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L2 theory

Div-rot lemma and Quadratic theorem
Lemma. Assume that Ω is open and bounded subset of R3, and that it holds:

un ⇀ u in L2(Ω;R3),

vn ⇀ v in L2(Ω;R3),

rotun bounded in L2(Ω;R3), divvn bounded in L2(Ω).

Then
un · vn ⇀ u · v

in the sense of distributions.

Theorem. Assume that Ω ⊆ Rd is open and that Λ ⊆ Rr is defined by

Λ :=
{
λ ∈ Rr : (∃ ξ ∈ Rd \ {0})

d∑
k=1

ξkA
kλ = 0

}
,

where Q is a real quadratic form on Rr, which is nonnegative on Λ, i.e.

(∀λ ∈ Λ) Q(λ) > 0 .

Furthermore, assume that the sequence of functions (un) satisfies

un −⇀ u weakly in L2
loc(Ω;Rr) ,(∑

k

Ak∂kun

)
relatively compact in H−1

loc(Ω;Rq) .

Then every subsequence of (Q ◦ un) which converges in distributions to it’s limit L,
satisfies

L > Q ◦ u

in the sense of distributions.

Panov’s result
The most general version of the classical L2 results has recently been proved by E. Yu. Panov (2011):

Assume that the sequence (un) is bounded in Lp(Rd;Rr), 2 ≤ p <∞, and converges weakly in D′(Rd) to a vector function u.
Let q = p′ if p <∞, and q > 1 if p =∞. Assume that the sequence

ν∑
k=1

∂k(Akun) +

d∑
k,l=ν+1

∂kl(B
klun)

is precompact in the anisotropic Sobolev space W−1,−2;q
loc (Rd;Rm), where m× r matrices Ak and Bkl have variable coefficients belonging to L2q̄(Rd), q̄ = p

p−2 if p > 2, and to the
space C(Rd) if p = 2.

We introduce the set Λ(x)

Λ(x) =

{
λ ∈ Cr

∣∣ (∃ξ ∈ Rd \ {0}) :

(
i
ν∑
k=1

ξkA
k(x)− 2π

d∑
k,l=ν+1

ξkξlB
kl(x)

)
λ = 0m

}
,

and consider the bilinear form on Cr

q(x,λ,η) = Q(x)λ · η, (1)

where Q ∈ Lq̄loc(Rd; Symr) if p > 2 and Q ∈ C(Rd; Symr) if p = 2.
Finally, let q(x,un,un) ⇀ ω weakly in the space of distributions.

The following theorem holds

Theorem. [P, 2011] Assume that (∀λ ∈ Λ(x)) q(x,λ,λ) ≥ 0 (a.e. x ∈ Rd) and un ⇀ u, then q(x,u(x),u(x)) ≤ ω.

The connection between q and Λ given in the previous theorem, we shall call the consistency condition.

Goal: to formulate and extend the results from the preceeding theorem to the Lp − Lq framework for appropriate (greater than one) indices p and q where p < 2.

Generalisation: Lp − Lq setting, 1/p+ 1/q < 1

H-distributions
H-distributions were introduced by N. Antonić and D. Mitrović (2011) as an extension of
H-measures to the Lp − Lq context.
M. Lazar and D. Mitrović (2012) extended and applied them on a velocity averaging pro-
blem.

We need multiplier operators with symbols defined on a manifold P determined by an
d-tuple α = (α1, . . . , αd) ∈ Rd

+ where αk ∈ N or αk ≥ d:

P =
{
ξ ∈ Rd :

d∑
k=1

|ξk|2αk = 1
}
,

In order to associate an Lp Fourier multiplier to a function defined on P, we extend it to
Rd\{0} by means of the projection

(
πP(ξ)

)
j

= ξj

(
|ξ1|2α1 + · · ·+ |ξd|2αd

)−1/2αj

, j = 1, . . . , d.

We need the following variant of H-distributions.

Theorem. Let (un) be a bounded sequence in Lp(Rd), p > 1, and let (vn) be a bo-
unded sequence of uniformly compactly supported functions in Lq(Rd), 1/q + 1/p < 1,
weakly converging to 0 in the sense of distributions. Then, after passing to a subsequence
(not relabelled), for any s̄ ∈ (1, pq

p+q ) there exists a continuous bilinear functional B on

Ls̄
′
(Rd)⊗ Cd(P) such that for every ϕ ∈ Ls̄′(Rd) and ψ ∈ Cd(P), it holds

B(ϕ,ψ) = lim
n→∞

∫
Rd

ϕ(x)un(x)
(
AψP

vn
)
(x)dx ,

where AψP is the Fourier multiplier operator on Rd associated to ψ ◦ πP.
The bilinear functional B can be continuously extended as a linear functional on
Ls̄

′
(Rd;Cd(P)).

Localisation principle
For α ∈ R+, we define ∂αxk

to be a pseudodifferential operator with a polyhomogeneous
symbol (2πiξk)α, i.e.

∂αxk
u = ((2πiξk)αû(ξ))̌ .

In the sequel, we shall assume that sequences (ur) and (vr) are uniformly compactly
supported. This assumption can be removed if the orders of derivatives (α1, . . . , αd) are
natural numbers.

Lemma. Assume that sequences (un) and (vn) are bounded in Lp(Rd;Rr) and
Lq(Rd;Rr), respectively, and converge toward 0 and v in the sense of distributions.
Furthermore, assume that sequence (un) satisfies:

Gn :=
d∑
k=1

∂αk

k (Akun) → 0 in W−1,p(Ω;Rm), (2)

where either αk ∈ N, k = 1, . . . , d or αk > d, k = 1, . . . , d, and elements of matrices
Ak belong to Ls̄

′
(Rd), s̄ ∈ (1, pq

p+q ).
Finally, by µ denote a matrix H-distribution corresponding to subsequences of (un) and
(vn − v). Then the following relation holds

( d∑
k=1

(2πiξk)αkAk
)
µ = 0.

Compactness by compensation result
Introduce the set

ΛD =
{
µ ∈ Ls̄(Rd; (Cd(P))′)r :

( n∑
k=1

(2πiξk)αkAk
)
µ = 0m

}
,

where the given equality is understood in the sense of Ls̄(Rd; (Cd(P))′)m.

Let us assume that coefficients of the bilinear form q from (1) belong to space Ltloc(R
d),

where 1/t+ 1/p+ 1/q < 1.

Definition. We say that set ΛD, bilinear form q from (1) and matrix µ =
[µ1, . . . ,µr],µj ∈ Ls̄(Rd; (Cd(P))′)r satisfy the strong consistency condition if (∀j ∈
{1, . . . , r}) µj ∈ ΛD, and it holds

〈φQ⊗ 1,µ〉 ≥ 0, φ ∈ Ls̄(Rd;R+
0 ).

Theorem. Assume that sequences (un) and (vn) are bounded in Lp(Rd;Rr) and
Lq(Rd;Rr), respectively, and converge toward u and v in the sense of distributions.
Assume that (2) holds and that

q(x;un,vn) ⇀ ω in D′(Rd).

If the set ΛD, the bilinear form (1), and matrix H-distribution µ, corresponding to sub-
sequences of (un − u) and (vn − v), satisfy the strong consistency condition, then

q(x;u,v) ≤ ω in D′(Rd).

Case Lp − Lp
′, p > 1

In the case 1/p + 1/q = 1, applying the same proof gives us continuous bilinear functi-
onal on C(Rd) ⊗ Cd(P). Using Schwartz’s kernel theorem, we can only extend it to a
distribution from D′(Rd × P).
Introduce the truncation operator Tl(v) = v if |v| ≤ l and Tl(v) = 0 if |v| ≥ l, for l ∈ N.

Theorem. Assume that

• sequences (ur) and (vr) are bounded in Lp(Rd;RN ) and Lp
′
(Rd;RN ), where

1/p+ 1/p′ = 1, and converge toward u and v in the sense of distributions;

• for every l ∈ N, the sequences (Tl(vr)) converge weakly in Lp
′
(Rd;RN ) toward

hl, where the truncation operator Tl is understood coordinatewise;

• there exists a vector valued function V ∈ Lp
′
(Rd;RN ) such that vr ≤ V holds

coordinatewise for every r ∈ N;

• (2) holds with askl ∈ C0(Rd) and that qjm ∈ C(Rd).

Assume that
q(x;ur,vr) ⇀ ω in D′(Rd).

If for every l ∈ N, the set ΛD, the bilinear form (1), and the (matrix of)H-distributions µl
corresponding to the sequences (ur−u) and (Tl(vr)−hl)r satisfy the strong consistency
condition, then it holds

q(x;u,v) ≤ ω in D′(Rd). (3)

Application
Now, let us consider the non-linear parabolic type equation

L(u) = ∂tu− div div (g(t,x, u)A(t,x)),

on (0,∞)× Ω, where Ω is an open subset of Rd. We assume that

u ∈ Lp((0,∞)× Ω), g(t,x, u(t,x)) ∈ Lq((0,∞)× Ω), 1 < p, q,

A ∈ Lsloc((0,∞)× Ω)d×d, where 1/p+ 1/q + 1/s < 1,

and that the matrix A is strictly positive definite, i.e.

Aξ · ξ > 0, ξ ∈ Rd \ {0}, (a.e.(t,x) ∈ (0,∞)× Ω).

Furthermore, assume that g is a Carathèodory function and non-decreasing with respect to
the third variable.

Theorem. Assume that sequences

• (ur) and g(·, ur) are such that ur, g(ur) ∈ L2(R+ ×Rd) for every r ∈ N;

• that they are bounded in Lp(R+ × Rd), p ∈ (1, 2], and Lq(R+ × Rd), q > 2,
respectively, where 1/p+ 1/q < 1;

• ur ⇀ u and, for some, f ∈W−1,−2;p(R+ ×Rd), the sequence

L(ur) = fr → f strongly in W−1,−2;p(R+ ×Rd).

Under the assumptions given above, it holds

L(u) = f in D′(R+ ×Rd).
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Comment
Question: What is the connection between the standard consistency condition and the
strong consistency condition?

We can rewrite the consistency condition in the following form (we shall omit the second
order derivatives since they have no influence on the reasoning below):

ΛF =
{
λ : Rd × Sd−1 → RN :

ν∑
k=1

ξkA
k(x)λ(x, ξ) = 0m

}
and

q(x;λ(x, ξ),λ(x, ξ)) ≥ 0 for all λ ∈ ΛF and all (x, ξ) ∈ Rd × Sd−1.

Having such a representation of the consistency condition, it seems reasonable to ask whet-
her ΛD is a closure of ΛF in the sense of distributions. If this is the case, the generalisation
presented here holds under the standard consistency condition. At this moment, we do not
have any answer to this question.


