H-distributions and compensated compactness

Marin Mišur

email: mmisur@math.hr University of Zagreb

joint work with Nenad Antonić, Marko Erceg and Darko Mitrović

15. rujna 2016.

Last night...

What are H-measures?

Mathematical objects introduced (1989/90) by:

- Luc Tartar, who was motivated by possible applications in homogenisation, and independently by
- Patrick Gérard, whose motivation were problems in kinetic theory.

Theorem 1. If $u_n \to 0$ and $v_n \to 0$ in $L^2(\mathbf{R}^d)$, then there exist their subsequences and a complex valued Radon measure μ on $\mathbf{R}^d \times \mathbf{S}^{d-1}$, such that for any $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^d)$ and $\psi \in C(\mathbf{S}^{d-1})$ one has

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}} \overline{\widehat{\varphi_2 v_{n'}}} (\psi \circ \pi) d\boldsymbol{\xi} = \langle \mu, \varphi_1 \overline{\varphi_2} \boxtimes \psi \rangle,$$

where $\pi:\mathbf{R}^d\setminus\{0\}\longrightarrow S^{d-1}$ is the projection along rays.

Question: How to replace L^2 with L^p ?

Notice: if we denote by \mathcal{A}_{ψ} the Fourier multiplier operator with symbol $\psi \in \mathrm{L}^{\infty}(\mathbf{R}^d)$: $\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee}.$

we can rewrite the equality from the theorem as

$$\langle \mu, \varphi_1 \overline{\varphi_2} \boxtimes \psi \rangle = \lim_{n'} \int_{\mathbf{R}^d} \varphi_1 u_{n'}(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi} \circ \overline{\pi}}(\varphi_2 u_{n'})(\mathbf{x})} d\mathbf{x} .$$

Hörmander-Mihlin Theorem

Theorem 2. Let $\psi \in L^{\infty}(\mathbf{R}^d)$ have partial derivatives of order less than or equal to $\kappa = [d/2] + 1$. If for some k > 0

$$(\forall r > 0)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d) \quad |\boldsymbol{\alpha}| \le \kappa \Longrightarrow \int_{r/2 \le |\boldsymbol{\xi}| \le r} |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} \le k^2 r^{d-2|\boldsymbol{\alpha}|},$$

then for any $p\in\langle 1,\infty\rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a constant C_d such that

$$\|\mathcal{A}_{\psi}\|_{L^{p}\to L^{p}} \leq C_{d} \max\{p, 1/(p-1)\}(k+\|\psi\|_{L^{\infty}(\mathbf{R}^{d})}).$$

For $\psi \in C^{\kappa}(S^{d-1})$, extended by homogeneity to $\mathbf{R}^d \setminus \{0\}$, we can take $k = \|\psi\|_{C^{\kappa}(S^{d-1})}$.

Y. Heo, F. Nazarov, A. Seeger, *Radial Fourier multipliers in high dimensions*, Acta Mathematica **206** (2011) 55-92.

Introduction

H-measures

First commutation lemma

H-distributions

Existence

Conjecture

Schwartz kernel theorem

Compensated compactness

Classical results

Result by Panov

Definition

Localisation principle

Application to the parabolic type equation

What is the First commutation lemma?

$$\circ \ \mathcal{A}_{\psi}u := (\psi \hat{u})^{\vee}$$

$$\circ M_b u := bu$$

$$[\mathcal{A}_{\psi}, M_b] := \mathcal{A}_{\psi} M_b - M_b \mathcal{A}_{\psi}$$

Compactness on L^2 - Cordes' result¹

Theorem

If bounded continuous functions b and ψ satisfy

$$\lim_{|\mathbf{\xi}| \to \infty} \sup_{|\mathbf{h}| \le 1} \{|\psi(\mathbf{\xi} + \mathbf{h}) - \psi(\mathbf{\xi})|\} = 0 \quad \text{ and } \quad \lim_{|\mathbf{x}| \to \infty} \sup_{|\mathbf{h}| \le 1} \{|b(\mathbf{x} + \mathbf{h}) - b(\mathbf{x})|\} = 0 \;,$$

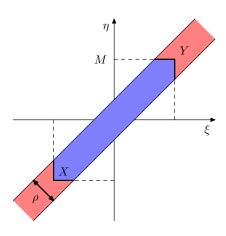
then the commutator $[A_{\psi}, M_b]$ is a compact operator on $L^2(\mathbf{R}^d)$.

¹H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal. **18** (1975) 115–131.

Compactness on L^2 - Tartar's version

For given $M, \varrho \in \mathbf{R}^+$ we denote the set

$$Y(M,\varrho) = \{(\boldsymbol{\xi},\boldsymbol{\eta}) \in \mathbf{R}^{2d} : |\boldsymbol{\xi}|, |\boldsymbol{\eta}| \ge M \& |\boldsymbol{\xi} - \boldsymbol{\eta}| \le \varrho\} .$$



Compactness on L^2 - Tartar's version²

Lemma (general form of the First commutation lemma)

If $b \in C_0(\mathbf{R}^d)$, while $\psi \in L^{\infty}(\mathbf{R}^d)$ satisfies the condition

$$(\forall \varrho, \varepsilon \in \mathbf{R}^+)(\exists M \in \mathbf{R}^+) \quad |\psi(\xi) - \psi(\eta)| \leqslant \varepsilon \text{ (s.s. } (\xi, \eta) \in Y(M, \varrho)), (1)$$

then $[A_{\psi}, M_b]$ is a compact operator on $L^2(\mathbf{R}^d)$.

Lemma

Let $\pi: \mathbf{R}^d_* \to \Sigma$ be a smooth projection to a smooth compact hypersurface Σ , such that $\|\nabla \pi(\boldsymbol{\xi})\| \to 0$ for $|\boldsymbol{\xi}| \to \infty$, and let $\psi \in \mathrm{C}(\Sigma)$. Then $\psi \circ \pi$ (ψ extended by homogeneity of order 0) satisfies (1).

²L. Tartar, The general theory of homogenization: A personalized introduction, Springer, 2009.

Where is it used?

- L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh 115A (1990) 193–230.³
- E. Ju. Panov, Ultra-parabolic H-measures and compensated compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire C 28 (2011) 47–62.
- N. Antonić, M. Lazar, Parabolic H-measures, J. Funct. Anal. 265 (2013) 1190–1239.
- Z. Lin, Instability of nonlinear dispersive solitary waves, J. Funct. Anal. 255
 (2008) 1191–1224.
- Z. Lin, On Linear Instability of 2D Solitary Water Waves, International Mathematics Research Notices 2009 (2009) 1247–1303.
- S. Richard, R. T. de Aldecoa, New Formulae for the Wave Operators for a Rank One Interaction, Integr. Equ. Oper. Theory 66 (2010) 283–292.

³P. Gérard, Microlocal defect measures, Comm. Partial Diff. Eq. 16 (1991) 1761–1794.

	. T m					
What about	${ m t}$ the ${ m L}^p$	variant	of the	First	commutation	lemma !

- one variant in the article by Cordes complicated proof and higher regularity assumptions
- o N. Antonić, D. Mitrović, *H-distributions: an extension of H-measures to an* $L^p L^q$ *setting*, Abs. Appl. Analysis **2011** Article ID 901084 (2011) 12 pp.

A variant of Krasnoselskij's type of result⁴

Lemma

Assume that linear operator A is compact on $L^2(\mathbf{R}^d)$ and bounded on $L^r(\mathbf{R}^d)$, for some $r \in \langle 1, \infty \rangle \setminus \{2\}$. Then A is also compact on $L^p(\mathbf{R}^d)$, for any p between 2 and r (i.e. such that $1/p = \theta/2 + (1-\theta)/r$, for some $\theta \in \langle 0, 1 \rangle$).

Corollary

If $b \in C_0(\mathbf{R}^d)$, while $\psi \in C^{\kappa}(\mathbf{R}^d)$ satisfies the conditions of the Hörmander-Mihlin theorem, then the commutator $[A_{\psi}, M_b]$ is a compact operator on $L^p(\mathbf{R}^d)$, for any $p \in \langle 1, \infty \rangle$.

⁴M. A. Krasnoselskij, *On a theorem of M. Riesz*, Dokl. Akad. Nauk SSSR **131** (1960) 246–248 (in russian); translated as Soviet Math. Dokl. **1** (1960) 229–231.

Theorem

Let $\psi \in C^{\kappa}(\mathbf{R}^d \setminus \{0\})$ be bounded and satisfy Hörmander's condition, while $b \in C_c(\mathbf{R}^d)$. Then for any $u_n \overset{*}{\longrightarrow} 0$ in $L^{\infty}(\mathbf{R}^d)$ and $p \in \langle 1, \infty \rangle$ one has:

$$(\forall \varphi, \phi \in C_c^{\infty}(\mathbf{R}^d)) \qquad \phi C(\varphi u_n) \longrightarrow 0 \quad \text{ in } \quad L^p(\mathbf{R}^d) .$$

Corollary

Let (u_n) be a bounded, uniformly compactly supported sequence in $L^{\infty}(\mathbf{R}^d)$, converging to 0 in the sense of distributions. Assume that $\psi \in C^{\kappa}(\mathbf{R}^d \setminus \{0\})$ satisfies Hörmander's condition and condition from the general form of the First commutation lemma.

Then for any $b \in L^s(\mathbf{R}^d)$, s > 1 arbitrary, it holds

$$\lim_{n\to\infty} \|b\mathcal{A}_{\psi}(u_n) - \mathcal{A}_{\psi}(bu_n)\|_{\mathrm{L}^r(\mathbf{R}^d)} = 0, \quad r \in \langle 1, s \rangle.$$

Introduction

H-measures

First commutation lemma

H-distributions

Existence

Conjecture

Schwartz kernel theorem

Compensated compactness

Classical results

Result by Panov

Definition

Localisation principle

Application to the parabolic type equation

H-distributions

H-distributions were introduced by N. Antonić and D. Mitrović as an extension of H-measures to the $\mathbf{L}^p - \mathbf{L}^q$ context.

Existing applications are related to the velocity averaging 5 and ${\rm L}^p-{\rm L}^q$ compactness by compensation 6 .

 $^{^5}$ M. Lazar, D. Mitrović, On an extension of a bilinear functional on $L^p(\mathbf{R}^d) \times E$ to Bochner spaces with an application to velocity averaging, C. R. Math. Acad. Sci. paris **351** (2013) 261–264.

 $^{^6}$ M. Mišur, D. Mitrović, On a generalization of compensated compactness in the ${\rm L}^p-{\rm L}^q$ setting, Journal of Functional Analysis **268** (2015) 1904–1927.

Existence of H-distributions

Theorem 3. If $u_n \longrightarrow 0$ in $L^p_{loc}(\mathbf{R}^d)$ and $v_n \stackrel{*}{\longrightarrow} v$ in $L^q_{loc}(\mathbf{R}^d)$ for some $p \in \langle 1, \infty \rangle$ and $q \geq p'$, then there exist subsequences $(u_{n'})$, $(v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times \mathbf{S}^{d-1})$, such that, for every $\varphi_1, \varphi_2 \in C^\infty_c(\mathbf{R}^d)$ and $\psi \in C^\kappa(\mathbf{S}^{d-1})$, for $\kappa = [d/2] + 1$, one has:

$$\begin{split} \lim_{n' \to \infty} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} &= \lim_{n' \to \infty} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} \\ &= \langle \mu, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \rangle, \end{split}$$

where $\mathcal{A}_{\psi}: L^p(\mathbf{R}^d) \longrightarrow L^p(\mathbf{R}^d)$ is the Fourier multiplier operator with symbol $\psi \in C^{\kappa}(S^{d-1})$.

ı

Distributions of anisotropic order

Let X and Y be open sets in \mathbf{R}^d and \mathbf{R}^r (or \mathbf{C}^∞ manifolds of dimenions d and r) and $\Omega\subseteq X\times Y$ an open set. By $\mathbf{C}^{l,m}(\Omega)$ we denote the space of functions f on Ω , such that for any $\boldsymbol{\alpha}\in\mathbf{N}_0^d$ and $\boldsymbol{\beta}\in\mathbf{N}_0^r$, if $|\boldsymbol{\alpha}|\leq l$ and $|\boldsymbol{\beta}|\leq m$, $\partial^{\boldsymbol{\alpha},\boldsymbol{\beta}}_{\mathbf{S}}f=\partial^{\boldsymbol{\alpha}}_{\mathbf{x}}\partial^{\boldsymbol{\beta}}_{\mathbf{y}}f\in\mathbf{C}(\Omega)$.

 $\mathrm{C}^{l,m}(\Omega)$ becomes a Fréchet space if we define a sequence of seminorms

$$p_{K_n}^{l,m}(f) := \max_{|\boldsymbol{\alpha}| \le l, |\boldsymbol{\beta}| \le m} \|\boldsymbol{\partial}^{\boldsymbol{\alpha},\boldsymbol{\beta}} f\|_{\mathrm{L}^{\infty}(K_n)} ,$$

where $K_n \subseteq \Omega$ are compacts, such that $\Omega = \bigcup_{n \in \mathbb{N}} K_n$ and $K_n \subseteq \operatorname{Int} K_{n+1}$, Consider the space

$$C_c^{l,m}(\Omega) := \bigcup_{n \in \mathbb{N}} C_{K_n}^{l,m}(\Omega) ,$$

and equip it by the topology of strict inductive limit.

Conjecture

Definition. A distribution of order l in $\mathbf x$ and order m in $\mathbf y$ is any linear functional on $\mathbf C^{l,m}_c(\Omega)$, continuous in the strict inductive limit topology. We denote the space of such functionals by $\mathcal D'_{l,m}(\Omega)$.

Conjecture. Let X,Y be $\operatorname{C^{\infty}}$ manifolds and let u be a linear functional on $\operatorname{C}^{l,m}_c(X\times Y)$. If $u\in \mathcal{D}'(X\times Y)$ and satisfies $(\forall K\in\mathcal{K}(X))(\forall L\in\mathcal{K}(Y)(\exists C>0)(\forall \varphi\in\operatorname{C}^{\infty}_K(X))(\forall \psi\in\operatorname{C}^{\infty}_L(Y))$

$$|\langle u, \varphi \boxtimes \psi \rangle| \le C p_K^l(\varphi) p_L^m(\psi),$$

then u can be uniquely extended to a continuous functional on $C_c^{l,m}(X \times Y)$ (i.e. it can be considered as an element of $\mathcal{D}'_{l,m}(X \times Y)$).

If the conjecture were true, then the H-distribution μ from the preceeding theorem belongs to the space $\mathcal{D}'_{0,\kappa}(\mathbf{R}^d\times\mathbf{S}^{d-1})$, i.e. it is a distribution of order 0 in \mathbf{x} and of order not more than κ in $\boldsymbol{\xi}$.

Indeed, from the proof of the existence theorem, we already have $\mu \in \mathcal{D}'(\mathbf{R}^d \times \mathbf{S}^{d-1})$ and the following bound with $\varphi := \varphi_1 \overline{\varphi_2}$:

$$|\langle \mu, \varphi \boxtimes \psi \rangle| \le C \|\psi\|_{\mathbf{C}^{\kappa}(\mathbf{S}^{d-1})} \|\varphi\|_{\mathbf{C}_{K_{I}}(\mathbf{R}^{d})},$$

 $||\psi||_{C^{K}(\mathbb{S}^{a-1})} ||\varphi||_{C^{K}(\mathbb{S}^{a-1})} ||\varphi||_{C_{K_{l}}(\mathbb{R}^{a})}$ where C does not depend on φ and ψ .

Schwartz kernel theorem⁷

Let X and Y be two C^{∞} manifolds. Then the following statements hold:

- a) Let $K \in \mathcal{D}'(X \times Y)$. Then for every $\varphi \in \mathcal{D}(X)$, the linear form K_{φ} defined as $\psi \mapsto \langle K, \varphi \boxtimes \psi \rangle$ is a distribution on Y. Furthermore, the mapping $\varphi \mapsto K_{\varphi}$, taking $\mathcal{D}(X)$ to $\mathcal{D}'(Y)$ is linear and continuous.
- b) Let $A:\mathcal{D}(X)\to\mathcal{D}'(Y)$ be a continous linear operator. Then there exists unique distribution $K\in\mathcal{D}'(X\times Y)$ such that for any $\varphi\in\mathcal{D}(X)$ and $\psi\in\mathcal{D}(Y)$

$$\langle K, \varphi \boxtimes \psi \rangle = \langle K_{\varphi}, \psi \rangle = \langle A\varphi, \psi \rangle.$$

⁷Theorem 23.9.2 of J. Dieudonné, *Éléments d'Analyse, Tome VII, Éditions Jacques Gabay,* 2007.

Schwartz kernel theorem for anisotropic distributions

Let X and Y be two C^{∞} manifolds of dimensions d and r, respectively. Then the following statements hold:

- a) Let $K \in \mathcal{D}'_{l,m}(X \times Y)$. Then for every $\varphi \in \mathrm{C}^l_c(X)$, the linear form K_φ defined as $\psi \mapsto \langle K, \varphi \boxtimes \psi \rangle$ is a distribution on Y. Furthermore, the mapping $\varphi \mapsto K_\varphi$, taking $\mathrm{C}^l_c(X)$ to $\mathcal{D}'_m(Y)$ is linear and continuous.
- b) Let $A: \mathrm{C}^l_c(X) \to \mathcal{D}'_m(Y)$ be a continous linear operator. Then there exists unique distribution $K \in \mathcal{D}'(X \times Y)$ such that for any $\varphi \in \mathcal{D}(X)$ and $\psi \in \mathcal{D}(Y)$

$$\langle K, \varphi \boxtimes \psi \rangle = \langle K_{\varphi}, \psi \rangle = \langle A\varphi, \psi \rangle.$$

Furthermore, $K \in \mathcal{D}'_{l,d(m+2)}(X \times Y)$.

How to prove it?

Attempts:

- regularisation? (Schwartz)
- o constructive proof? (Simanca, Gask, Ehrenpreis)
- nuclear spaces? (Treves)

o structure theorem of distributions (Dieudonne)

Two steps:

Step I: assume the range of A is $\mathrm{C}(Y)$

Step II: use structure theorem and go back to Step I

Consequence: H-distributions are of order 0 in ${\bf x}$ and of finite order not greater than $d(\kappa+2)$ with respect to ${\bf \xi}.$

Introduction

H-measures

First commutation lemma

H-distributions

Existence

Conjecture

Schwartz kernel theorem

Compensated compactness

Classical results

Result by Panov

Definition

Localisation principle

Application to the parabolic type equation

Motivation - Maxwell's equations

Let $\Omega\subseteq\mathbf{R}^3$. Denote by E and H the electric and magnetic field, and by D and B the electric and magnetic induction. Let ρ denote the charge, and j the current density. Maxwell's system of equations reads:

$$\begin{split} \partial_t \mathsf{B} + \mathsf{rot}\,\mathsf{E} &= \mathsf{G},\\ \mathsf{div}\,\mathsf{B} &= 0,\\ \partial_t \mathsf{D} + \mathsf{j} - \mathsf{rot}\,\mathsf{H} &= \mathsf{F},\\ \mathsf{div}\,\mathsf{D} &= \rho. \end{split}$$

Assume that properties of the material can be expressed by following linear constitutive equations:

$$D = \epsilon E$$
, $B = \mu H$.

The energy of electromagnetic field at time t is given by:

$$T(t) = \frac{1}{2} \int_{\Omega} (\mathsf{D} \cdot \mathsf{E} + \mathsf{B} \cdot \mathsf{H}) d\mathbf{x}.$$

It's natural to consider

$$\begin{split} \mathsf{D},\mathsf{B} \in \mathrm{L}^{\infty}([0,T];\mathrm{L}^2_{\mathsf{div}}(\Omega;\mathbf{R}^3)), \\ \mathsf{E},\mathsf{H} \in \mathrm{L}^{\infty}([0,T];\mathrm{L}^2_{\mathsf{rot}}(\Omega;\mathbf{R}^3)), \\ \mathsf{J} \in \mathrm{L}^{\infty}([0,T];\mathrm{L}^2(\Omega;\mathbf{R}^3)), \quad \mathsf{F},\mathsf{G} \in \mathrm{L}^2([0,T];\mathrm{L}^2(\Omega;\mathbf{R}^3)). \end{split}$$

Let us consider a family of problems:

with constitution equations:

$$\partial_t \mathsf{B}^n + \mathsf{rot}\, \mathsf{E}^n = \mathsf{G}^n,$$

 $\partial_t \mathsf{D}^n + \mathsf{J}^n - \mathsf{rot}\,\mathsf{H}^n = \mathsf{F}^n$,

$$\mathsf{D}^n = oldsymbol{\epsilon}^n \mathsf{E}^n, \quad \mathsf{B}^n = oldsymbol{\mu}^n \mathsf{H}^n, \quad \mathsf{J}^n = oldsymbol{\sigma}^n \mathsf{E}^n.$$

What can we say about energy
$$T(t)$$
 if we know

$$T^n(t) = \frac{1}{2} \int_{\Omega} (\mathsf{D}^n \cdot \mathsf{E}^n + \mathsf{B}^n \cdot \mathsf{H}^n) d\mathbf{x}.$$

Div-rot lemma in L^2

Theorem 4. Assume that Ω is open and bounded subset of ${\bf R}^3$, and that it holds:

$$\mathbf{u}_n \rightharpoonup \mathbf{u} \text{ in } \mathbf{L}^2(\Omega; \mathbf{R}^3),$$

 $\mathbf{v}_n \rightharpoonup \mathbf{v} \text{ in } \mathbf{L}^2(\Omega; \mathbf{R}^3),$

rot \mathbf{u}_n bounded in $L^2(\Omega; \mathbf{R}^3)$, div \mathbf{v}_n bounded in $L^2(\Omega)$.

Then

$$\mathbf{u}_n \cdot \mathbf{v}_n \rightharpoonup \mathbf{u} \cdot \mathbf{v}$$

in the sense of distributions.

Quadratic theorem

Theorem 5. (Quadratic theorem) Assume that $\Omega \subseteq \mathbf{R}^d$ is open and that $\Lambda \subseteq \mathbf{R}^r$ is defined by

$$\Lambda := \left\{ oldsymbol{\lambda} \in \mathbf{R}^r \, : \, (\exists \, oldsymbol{\xi} \in \mathbf{R}^d \setminus \{0\}) \quad \sum_{k=1}^d \xi_k \mathbf{A}^k oldsymbol{\lambda} = \mathbf{0} \,
ight\},$$

where Q is a real quadratic form on \mathbf{R}^r , which is nonnegative on Λ , i.e.

$$(\forall \lambda \in \Lambda) \quad Q(\lambda) \geqslant 0.$$

Furthermore, assume that the sequence of functions (\mathbf{u}_n) satisfies

$$\mathbf{u}_n \longrightarrow \mathbf{u}$$
 weakly in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{R}^r)$,

$$\left(\sum_k \mathbf{A}^k \partial_k \mathbf{u}_n \right)$$
 relatively compact in $H^{-1}_{\mathrm{loc}}(\Omega; \mathbf{R}^q)$.

Then every subsequence of $(Q \circ \mathbf{u}_n)$ which converges in distributions to it's limit L, satisfies

$$L \geqslant Q \circ \mathbf{u}$$

in the sense of distributions.

The most general version of the classical L^2 results has recently been proved by $E_1 = \frac{1}{2} L^2$

Assume that the sequence (\mathbf{u}_n) is bounded in $L^p(\mathbf{R}^d; \mathbf{R}^r)$, $2 \le p < \infty$, and converges weakly in $\mathcal{D}'(\mathbf{R}^d)$ to a vector function \mathbf{u} .

Let q=p' if $p<\infty$, and q>1 if $p=\infty$. Assume that the sequence

$$\sum_{k=1}^{
u}\partial_k(\mathbf{A}^k\mathbf{u}_n) + \sum_{k,l=
u+1}^{d}\partial_{kl}(\mathbf{B}^{kl}\mathbf{u}_n)$$

is precompact in the anisotropic Sobolev space $W^{-1,-2;q}_{loc}(\mathbf{R}^d;\mathbf{R}^m)$, where $m \times r$ matrices \mathbf{A}^k and \mathbf{B}^{kl} have variable coefficients belonging to $\mathrm{L}^{2\bar{q}}(\mathbf{R}^d)$, $\bar{q} = \frac{p}{p-2}$ if p>2, and to the space $\mathrm{C}(\mathbf{R}^d)$ if p=2.

 $^{^8}$ E. Yu. Panov, *Ultraparabolic H-measures and compensated compactness*, Annales Inst. H.Poincaré **28** (2011) 47–62.

We introduce the set $\Lambda(\mathbf{x})$

$$\Lambda(\mathbf{x}) = \left\{ \boldsymbol{\lambda} \in \mathbf{C}^r \, \middle| \, (\exists \boldsymbol{\xi} \in \mathbf{R}^d \setminus \{0\}) : \right.$$
 (2)

$$\left(i\sum_{k=1}^{\nu}\xi_{k}\mathbf{A}^{k}(\mathbf{x})-2\pi\sum_{k,l=\nu+1}^{d}\xi_{k}\xi_{l}\mathbf{B}^{kl}(\mathbf{x})\right)\boldsymbol{\lambda}=\mathbf{0}_{m} \ \, \bigg\},$$

and consider the bilinear form on \mathbf{C}^r

$$q(\mathbf{x}, \lambda, \eta) = \mathbf{Q}(\mathbf{x})\lambda \cdot \eta, \tag{3}$$

where $\mathbf{Q} \in \mathrm{L}^{\bar{q}}_{loc}(\mathbf{R}^d; \mathrm{Sym}_r)$ if p > 2 and $\mathbf{Q} \in \mathrm{C}(\mathbf{R}^d; \mathrm{Sym}_r)$ if p = 2. Finally, let $q(\mathbf{x}, \mathbf{u}_n, \mathbf{u}_n) \rightharpoonup \omega$ weakly in the space of distributions.

Result by Panov

The following theorem holds

Theorem 6. Assume that
$$(\forall \lambda \in \Lambda(\mathbf{x}))$$
 $q(\mathbf{x}, \lambda, \lambda) \geq 0$ (a.e. $\mathbf{x} \in \mathbf{R}^d$) and $\mathbf{u}_n \rightharpoonup \mathbf{u}$, then $q(\mathbf{x}, \mathbf{u}(\mathbf{x}), \mathbf{u}(\mathbf{x})) \leq \omega$.

The connection between q and Λ given in the previous theorem, we shall call the consistency condition.

Appropriate symbols

We need Fourier multiplier operators with symbols defined on a manifold P determined by d-tuple $\alpha \in (\mathbf{R}^+)^d$:

$$P = \left\{ \boldsymbol{\xi} \in \mathbf{R}^d : \sum_{k=1}^d |\xi_k|^{2\alpha_k} = 1 \right\},$$

where $\alpha_k \in \mathbf{N}$ or $\alpha_k \geq d$. In order to associate an L^p Fourier multiplier to a function defined on P, we extend it to $\mathbf{R}^d \setminus \{0\}$ by means of the projection

$$(\pi_{P}(\boldsymbol{\xi}))_{j} = \xi_{j} \left(|\xi_{1}|^{2\alpha_{1}} + \dots + |\xi_{d}|^{2\alpha_{d}} \right)^{-1/2\alpha_{j}}, \quad j = 1, \dots, d.$$

We need the following extension of the results given above.

Theorem 7. Let (u_n) be a bounded sequence in $L^p(\mathbf{R}^d)$, p>1, and let (v_n) be a bounded sequence of uniformly compactly supported functions in $L^q(\mathbf{R}^d)$, 1/q+1/p<1. Then, after passing to a subsequence (not relabelled), for any $\bar{s}\in(1,\frac{pq}{p+q})$ there exists a continuous bilinear functional B on $L^{\bar{s}'}(\mathbf{R}^d)\otimes C^d(P)$ such that for every $\varphi\in L^{\bar{s}'}(\mathbf{R}^d)$ and $\psi\in C^d(P)$, it holds

$$B(\varphi, \psi) = \lim_{n \to \infty} \int_{\mathbf{R}^d} \varphi(\mathbf{x}) u_n(\mathbf{x}) (\mathcal{A}_{\psi_{\mathbf{P}}} v_n)(\mathbf{x}) d\mathbf{x},$$

where $\mathcal{A}_{\psi_{\mathrm{P}}}$ is the Fourier multiplier operator on \mathbf{R}^d associated to $\psi \circ \pi_{\mathrm{P}}$. The bilinear functional B can be continuously extended as a linear functional on $L^{\sharp'}(\mathbf{R}^d; \mathbf{C}^d(\mathrm{P}))$.

 $^{^9}$ M. Lazar, D. Mitrović, On an extension of a bilinear functional on $L^p(\mathbf{R}^d) \times E$ to Bochner spaces with an application to velocity averaging, C. R. Math. Acad. Sci. paris **351** (2013) 261–264.

For separable Banach space E, the dual of $\mathrm{L}^p(\mathbf{R}^d;E)$ consists of all weakly-* measurable functions $B:\mathbf{R}^d\to E'$ such that

$$\int_{\mathbf{R}^d} \|B(\mathbf{x})\|_{E'}^{p'} d\mathbf{x}$$

is finite¹⁰.

Sometimes the dual is denoted by $L_{w*}^{p'}(\mathbf{R}^d; E')$.

¹⁰p. 606 of R.E. Edwards, Functional Analysis, Holt, Rinehart and Winston, 1965.

Localisation principle

Lemma

Assume that sequences (\mathbf{u}_n) and (\mathbf{v}_n) are bounded in $\mathrm{L}^p(\mathbf{R}^d;\mathbf{R}^r)$ and $\mathrm{L}^q(\mathbf{R}^d;\mathbf{R}^r)$, respectively, and converge toward $\mathbf{0}$ and \mathbf{v} in the sense of distributions.

Furthermore, assume that sequence (\mathbf{u}_n) satisfies:

$$\mathbf{G}_n := \sum_{k=1}^d \partial_k^{\alpha_k} (\mathbf{A}^k \mathbf{u}_n) \to \mathbf{0} \text{ in } \mathbf{W}^{-\alpha_1, \dots, -\alpha_d; p}(\Omega; \mathbf{R}^m), \tag{4}$$

where either $\alpha_k \in \mathbf{N}$, $k=1,\ldots,d$ or $\alpha_k > d$, $k=1,\ldots,d$, and elements of matrices \mathbf{A}^k belong to $\mathbf{L}^{\bar{s}'}(\mathbf{R}^d)$, $\bar{s} \in (1,\frac{pq}{p+q})$.

Finally, by μ denote a matrix H-distribution corresponding to subsequences of (\mathbf{u}_n) and $(\mathbf{v}_n - \mathbf{v})$. Then the following relation holds

$$\left(\sum_{k=1}^{d} (2\pi i \xi_k)^{\alpha_k} \mathbf{A}^k\right) \boldsymbol{\mu} = \mathbf{0}.$$

Strong consistency condition

Introduce the set

$$\Lambda_{\mathcal{D}} = \Big\{ \boldsymbol{\mu} \in L^{\bar{s}}(\mathbf{R}^d; (\mathbf{C}^d(\mathbf{P}))')^r : \Big(\sum_{k=1}^n (2\pi i \xi_k)^{\alpha_k} \mathbf{A}^k \Big) \boldsymbol{\mu} = \mathbf{0}_m \Big\},\,$$

where the given equality is understood in the sense of $L^{\bar{s}}(\mathbf{R}^d;(\mathbf{C}^d(\mathbf{P}))')^m$.

Let us assume that coefficients of the bilinear form q from (3) belong to space $\mathbf{L}_{loc}^t(\mathbf{R}^d)$, where 1/t+1/p+1/q<1.

Definition

We say that set $\Lambda_{\mathcal{D}}$, bilinear form q from (3) and matrix $\boldsymbol{\mu} = [\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_r], \boldsymbol{\mu}_j \in \mathrm{L}^{\bar{s}}(\mathbf{R}^d; (\mathrm{C}^d(\mathrm{P}))')^r$ satisfy the strong consistency condition if $(\forall j \in \{1, \dots, r\})$ $\boldsymbol{\mu}_j \in \Lambda_{\mathcal{D}}$, and it holds

$$\langle \phi \mathbf{Q} \otimes 1, \boldsymbol{\mu} \rangle \geq \mathbf{0}, \quad \phi \in L^{\bar{s}}(\mathbf{R}^d; \mathbf{R}_0^+).$$

Compactness by compensation

Theorem 8. Assume that sequences (\mathbf{u}_n) and (\mathbf{v}_n) are bounded in $L^p(\mathbf{R}^d;\mathbf{R}^r)$ and $L^q(\mathbf{R}^d;\mathbf{R}^r)$, respectively, and converge toward \mathbf{u} and \mathbf{v} in the sense of distributions.

Assume that (4) holds and that

$$q(\mathbf{x}; \mathbf{u}_n, \mathbf{v}_n) \rightharpoonup \omega \text{ in } \mathcal{D}'(\mathbf{R}^d).$$

If the set $\Lambda_{\mathcal{D}}$, the bilinear form (3), and matrix H-distribution μ , corresponding to subsequences of $(\mathbf{u}_n - \mathbf{u})$ and $(\mathbf{v}_n - \mathbf{v})$, satisfy the strong consistency condition, then

$$q(\mathbf{x}; \mathbf{u}, \mathbf{v}) \le \omega \text{ in } \mathcal{D}'(\mathbf{R}^d).$$

Application to the parabolic type equation

Now, let us consider the non-linear parabolic type equation

$$L(u) = \partial_t u - \operatorname{div} \operatorname{div} (g(t, \mathbf{x}, u) \mathbf{A}(t, \mathbf{x})),$$

on $(0,\infty)\times\Omega$, where Ω is an open subset of \mathbf{R}^d . We assume that

$$u \in L^p((0,\infty) \times \Omega), \quad g(t,\mathbf{x},u(t,\mathbf{x})) \in L^q((0,\infty) \times \Omega), \quad 1 < p,q,$$

$$\mathbf{A} \in L^s_{loc}((0,\infty) \times \Omega)^{d \times d}, \quad \text{where} \quad 1/p + 1/q + 1/s < 1,$$

$$\mathbf{A} \in \mathcal{L}^{\circ}_{loc}((0,\infty) \times \Omega)^{m \wedge n}$$
, where $1/p + 1/q + 1/s < 1$

and that the matrix ${\bf A}$ is strictly positive definite, i.e.

$$\mathbf{A}\boldsymbol{\xi} \cdot \boldsymbol{\xi} > 0, \quad \boldsymbol{\xi} \in \mathbf{R}^d \setminus \{\mathbf{0}\}, \quad (a.e.(t, \mathbf{x}) \in (0, \infty) \times \Omega).$$

Furthermore, assume that g is a Carathèodory function and non-decreasing with respect to the third variable.

Then we have the following theorem.

Theorem 9. Assume that sequences (u_r) and $g(\cdot, u_r)$ are such that $u_r, g(u_r) \in L^2(\mathbf{R}^+ \times \mathbf{R}^d)$ for every $r \in \mathbf{N}$; assume that they are bounded in $L^p(\mathbf{R}^+ \times \mathbf{R}^d)$, $p \in (1,2]$, and $L^q(\mathbf{R}^+ \times \mathbf{R}^d)$, q > 2, respectively, where 1/p + 1/q < 1; furthermore, assume $u_r \rightharpoonup u$ and, for some, $f \in W^{-1,-2;p}(\mathbf{R}^+ \times \mathbf{R}^d)$, the sequence

$$L(u_r) = f_r \to f$$
 strongly in $W^{-1,-2;p}(\mathbf{R}^+ \times \mathbf{R}^d)$.

Under the assumptions given above, it holds

$$L(u) = f$$
 in $\mathcal{D}'(\mathbf{R}^+ \times \mathbf{R}^d)$.

References

- N. Antonić, M. Mišur, D. Mitrović, On the First commutation lemma, submitted, 18 pages
- N. Antonić, M. Erceg, M. Mišur, Distributions of anisotropic order and applications, in preparation, 24 pages
- M. Mišur, D. Mitrović, On a generalization of compensated compactness in the ${\rm L}^p-{\rm L}^q$ setting, Journal of Functional Analysis **268** (2015) 1904–1927.

The Second commutation lemma

Theorem 10. Let $\psi \in C^1(S^{d-1})$, and $b \in \mathcal{F}L^1(\mathbf{R}^d)$ such that $\partial_i b \in \mathcal{F}L^1(\mathbf{R}^d)$ for $i=1,\cdots,d$. Then the commutator $C=[\mathcal{A}_\psi,M_b]$ is continuous from $L^2(\mathbf{R}^d)$ to $H^1(\mathbf{R}^d)$ and $\partial_{x_j}C$ has the symbol

$$\frac{\xi_j}{|\boldsymbol{\xi}|} \sum_{k=1}^d \partial_{\xi_k} a\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \partial_{x_k} b, \quad j = 1, \cdots, d.$$