Adaptive micro-local defect functionals with application on degenerate equations

Marin Mišur
email: mmisur@math.hr University of Zagreb
joint work with Marko Erceg and Darko Mitrović

December 10, 2017

Degenerate parabolic equation

- effects of nonlinear convection and degenerate diffusion

$$
\partial_{t} u+\operatorname{div}_{\mathbf{x}} \mathfrak{f}(t, \mathbf{x}, u)=D^{2} \cdot A(u)
$$

- matrix A is such that the mapping

$$
\mathbf{R} \ni \lambda \mapsto\langle A(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle \text { is non-decreasing }
$$

i.e. that the diffusion matrix $A^{\prime}(\lambda)$ is merely non-negative definite.

- How to approach this type of problems?
\triangleright write the kinetic formulation (put $f=\mathfrak{f}_{\lambda}^{\prime}$ and $a=A^{\prime}$):

$$
\begin{aligned}
& \partial_{t} h(t, \mathbf{x}, \lambda)+\operatorname{div}(f(t, \mathbf{x}, \lambda) h(t, \mathbf{x}, \lambda)) \\
& =\operatorname{div}(\operatorname{div}(a(\lambda) h(t, \mathbf{x}, \lambda)))+\partial_{\lambda} G(t, \mathbf{x}, \lambda)+\operatorname{div} P(t, \mathbf{x}, \lambda)
\end{aligned}
$$

The problem statement

$$
\begin{align*}
& \partial_{t} u_{n}(t, \mathbf{x}, \lambda)+\operatorname{div}\left(f(t, \mathbf{x}, \lambda) u_{n}(t, \mathbf{x}, \lambda)\right) \\
& =\operatorname{div}\left(\operatorname{div}\left(a(\lambda) u_{n}(t, \mathbf{x}, \lambda)\right)\right)+\partial_{\lambda} G_{n}(t, \mathbf{x}, \lambda)+\operatorname{div} P_{n}(t, \mathbf{x}, \lambda) \tag{1}
\end{align*}
$$

The goal: show that for every $\rho \in \mathrm{C}_{c}^{1}(\mathbf{R})$, the sequence $\left(\int_{\mathbf{R}} \rho(\lambda) u_{n}(t, \mathbf{x}, \lambda) d \lambda\right)$ is strongly precompact in $\mathrm{L}_{\text {loc }}^{1}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$.

For the coefficients, we assume:
a) (u_{n}) weakly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right), q \geq 2$;
b) $a \in \mathrm{C}^{0,1}\left(\mathbf{R} ; \mathbf{R}^{d \times d}\right)$ is such that there exists a representation
$a(\lambda)=\sigma(\lambda)^{T} \sigma(\lambda)$;
c) $f \in \mathrm{~L}^{p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathbf{R}^{d}\right)$, $p>1$ such that $1 / p+1 / q<1$;
d) $G_{n} \rightarrow 0$ strongly in $\mathrm{W}^{-1 / 2, r_{0}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right)$ for some $r_{0} \in\langle 1, \infty\rangle$;
e) $P_{n} \rightarrow 0$ strongly in $\mathrm{L}^{p_{0}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathbf{R}^{d}\right)$ for some $p_{0} \in\langle 1, \infty\rangle$.

Velocity averaging

\triangleright hyperbolic situations: $a \equiv 0$
\triangleright flux independent of space or time ${ }^{12}$
\triangleright ultra-parabolic equations 3

[^0]
Tao-Tadmor result ${ }^{4}$

- degenerate parabolic equation: a changes rank with respect to λ
- flux is homogeneous (does not depend on (t, \mathbf{x}))

Recall that we want to consider:

$$
\begin{aligned}
& \partial_{t} u_{n}(t, \mathbf{x}, \lambda)+\operatorname{div}\left(f(t, \mathbf{x}, \lambda) u_{n}(t, \mathbf{x}, \lambda)\right) \\
& =\operatorname{div}\left(\operatorname{div}\left(a(\lambda) u_{n}(t, \mathbf{x}, \lambda)\right)\right)+\partial_{\lambda} G_{n}(t, \mathbf{x}, \lambda)+\operatorname{div} P_{n}(t, \mathbf{x}, \lambda)
\end{aligned}
$$

with
d) $G_{n} \rightarrow 0$ strongly in $\mathrm{W}^{-1 / 2, r_{0}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right)$ for some $r_{0} \in\langle 1, \infty\rangle$;
e) $P_{n} \rightarrow 0$ strongly in $\mathrm{L}^{p_{0}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathbf{R}^{d}\right)$ for some $p_{0} \in\langle 1, \infty\rangle$.

In TT: $P_{n} \equiv 0$ and $G_{n} \in \mathrm{~L}^{q}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right)$, for $1<q<2$ and $G \in \mathcal{M}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right)$, for $q=1$.

[^1]Theorem 1. If $\left(u_{n}\right)_{n \in \mathbf{N}}$ is a sequence in $\mathrm{L}_{\text {loc }}^{2}\left(\Omega ; \mathbf{R}^{r}\right), \Omega \subset \mathbf{R}^{d}$, such that $u_{n} \rightharpoonup 0$ in $\mathrm{L}_{\text {loc }}^{2}(\Omega)$, then there exists subsequence $\left(u_{n^{\prime}}\right)_{n^{\prime}} \subset\left(u_{n}\right)_{n}$ and positive complex bounded measure $\mu=\left\{\mu^{j k}\right\}_{j, k=1, \ldots, r}$ on $\mathbf{R}^{d} \times \mathrm{S}^{d}$ such that for all $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}(\Omega)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d}\right)$,

$$
\begin{gathered}
\lim _{n^{\prime} \rightarrow \infty} \int_{\Omega}\left(\varphi_{1} u_{n^{\prime}}^{j}\right)(\boldsymbol{\xi}) \overline{\mathcal{A}_{\psi\left(\frac{\xi}{|\boldsymbol{\xi}|}\right)}\left(\varphi_{2} u_{n^{\prime}}^{k}\right)(\boldsymbol{\xi})} d \mathbf{x}=\left\langle\mu^{j k}, \varphi_{1} \bar{\varphi}_{2} \psi\right\rangle \\
\quad=\int_{\mathbf{R}^{d} \times S^{d}} \varphi_{1}(\mathbf{x}) \overline{\varphi_{2}(\mathbf{x})} \psi(\boldsymbol{\xi}) d \mu^{j k}(\mathbf{x}, \boldsymbol{\xi})
\end{gathered}
$$

where $\mathcal{A}_{\psi\left(\frac{\boldsymbol{\xi}}{\boldsymbol{\xi} \mid}\right)}$ is the multiplier operator with the symbol $\psi(\boldsymbol{\xi} /|\boldsymbol{\xi}|)$.

[^2]
H-measures - some applications

\triangleright velocity averaging results

- Gérard: Microlocal Defect Measures, Comm. Partial Differential Equations 16 (1991), 1761-1794.
- Lazar, Mitrović: Velocity averaging - a general framework, Dynamics of PDEs 9 (2012) 239-260.
\triangleright existence of traces and solutions to nonlinear evolution equations
- Panov: Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. J. Hyperbolic Differ. Equ. 2 (2005) 885-908.
- Holden, Karlsen, Mitrović, Panov: Strong Compactness of Approximate Solutions to Degenerate Elliptic-Hyperbolic Equations with Discontinuous Flux Functions, Acta Mathematica Scientia 29B (2009) 1573-1612.
- Aleksić, Mitrović: On the compactness for two dimensional scalar conservation law with discontinuous flux, Comm. Math. Sci. 7 (2009) 963-971.
\triangleright control theory
- Dehman, Léautaud, Le Rousseau: Controllability of two coupled wave equations on a compact manifold, Arch. Rational Mech. Anal. 211 (2014) 113-187.
- Lazar, Zuazua: Averaged control and observation of parameter-depending wave equations, C. R. Acad. Sci. Paris, Ser. I 352 (2014) 497-502.

H-measure sees only derivatives of the same highest order

Instead of $\boldsymbol{\xi} /|\boldsymbol{\xi}|$, put

$$
\frac{\boldsymbol{\xi}}{\left|\left(\xi_{1}, \ldots, \xi_{k}\right)\right|+\left|\left(\xi_{k+1}, \ldots, \xi_{d}\right)\right|^{2}} .
$$

H -measure will be able to see the first order derivatives with respect to $\left(x_{1}, \ldots, x_{k}\right)$, and second order derivatives with respect to $\left(x_{i+1}, \ldots, x_{d}\right)$.
\Longrightarrow No changing of the highest order of the equation is permitted!

We need to consider symbols of the form

$$
\psi\left(\frac{(\tau, \boldsymbol{\xi})}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}\right), \quad \psi \in \mathrm{C}\left(\mathbf{R}^{d}\right)
$$

where the matrix a represents the diffusion matrix in the degenerate parabolic equation.

Introduction

Fourier multipliers

Adaptive micro-local defect functionals

A velocity averaging result

Matrix analysis

Let matrix $a(\lambda)$ have $k(\lambda)$ eigenvalues strictly greater than 0 .
Write $a=\sigma^{T} \sigma$, where

$$
\sigma=\left[\begin{array}{cc}
{\left[\sigma_{11}\right]} & {\left[\sigma_{12}\right]} \\
O & O
\end{array}\right]
$$

and $\left[\sigma_{11}\right]$ is regular $k \times k$ matrix.
Later we will use a change of variables

$$
\boldsymbol{\eta}=M \boldsymbol{\xi} \text { where } M=\left[\begin{array}{cc}
{\left[\sigma_{11}\right]} & {\left[\sigma_{12}\right]} \\
O & I
\end{array}\right] .
$$

We will assume the following uniform bounds:

$$
0<c \leq\left\|M^{-1}\right\|_{2} \leq \widehat{C}<\infty, \quad\|M\|_{2} \leq \widetilde{C}, \quad\left\|\sigma^{\prime}\right\|_{2} \leq \bar{C}
$$

We have $\widetilde{C}=\max \left\{1,\|a\|_{2}\right\}+\|a\|_{2}$ and $c=1 / \widetilde{C}$. For \widehat{C} we do not have a uniform bound, so this together with assumption on \bar{C} are the only new assumptions here.

Matrix example

$$
\begin{aligned}
& \circ A(u)=\left[\begin{array}{cc}
u & -\frac{u^{2}}{2} \\
-\frac{u^{2}}{2} & \frac{u^{3}}{3}
\end{array}\right] \\
& \triangleright a(\lambda)=\left[\begin{array}{cc}
1 & -\lambda \\
-\lambda & \lambda^{2}
\end{array}\right], \quad \sigma(\lambda)=\left[\begin{array}{cc}
-1 & \lambda \\
0 & 0
\end{array}\right]
\end{aligned}
$$

For $\boldsymbol{\xi}=(x, y)$, we have $\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle=(x-\lambda y)^{2}$.

$$
\begin{aligned}
\triangleright M & =\left[\begin{array}{cc}
-1 & \lambda \\
0 & 1
\end{array}\right], \quad M^{-1}=\left[\begin{array}{cc}
-1 & \lambda \\
0 & 1
\end{array}\right] \\
& \triangleright\left\|M^{-1}(\lambda)\right\|_{2}=\frac{1}{2} \max \left\{\lambda^{2} \pm \sqrt{\lambda^{2}+1} \lambda+2\right\} \\
& \triangleright\|a(\lambda)\|_{2}=1+\lambda^{2}
\end{aligned}
$$

Fourier multipliers I

Let $a: \mathbf{R} \rightarrow M^{d \times d}$ be a non-negative definite matrix. Define:

$$
\begin{gathered}
\pi_{P}(\tau, \boldsymbol{\xi}, \lambda)=\frac{(\tau, \boldsymbol{\xi})}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle} \\
\Pi_{\lambda}=\operatorname{Cl}\left\{\pi_{P}(\tau, \boldsymbol{\xi}, \lambda):(\tau, \boldsymbol{\xi}) \in \mathbf{R}^{d+1}\right\}
\end{gathered}
$$

where Cl denotes the closure of a set.
For $\psi \in \mathrm{C}^{d+1}\left(\Pi_{\lambda}\right)$ the composition $\psi\left(\pi_{P}\right)$ is a symbol of an $\mathrm{L}^{p}\left(\mathbf{R}^{d+1}\right)$ multiplier (here, we consider λ to be fixed).

Lema 1. Under the conditions stated above, for any $\psi \in \mathrm{C}^{d+1}\left(\mathbf{R}^{d+1}\right)$, the function $\psi\left(\pi_{P}\right)$ is an L^{p} multiplier.

Fourier multipliers II

We will show that a Fourier multiplier with the symbol

$$
\partial_{j}^{1 / 2} \circ \partial_{\lambda}\left(\frac{1}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}\right)
$$

satisfies conditions of Marcinkiewicz's multiplier theorem.
The symbol of $\partial_{\lambda}\left(\mathcal{A}_{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}\right)$ is:

$$
\partial_{\lambda}\left(\frac{1}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}\right)=\frac{-\left\langle a^{\prime}(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\right\rangle}{(|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle)^{2}}
$$

Using a representation $a(\lambda)=\sigma(\lambda)^{T} \sigma(\lambda)$ and the change of variables $\boldsymbol{\eta}=M \boldsymbol{\xi}$, the symbol becomes:

$$
\frac{-2\left(2 \pi i \eta_{j}\right)^{1 / 2}\left\langle\sigma^{\prime}(\lambda) M^{-1} \boldsymbol{\eta}, \tilde{\boldsymbol{\eta}}\right\rangle}{\left(\left|\left(\tau, M^{-1} \boldsymbol{\eta}\right)\right|+|\tilde{\boldsymbol{\eta}}|^{2}\right)^{2}}
$$

Fourier multipliers III

Corollary 1.

Let $p \in\langle 1, \infty\rangle$. Then $\partial_{\lambda}\left(\mathcal{A}_{\frac{1}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}}\right)$ continuously maps $\mathrm{L}^{p}\left(\mathbf{R} \times \mathbf{R}^{d}\right)$ to $\mathrm{W}^{1 / 2, p}\left(\mathbf{R} \times \mathbf{R}^{d}\right)$.
Let $r>2(d+1)$. Then $\partial_{\lambda}\left(\mathcal{A}_{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \xi, \boldsymbol{\xi}\rangle}\right)$ continuously maps
$\mathrm{L}^{r}\left(\mathbf{R} \times \mathbf{R}^{d}\right)$ to $\mathrm{C}^{0}\left(\mathbf{R} \times \mathbf{R}^{d}\right)$.

Introduction

Fourier multipliers

Adaptive micro-local defect functionals

A velocity averaging result

The function space $W_{\Pi}^{p}(\Omega)$

$$
\begin{gathered}
\widetilde{W}_{\Pi}^{p}(\Omega)=\left\{\sum_{j=1}^{k} \varphi_{j}(t, \mathbf{x}) \psi_{j}\left(\lambda, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)\right):(t, \mathbf{x}) \in \Omega,(\lambda, \tau, \boldsymbol{\xi}) \in \mathbf{R}^{d+2}\right. \\
\left.\varphi_{j} \in \mathrm{~L}^{p}(\Omega), \psi_{j} \in \mathrm{C}^{d}\left(\mathbf{R} \times[-1,1]^{d+1}\right)\right\} \\
\|\Psi\|_{W_{\Pi}^{p}}=\left(\int_{\Omega}\left[\sup _{(\tau, \boldsymbol{\xi}) \in \mathbf{R}^{d+1}}\left(\int_{\mathbf{R}}\left|\Psi\left(t, \mathbf{x}, \lambda, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)\right)\right|^{2} d \lambda\right)^{1 / 2}\right]^{p} d t d \mathbf{x}\right)^{1 / p} .
\end{gathered}
$$

$W_{\Pi}^{p}(\Omega)$ is the closure of $\widetilde{W}_{\Pi}^{p}(\Omega)$ in $\mathrm{L}^{p}\left(\Omega ; \mathrm{C}_{0}\left([-1,1]^{d+1} ; \mathrm{L}^{2}(\mathbf{R})\right)\right)$, with respect to the norm $\|\cdot\|_{W_{\Pi}^{p}}$:

$$
W_{\Pi}^{p}(S)=\mathrm{Cl}_{\|\cdot\|_{W_{\Pi}^{p}}}\left(\widetilde{W}_{\Pi}^{p}(\Omega) \subset \mathrm{L}^{p}\left(\Omega ; \mathrm{C}_{0}\left([-1,1]^{d+1} ; \mathrm{L}^{2}(\mathbf{R})\right)\right)\right)
$$

Existence

Theorem 2. Let

- $\left(u_{n}(t, \mathbf{x}, \lambda)\right)$ be an uniformly compactly supported on $S_{u} \subset \subset \mathbf{R}^{+} \times \mathbf{R}^{d+1}$ sequence weakly converging to zero in $\mathrm{L}^{p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d+1}\right), p>2$.
- $\left(v_{n}(t, \mathbf{x})\right)$ be an uniformly compactly supported on $S_{v} \subset \subset \mathbf{R}^{+} \times \mathbf{R}^{d}$ sequence bounded in $\mathrm{L}^{\infty}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$.

Then for $\varepsilon>0$ such that $p^{\prime}+\varepsilon \geq \frac{2 p}{p-2}$ there exists a subsequence and a continuous functional μ on $\widetilde{W}_{\Pi}^{p^{\prime}+\varepsilon}(\Omega)$ such that for every $\varphi \in \mathrm{L}^{p^{\prime}+\varepsilon}(\Omega)$ and $\psi \in \mathrm{C}^{d+1}\left(\mathbf{R} \times[-1,1]^{d+1}\right)$ it holds

$$
\begin{equation*}
\mu(\varphi \psi)=\lim _{n \rightarrow \infty} \int_{\Omega \times \mathbf{R}} \varphi(t, \mathbf{x}) u_{n}(t, \mathbf{x}, \lambda) \overline{\mathcal{A}_{\psi\left(\lambda, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)\right)}\left(v_{n}\right)(t, \mathbf{x})} d t d \mathbf{x} d \lambda . \tag{2}
\end{equation*}
$$

Corollary 2. Under the conditions of the previous theorem, representation (2) holds for $\varphi \in \mathrm{L}^{p^{\prime}+\varepsilon}(\Omega \times \mathbf{R})$ and $\psi \in \mathrm{C}^{d+1}\left([-1,1]^{d+1}\right)$.

Lema 2. Let $\mu \in\left(W_{\Pi}^{p^{\prime}+\varepsilon}(\Omega)\right)^{\prime}$ be the functional defined in the previous theorem. Let $K_{\lambda} \subset \mathbf{R}$ be a fixed arbitrary compact set. If the function $F \in W_{\Pi}^{p^{\prime}+\varepsilon}(\Omega)$ is such that for some $\alpha>0$

$$
\begin{equation*}
\operatorname{esssup}_{(t, \mathbf{x}) \in \mathbf{R}^{+} \times \mathbf{R}^{d}} \sup _{(\tau, \boldsymbol{\xi}) \mathbf{R}^{d+1}} \operatorname{meas}\left\{\lambda \in K_{\lambda}:\left|F\left(t, \mathbf{x}, \lambda, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)\right)\right| \leq \sigma\right\} \leq \sigma^{\alpha} \tag{3}
\end{equation*}
$$

and

$$
F \mu \equiv 0
$$

then

$$
\mu \equiv 0
$$

Idea of the proof:

- multiply $F \mu \equiv 0$ by $\phi \frac{\bar{F}}{|F|^{2}+\sigma}$ \circ

$$
0=\left\langle\mu, \phi \frac{|F|^{2}}{|F|^{2}+\sigma}\right\rangle=\langle\mu, \phi\rangle-\left\langle\mu, \phi \frac{\sigma}{|F|^{2}+\sigma}\right\rangle
$$

Introduction

Fourier multipliers

Adaptive micro-local defect functionals

A velocity averaging result

Assumptions

$$
\begin{aligned}
& \partial_{t} u_{n}(t, \mathbf{x}, \lambda)+\operatorname{div}\left(f(t, \mathbf{x}, \lambda) u_{n}(t, \mathbf{x}, \lambda)\right) \\
& =\operatorname{div}\left(\operatorname{div}\left(a(\lambda) u_{n}(t, \mathbf{x}, \lambda)\right)\right)+\partial_{\lambda} G_{n}(t, \mathbf{x}, \lambda)+\operatorname{div} P_{n}(t, \mathbf{x}, \lambda)
\end{aligned}
$$

a) (u_{n}) weakly converges to zero in $\mathrm{L}^{q}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right), q \geq 2$;
b) $a \in \mathrm{C}^{0,1}\left(\mathbf{R} ; \mathbf{R}^{d \times d}\right)$ is such that there exists a representation $a(\lambda)=\sigma(\lambda)^{T} \sigma(\lambda)$;
c) $f \in \mathrm{~L}^{p}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathbf{R}^{d}\right)$, $p>1$ such that $1 / p+1 / q<1$;
d) $G_{n} \rightarrow 0$ strongly in $\mathrm{W}^{-1 / 2, r_{0}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R}\right)$ for some $r_{0} \in\langle 1, \infty\rangle$;
e) $P_{n} \rightarrow 0$ strongly in $\mathrm{L}^{p_{0}}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times \mathbf{R} ; \mathbf{R}^{d}\right)$ for some $p_{0} \in\langle 1, \infty\rangle$.

Theorem 3. Assume that the function

$$
F\left(t, \mathbf{x}, \lambda, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)\right)=i \frac{\tau+\langle\boldsymbol{\xi}, f(t, \mathbf{x}, \lambda)\rangle}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}+\frac{\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}
$$

satisfies non-degeneracy condition (3).
Then, for any $\rho \in \mathrm{C}_{c}^{1}(\mathbf{R})$, the sequence $\left(\int_{\mathbf{R}} \rho(\lambda) u_{n}(t, \mathbf{x}, \lambda) d \lambda\right)$ is strongly precompact in $\mathrm{L}_{l o c}^{1}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)$.

Idea of the proof:

- special test functions:

$$
\overline{\theta_{n}(t, \mathbf{x}, \lambda)}=\varphi(t, \mathbf{x}) \rho(\lambda) \mathcal{A}_{\frac{1}{|(\tau, \boldsymbol{\xi})|+\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}}\left(v_{n}(\cdot, \cdot)\right)(t, \mathbf{x})
$$

- take:

$$
v_{n}(t, \mathbf{x})=\varphi(t, \mathbf{x})\left(\operatorname{sgn}\left(\int_{\mathbf{R}} \rho(\eta) u_{n}(t, \mathbf{x}, \eta) d \eta\right)-V(t, \mathbf{x})\right)
$$

- conclude:

$$
\lim _{n \rightarrow \infty} \int_{\mathbf{R}_{+}^{d}} \varphi^{2}(t, \mathbf{x})\left|\int_{\mathbf{R}} \rho(\lambda) u_{n}(t, \mathbf{x}, \lambda) d \lambda\right| d t d \mathbf{x}=\langle\mu, \rho \varphi \otimes 1\rangle=0
$$

Cauchy problem for an advection-diffusion equation

$$
\begin{align*}
\partial_{t} u+\operatorname{div}_{\mathbf{x}} \mathfrak{f}(t, \mathbf{x}, u) & =D^{2} \cdot A(u) \tag{4}\\
\left.u\right|_{t=0} & =u_{0}(\mathbf{x}) \in \mathrm{L}^{1}\left(\mathbf{R}^{d}\right) \cap \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)
\end{align*}
$$

The equation describes a flow governed by

- the convection effects (bulk motion of particles) which are represented by the first order terms;
- diffusion effects which are represented by the second order term and the matrix $A(\lambda)$ describes direction and intensity of the diffusion;

Degeneracy in the sense that the derivative of the diffusion matrix A^{\prime} can be equal to zero in some direction. Roughly speaking, if this is the case (i.e. for some vector $\boldsymbol{\xi} \in \mathbf{R}^{d}$: $\left\langle A^{\prime}(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\right\rangle=0$), then diffusion effects do not exist at the point \mathbf{x} for the state λ in the direction $\boldsymbol{\xi}$.

Assumptions on coefficients of (4)

- The initial data are bounded between \tilde{a} and \tilde{b} and the flux function annuls at $\lambda=\tilde{a}$ and $\lambda=\tilde{b}$:

$$
\tilde{a} \leq u_{0}(\mathbf{x}) \leq \tilde{b} \quad \text { and } \quad \mathfrak{f}(t, \mathbf{x}, \tilde{a})=\mathfrak{f}(t, \mathbf{x}, \tilde{b})=0 \quad \text { a.e. }(t, \mathbf{x}) \in \mathbf{R}^{+} \times \mathbf{R}^{d}
$$

- The convective term $\mathfrak{f}(t, \mathbf{x}, \lambda)$ is continuously differentiable with respect to $\lambda \in \mathbf{R}$, and it belongs to $\mathrm{L}^{r}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times[\tilde{a}, \tilde{b}]\right), r>1$ We also assume:

$$
\operatorname{div}_{\mathbf{x}} \mathfrak{f}(t, \mathbf{x}, \lambda) \in \mathcal{M}\left(\mathbf{R}^{+} \times \mathbf{R}^{d} \times[\tilde{a}, \tilde{b}]\right)
$$

- The matrix $A(\lambda)=\left(A_{i j}(\lambda)\right)_{i, j=1, \ldots, d} \in \mathrm{C}^{1,1}\left(\mathbf{R} ; \mathbf{R}^{d \times d}\right)$, is non-decreasing with respect to $\lambda \in \mathbf{R}$, i.e. the (diffusion) matrix $a(\lambda)=A^{\prime}(\lambda)$ satisfies

$$
\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle \geq 0
$$

and there exists a representation $a(\lambda)=\sigma(\lambda)^{T} \sigma(\lambda)$.

Quasi-solution

Definition

A measurable function u defined on $\mathbf{R}^{+} \times \mathbf{R}$ is called a quasi-solution to (4) if $\mathrm{f}_{k}(t, \mathbf{x}, u), A_{k j}(u) \in \mathrm{L}_{l o c}^{1}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right), k, j=1, \ldots, d$, and for a.e. $\lambda \in \mathbf{R}$ the Kruzhkov type entropy equality holds

$$
\begin{gathered}
\partial_{t}|u-\lambda|+\operatorname{div}[\operatorname{sgn}(u-\lambda)(\mathfrak{f}(t, \mathbf{x}, u)-\mathfrak{f}(t, \mathbf{x}, \lambda)]] \\
-D^{2} \cdot[\operatorname{sgn}(u-\lambda)(A(u)-A(\lambda))]=-\zeta(t, \mathbf{x}, \lambda),
\end{gathered}
$$

where $\zeta \in \mathrm{C}\left(\mathbf{R}_{\lambda} ; w \star-\mathcal{M}\left(\mathbf{R}^{+} \times \mathbf{R}^{d}\right)\right)$ we call the quasi-entropy defect measure.

Remark. For a regular flux \mathfrak{f}, the measure $\zeta(t, \mathbf{x}, \lambda)$ can be rewritten in the form $\zeta(t, \mathbf{x}, \lambda)=\bar{\zeta}(t, \mathbf{x}, \lambda)+\operatorname{sgn}(u-\lambda) \operatorname{div}_{\mathbf{x}} \mathbf{f}(t, \mathbf{x}, \lambda)$, for a measure $\bar{\zeta}$. If $\bar{\zeta}$ is non-negative, then the quasi-solution u is an entropy solution to (4). For the uniqueness of such entropy solution, we additionally need the chain rule ${ }^{78}$.

[^3]
Kinetic formulation

Theorem 4. If function u is a quasi-solution to (4), then the function

$$
h(t, \mathbf{x}, \lambda)=\operatorname{sgn}(u(t, \mathbf{x})-\lambda)=-\partial_{\lambda}|u(t, \mathbf{x})-\lambda|
$$

is a weak solution to the following linear equation:

$$
\partial_{t} h+\operatorname{div}(\mathfrak{F}(t, \mathbf{x}, \lambda) h)-D^{2} \cdot[a(\lambda) h]=\partial_{\lambda} \zeta(t, \mathbf{x}, \lambda),
$$

where $\mathfrak{F}=\mathfrak{f}_{\lambda}^{\prime}$ and $a=A_{\lambda}^{\prime}$.

Theorem 5. Assume that $\mathfrak{F}=\mathfrak{f}_{\lambda}^{\prime}$ and $a=A_{\lambda}^{\prime}$ are such that the function

$$
F\left(t, \mathbf{x}, \pi_{P}(\tau, \boldsymbol{\xi}, \lambda)\right)=i \frac{\tau+\langle\boldsymbol{\xi}, \mathfrak{F}(t, \mathbf{x}, \lambda)\rangle}{|(\tau, \boldsymbol{\xi})|+\langle A(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}+\frac{\langle a(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}{|(\tau, \boldsymbol{\xi})|+\langle A(\lambda) \boldsymbol{\xi}, \boldsymbol{\xi}\rangle}
$$

satisfies (3).
Then, there exists a solution to (4) augmented with the initial conditions $\left.u\right|_{t=0}=u_{0}(\mathbf{x}), \tilde{a} \leq u_{0} \leq \tilde{b}$.

Reference

- M. Erceg, M. Mišur, D. Mitrović: Velocity averaging and strong precompactness for degenerate parabolic equations with discontinuous flux, in preparation, 24pages
- E. Tadmor, T. Tao: Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Communications on Pure and Applied Mathematics 60 (2007) 1488-1521.

[^0]: ${ }^{1}$ Tadmor, Tao: Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Communications on Pure and Applied Mathematics 60 (2007) 1488-1521.
 ${ }^{2}$ Lazar, Mitrović: Velocity averaging - a general framework, Dynamics of PDEs 9 (2012) 239-260.
 ${ }^{3}$ Holden, Karlsen, Mitrović, Panov: Strong Compactness of Approximate Solutions to Degenerate Elliptic-Hyperbolic Equations with Discontinuous Flux Functions, Acta Mathematica Scientia 29B (2009) 1573-1612.

[^1]: ${ }^{4}$ Tadmor, Tao: Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Communications on Pure and Applied Mathematics 60 (2007) 1488-1521.

[^2]: ${ }^{5}$ Tartar: H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230.
 ${ }^{6}$ Gérard: Microlocal Defect Measures, Comm. Partial Differential Equations 16 (1991), 1761-1794.

[^3]: ${ }^{7}$ Chen, Perthame: Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations, Ann. Inst. H. Poincare Anal. Non Lineaire 4 (2002) 645-668.
 ${ }^{8}$ Chen, Karlsen: Quasilinear Anisotropic Degenerate Parabolic Equations with Time-Space Dependent Diffusion Coefficients, Comm. Pure and Applied Analysis 4 (2005) 241-266.

