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Degenerate parabolic equation

◦ effects of nonlinear convection and degenerate diffusion

∂tu+ divxf(t,x, u) = D2 ·A(u)

◦ matrix A is such that the mapping

R 3 λ 7→ 〈A(λ)ξ, ξ〉 is non-decreasing

i.e. that the diffusion matrix A′(λ) is merely non-negative definite.

◦ How to approach this type of problems?

. write the kinetic formulation (put f = f′λ and a = A′):

∂th(t,x, λ) + div(f(t,x, λ)h(t,x, λ))

= div
(
div (a(λ)h(t,x, λ))

)
+ ∂λG(t,x, λ) + divP (t,x, λ),



The problem statement

∂tun(t,x, λ) + div(f(t,x, λ)un(t,x, λ))

= div
(
div (a(λ)un(t,x, λ))

)
+ ∂λGn(t,x, λ) + divPn(t,x, λ),

(1)

The goal: show that for every ρ ∈ C1
c(R), the sequence(∫

R
ρ(λ)un(t,x, λ)dλ

)
is strongly precompact in L1

loc(R
+ ×Rd).

For the coefficients, we assume:

a) (un) weakly converges to zero in Lq(R+ ×Rd ×R), q ≥ 2;
b) a ∈ C0,1(R;Rd×d) is such that there exists a representation

a(λ) = σ(λ)Tσ(λ);
c) f ∈ Lp(R+ ×Rd ×R;Rd), p > 1 such that 1/p+ 1/q < 1;
d) Gn → 0 strongly in W−1/2,r0(R+ ×Rd ×R) for some r0 ∈ 〈1,∞〉;
e) Pn → 0 strongly in Lp0(R+ ×Rd ×R;Rd) for some p0 ∈ 〈1,∞〉.



Velocity averaging

. hyperbolic situations: a ≡ 0

. flux independent of space or time12

. ultra-parabolic equations3

1Tadmor, Tao: Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear
PDEs, Communications on Pure and Applied Mathematics 60 (2007) 1488–1521.

2Lazar, Mitrović: Velocity averaging – a general framework, Dynamics of PDEs 9 (2012)
239–260.

3Holden, Karlsen, Mitrović, Panov: Strong Compactness of Approximate Solutions to
Degenerate Elliptic-Hyperbolic Equations with Discontinuous Flux Functions, Acta Mathematica
Scientia 29B (2009) 1573–1612.



Tao-Tadmor result4

◦ degenerate parabolic equation: a changes rank with respect to λ

◦ flux is homogeneous (does not depend on (t,x))

Recall that we want to consider:

∂tun(t,x, λ) + div(f(t,x, λ)un(t,x, λ))

= div
(
div (a(λ)un(t,x, λ))

)
+ ∂λGn(t,x, λ) + divPn(t,x, λ),

with
d) Gn → 0 strongly in W−1/2,r0(R+ ×Rd ×R) for some r0 ∈ 〈1,∞〉;
e) Pn → 0 strongly in Lp0(R+ ×Rd ×R;Rd) for some p0 ∈ 〈1,∞〉.

In TT: Pn ≡ 0 and Gn ∈ Lq(R+ ×Rd ×R), for 1 < q < 2 and
G ∈M(R+ ×Rd ×R), for q = 1.

4Tadmor, Tao: Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear
PDEs, Communications on Pure and Applied Mathematics 60 (2007) 1488–1521.



H-measures56

Theorem 1. If (un)n∈N is a sequence in L2
loc(Ω;Rr), Ω ⊂ Rd, such that

un ⇀ 0 in L2
loc(Ω), then there exists subsequence (un′)n′ ⊂ (un)n and positive

complex bounded measure µ = {µjk}j,k=1,...,r on Rd × Sd such that for all
ϕ1, ϕ2 ∈ C0(Ω) and ψ ∈ C(Sd),

lim
n′→∞

∫
Ω

(ϕ1u
j
n′)(ξ)A

ψ
(

ξ
|ξ|

)(ϕ2ukn′)(ξ)dx = 〈µjk, ϕ1ϕ̄2ψ〉

=

∫
Rd×Sd

ϕ1(x)ϕ2(x)ψ(ξ)dµjk(x, ξ)

where A
ψ
(

ξ
|ξ|

) is the multiplier operator with the symbol ψ(ξ/|ξ|).

5Tartar: H-measures, a new approach for studying homogenisation, oscillation and
concentration effects in PDEs, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193–230.

6Gérard: Microlocal Defect Measures, Comm. Partial Differential Equations 16 (1991),
1761–1794.
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◦ Aleksić, Mitrović: On the compactness for two dimensional scalar
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963–971.

. control theory
◦ Dehman, Léautaud, Le Rousseau: Controllability of two coupled wave
equations on a compact manifold, Arch. Rational Mech. Anal. 211 (2014)
113–187.
◦ Lazar, Zuazua: Averaged control and observation of parameter-depending
wave equations, C. R. Acad. Sci. Paris, Ser. I 352 (2014) 497–502.



H-measure sees only derivatives of the same highest order

Instead of ξ/|ξ|, put

ξ

|(ξ1, . . . , ξk)|+ |(ξk+1, . . . , ξd)|2
.

H-measure will be able to see the first order derivatives with respect to
(x1, . . . , xk), and second order derivatives with respect to (xi+1, . . . , xd).

=⇒ No changing of the highest order of the equation is permitted!

We need to consider symbols of the form

ψ

(
(τ, ξ)

|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

)
, ψ ∈ C(Rd),

where the matrix a represents the diffusion matrix in the degenerate parabolic
equation.
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Matrix analysis

Let matrix a(λ) have k(λ) eigenvalues strictly greater than 0.

Write a = σTσ, where

σ =

[
[σ11] [σ12]
O O

]
,

and [σ11] is regular k × k matrix.

Later we will use a change of variables

η = Mξ where M =

[
[σ11] [σ12]
O I

]
.

We will assume the following uniform bounds:

0 < c ≤ ‖M−1‖2 ≤ Ĉ <∞ , ‖M‖2 ≤ C̃ , ‖σ′‖2 ≤ C̄ .

We have C̃ = max{1, ‖a‖2}+ ‖a‖2 and c = 1/C̃. For Ĉ we do not have a
uniform bound, so this together with assumption on C̄ are the only new
assumptions here.



Matrix example

◦ A(u) =

[
u −u

2

2

−u
2

2
u3

3

]

. a(λ) =

[
1 −λ
−λ λ2

]
, σ(λ) =

[
−1 λ
0 0

]
For ξ = (x, y), we have 〈a(λ)ξ, ξ〉 = (x− λy)2.

. M =

[
−1 λ
0 1

]
, M−1 =

[
−1 λ
0 1

]

. ‖M−1(λ)‖2 = 1
2

max{λ2 ±
√
λ2 + 1λ+ 2}

. ‖a(λ)‖2 = 1 + λ2



Fourier multipliers I

Let a : R→Md×d be a non-negative definite matrix. Define:

πP (τ, ξ, λ) =
(τ, ξ)

|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

Πλ = Cl{πP (τ, ξ, λ) : (τ, ξ) ∈ Rd+1}

where Cl denotes the closure of a set.

For ψ ∈ Cd+1(Πλ) the composition ψ(πP ) is a symbol of an Lp(Rd+1)
multiplier (here, we consider λ to be fixed).

Lema 1. Under the conditions stated above, for any ψ ∈ Cd+1(Rd+1), the
function ψ(πP ) is an Lp multiplier.



Fourier multipliers II

We will show that a Fourier multiplier with the symbol

∂
1/2
j ◦ ∂λ

(
1

|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

)
satisfies conditions of Marcinkiewicz’s multiplier theorem.

The symbol of ∂λ
(
A 1

|(τ,ξ)|+〈a(λ)ξ,ξ〉

)
is:

∂λ

(
1

|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

)
=

−〈a′(λ)ξ, ξ〉
(|(τ, ξ)|+ 〈a(λ)ξ, ξ〉)2 .

Using a representation a(λ) = σ(λ)Tσ(λ) and the change of variables
η = Mξ, the symbol becomes:

−2(2πiηj)
1/2
〈
σ′(λ)M−1η, η̃

〉
( |(τ,M−1η)|+ |η̃|2 )2 .



Fourier multipliers III

Corollary 1.

Let p ∈ 〈1,∞〉. Then ∂λ
(
A 1

|(τ,ξ)|+〈a(λ)ξ,ξ〉

)
continuously maps Lp(R×Rd)

to W1/2,p(R×Rd).

Let r > 2(d+ 1). Then ∂λ
(
A 1

|(τ,ξ)|+〈a(λ)ξ,ξ〉

)
continuously maps

Lr(R×Rd) to C0(R×Rd).
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The function space W p
Π(Ω)

W̃ p
Π(Ω) =

{
k∑
j=1

ϕj(t,x)ψj(λ, πP (τ, ξ, λ)) : (t,x) ∈ Ω, (λ, τ, ξ) ∈ Rd+2

ϕj ∈ Lp(Ω), ψj ∈ Cd(R× [−1, 1]d+1)

}
.

‖Ψ‖Wp
Π

=

(∫
Ω

[
sup

(τ,ξ)∈Rd+1

(∫
R

|Ψ(t,x, λ, πP (τ, ξ, λ))|2 dλ
)1/2

]p
dtdx

)1/p

.

W p
Π(Ω) is the closure of W̃ p

Π(Ω) in Lp(Ω; C0([−1, 1]d+1; L2(R))), with respect
to the norm ‖ · ‖Wp

Π
:

W p
Π(S) = Cl‖·‖

W
p
Π

(
W̃ p

Π(Ω) ⊂ Lp(Ω; C0([−1, 1]d+1; L2(R)))
)
.



Existence

Theorem 2. Let
◦ (un(t,x, λ)) be an uniformly compactly supported on Su ⊂⊂ R+ ×Rd+1

sequence weakly converging to zero in Lp(R+ ×Rd+1), p > 2.

◦ (vn(t,x)) be an uniformly compactly supported on Sv ⊂⊂ R+ ×Rd sequence
bounded in L∞(R+ ×Rd).

Then for ε > 0 such that p′ + ε ≥ 2p
p−2

there exists a subsequence and a

continuous functional µ on W̃ p′+ε
Π (Ω) such that for every ϕ ∈ Lp

′+ε(Ω) and
ψ ∈ Cd+1(R× [−1, 1]d+1) it holds

µ(ϕψ) = lim
n→∞

∫
Ω×R

ϕ(t,x)un(t,x, λ)Aψ(λ,πP (τ,ξ,λ))(vn)(t,x) dtdxdλ. (2)



Corollary 2. Under the conditions of the previous theorem, representation (2)

holds for ϕ ∈ Lp
′+ε(Ω×R) and ψ ∈ Cd+1([−1, 1]d+1).

Lema 2. Let µ ∈
(
W p′+ε

Π (Ω)
)′

be the functional defined in the previous

theorem. Let Kλ ⊂ R be a fixed arbitrary compact set.

If the function F ∈W p′+ε
Π (Ω) is such that for some α > 0

ess sup
(t,x)∈R+×Rd

sup
(τ,ξ)Rd+1

meas{λ ∈ Kλ : |F (t,x, λ, πP (τ, ξ, λ)) | ≤ σ} ≤ σα

(3)
and

Fµ ≡ 0 ,

then
µ ≡ 0.

Idea of the proof:

◦ multiply Fµ ≡ 0 by φ F
|F |2+σ

◦
0 =

〈
µ, φ

|F |2

|F |2 + σ

〉
= 〈µ, φ〉 −

〈
µ, φ

σ

|F |2 + σ

〉
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Assumptions

∂tun(t,x, λ) + div(f(t,x, λ)un(t,x, λ))

= div
(
div (a(λ)un(t,x, λ))

)
+ ∂λGn(t,x, λ) + divPn(t,x, λ),

a) (un) weakly converges to zero in Lq(R+ ×Rd ×R), q ≥ 2;
b) a ∈ C0,1(R;Rd×d) is such that there exists a representation

a(λ) = σ(λ)Tσ(λ);
c) f ∈ Lp(R+ ×Rd ×R;Rd), p > 1 such that 1/p+ 1/q < 1;
d) Gn → 0 strongly in W−1/2,r0(R+ ×Rd ×R) for some r0 ∈ 〈1,∞〉;
e) Pn → 0 strongly in Lp0(R+ ×Rd ×R;Rd) for some p0 ∈ 〈1,∞〉.



Theorem 3. Assume that the function

F (t,x, λ, πP (τ, ξ, λ)) = i
τ + 〈ξ, f(t,x, λ)〉
|(τ, ξ)|+ 〈a(λ)ξ, ξ〉 +

〈a(λ)ξ, ξ〉
|(τ, ξ)|+ 〈a(λ)ξ, ξ〉

satisfies non-degeneracy condition (3).

Then, for any ρ ∈ C1
c(R), the sequence (

∫
R
ρ(λ)un(t,x, λ)dλ) is strongly

precompact in L1
loc(R

+ ×Rd).

Idea of the proof:
◦ special test functions:

θn(t,x, λ) = ϕ(t,x)ρ(λ)A 1
|(τ,ξ)|+〈a(λ)ξ,ξ〉

(vn(·, ·))(t,x)

◦ take:

vn(t,x) = ϕ(t,x)

(
sgn

(∫
R

ρ(η)un(t,x, η)dη

)
− V (t,x)

)
◦ conclude:

lim
n→∞

∫
Rd+

ϕ2(t,x)

∣∣∣∣∫
R

ρ(λ)un(t,x, λ)dλ

∣∣∣∣ dtdx = 〈µ, ρϕ⊗ 1〉 = 0



Cauchy problem for an advection-diffusion equation

∂tu+ divxf(t,x, u) = D2 ·A(u) (4)

u|t=0 = u0(x) ∈ L1(Rd) ∩ L∞(Rd).

The equation describes a flow governed by

◦ the convection effects (bulk motion of particles) which are represented by the
first order terms;

◦ diffusion effects which are represented by the second order term and the matrix
A(λ) describes direction and intensity of the diffusion;

Degeneracy in the sense that the derivative of the diffusion matrix A′ can be
equal to zero in some direction.
Roughly speaking, if this is the case (i.e. for some vector ξ ∈ Rd:
〈A′(λ)ξ, ξ〉 = 0), then diffusion effects do not exist at the point x for the state
λ in the direction ξ.



Assumptions on coefficients of (4)

◦ The initial data are bounded between ã and b̃ and the flux function annuls at
λ = ã and λ = b̃:

ã ≤ u0(x) ≤ b̃ and f(t,x, ã) = f(t,x, b̃) = 0 a.e. (t,x) ∈ R+ ×Rd.

◦ The convective term f(t,x, λ) is continuously differentiable with respect to
λ ∈ R, and it belongs to Lr(R+ ×Rd × [ã, b̃]), r > 1
We also assume:

divxf(t,x, λ) ∈M(R+ ×Rd × [ã, b̃]).

◦ The matrix A(λ) = (Aij(λ))i,j=1,...,d ∈ C1,1(R;Rd×d), is non-decreasing with
respect to λ ∈ R, i.e. the (diffusion) matrix a(λ) = A′(λ) satisfies

〈a(λ)ξ, ξ〉 ≥ 0

and there exists a representation a(λ) = σ(λ)Tσ(λ).



Quasi-solution

Definition
A measurable function u defined on R+ ×R is called a quasi-solution to (4) if
fk(t,x, u), Akj(u) ∈ L1

loc(R
+ ×Rd), k, j = 1, . . . , d, and for a.e. λ ∈ R the

Kruzhkov type entropy equality holds

∂t|u− λ|+ div [sgn(u− λ)(f(t,x, u)− f(t,x, λ)]]

−D2 · [sgn(u− λ)(A(u)−A(λ))] = −ζ(t,x, λ),

where ζ ∈ C(Rλ;w ?−M(R+ ×Rd)) we call the quasi-entropy defect
measure.

Remark. For a regular flux f, the measure ζ(t,x, λ) can be rewritten in the
form ζ(t,x, λ) = ζ̄(t,x, λ) + sgn(u− λ)divxf(t,x, λ), for a measure ζ̄.
If ζ̄ is non-negative, then the quasi-solution u is an entropy solution to (4). For
the uniqueness of such entropy solution, we additionally need the chain rule7 8.

7Chen, Perthame: Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations,
Ann. Inst. H. Poincare Anal. Non Lineaire 4 (2002) 645–668.

8Chen, Karlsen: Quasilinear Anisotropic Degenerate Parabolic Equations with Time-Space
Dependent Diffusion Coefficients, Comm. Pure and Applied Analysis 4 (2005) 241–266.



Kinetic formulation

Theorem 4. If function u is a quasi-solution to (4), then the function

h(t,x, λ) = sgn(u(t,x)− λ) = −∂λ|u(t,x)− λ|

is a weak solution to the following linear equation:

∂th+ div (F(t,x, λ)h)−D2 · [a(λ)h] = ∂λζ(t,x, λ) ,

where F = f′λ and a = A′λ.

Theorem 5. Assume that F = f′λ and a = A′λ are such that the function

F (t,x, πP (τ, ξ, λ)) = i
τ + 〈ξ,F(t,x, λ)〉
|(τ, ξ)|+ 〈A(λ)ξ, ξ〉 +

〈a(λ)ξ, ξ〉
|(τ, ξ)|+ 〈A(λ)ξ, ξ〉

satisfies (3).

Then, there exists a solution to (4) augmented with the initial conditions
u|t=0 = u0(x), ã ≤ u0 ≤ b̃.
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