.} \mathbf{A}^{\alpha}(\mathbf{x}) & , \quad c \in\langle 0, \infty\rangle \\
\sum_{|\boldsymbol{\alpha}|=m} \frac{\xi^{\alpha}}{|\boldsymbol{\xi}|^{l}+|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x}) & , & c=\infty
\end{array}\right.
$$

Moreover, if there exists $\varepsilon_{0}>0$ such that $\varepsilon_{n}>\varepsilon_{0}, n \in \mathbf{N}$, we can take

$$
\mathbf{p}(\mathbf{x}, \boldsymbol{\xi}):=\sum_{|\boldsymbol{\alpha}|=m} \frac{\boldsymbol{\xi}^{\alpha}}{|\boldsymbol{\xi}|^{m}} \mathbf{A}^{\alpha}(\mathbf{x})
$$

As a corollary from the previous theorem we can derive localisation principles for H -measures and semiclassical measures.

Thank you for your attention.

