Spaces of distributions of non-integer order and applications

Marin Mišur

email: mmisur@math.hr University of Zagreb

joint work with Ljudevit Pallé (Christian-Albrechts-Universität zu Kiel)

December 10, 2017

Motivation

◦ $T \in \mathcal{D}'(X)$ is of order smaller or equal to $r \in \mathbb{N}$ if the restriction of T to $C_c^{\infty}(X;K)$ is continuous with respect to the topology induced by that of $C_c^r(X;K)$, for every compact $K \subset X$.

 $\triangleright \mathcal{D}'_r(X) = (\mathcal{C}^r_c(X))'$

 \circ possibility of extending the order to positive real numbers was already mentioned in a book by L. Tartar: An Introduction to Sobolev spaces and Interpolation Spaces^1

¹Footnote 1 on p.18

Preliminaries

 $\Omega \subseteq \mathbf{R}^d$ an open set; (K_n) a sequence of compact subsets of Ω such that

$$\Omega = \bigcup_{n \in \mathbf{N}} K_n$$
 and $K_n \subset \operatorname{Int} K_{n+1}$.

For $\alpha \in \langle 0, 1]$, and a compact set $K \subset \Omega$ denote by $C_K^{0,\alpha}(\Omega)$ the set of all α -Hölder continuous functions on Ω , whose support is contained in K. Since K is compact, $C_K^{0,\alpha}(\Omega)$ is a Banach space with norm given by

$$\|f\|_{\mathcal{C}^{0,\alpha}_{K}(\Omega)} = \|f\|_{\mathcal{L}^{\infty}(\Omega)} + \sup_{\mathbf{x},\mathbf{y}\in\Omega,\,\mathbf{x}\neq\mathbf{y}} \frac{|f(\mathbf{x}) - f(\mathbf{y})|}{|\mathbf{x} - \mathbf{y}|^{\alpha}}$$
$$= \|f\|_{\mathcal{L}^{\infty}(\Omega)} + [f]_{\mathcal{C}^{0,\alpha}_{K}(\Omega)}$$

and thus it is a locally convex space.

Preliminaries II

 \circ given two compact sets K and L such that Int $K \subset L$, it holds

$$\mathcal{C}^{0,\alpha+\varepsilon}_{K}(\Omega) \subset \mathcal{C}^{0,\alpha}_{L}(\Omega)$$

for $0 < \varepsilon < 1 - \alpha$, the embedding being continuous and compact.

 $\circ \ f \in \mathcal{C}^{0,\alpha+\varepsilon}_K \text{ can be approximated by } \mathcal{C}^\infty_L \text{ functions in the norm of } \mathcal{C}^{0,\alpha}_K.$

 \circ the obstruction: for $g\in \mathrm{C}^{0,\alpha+\varepsilon}_{K}(\Omega)$

$$\lim_{|\mathbf{x}-\mathbf{y}|\to 0, \ \mathbf{x}\neq\mathbf{y}} \frac{|g(\mathbf{x}) - g(\mathbf{y})|}{|\mathbf{x}-\mathbf{y}|^{\alpha}} = 0,$$

and hence any limit of smooth functions in the norm of $\mathrm{C}^{0,\alpha}_K(\Omega)$ also has this property.

Spaces of Hölder test functions – $C_c^{0,\alpha}$

•
$$C_c^{0,\alpha} - C^{0,\alpha}$$
 functions with compact support

o equipped with strict inductive limit topology generated by inclusions

$$\iota_n : \mathcal{C}^{0,\alpha}_{K_n} \to \mathcal{C}^{0,\alpha}_c$$

• sequence of seminorms:

$$p_{K_n}^{0,\alpha}(f) = \|f\|_{\mathcal{C}^{0,\alpha}_{K_n}}$$

 $\circ~{\rm C}^\infty_c$ embeds continuously, but not densly into ${\rm C}^{0,\alpha}_c$

▷ problem: its dual are not distributions!

Spaces of Hölder test functions – $\mathbf{c}_c^{0,\alpha}$

$$\circ c_c^{0,\alpha} - \text{closure of } \mathbf{C}_c^{\infty} \text{ in } \mathbf{C}^{0,\alpha}$$

$$\circ f \in \mathbf{c}_c^{0,\alpha} \qquad \Longleftrightarrow \qquad \lim_{|\mathbf{x}-\mathbf{y}| \to 0, \, \mathbf{x} \neq \mathbf{y}} \frac{|f(\mathbf{x}) - f(\mathbf{y})|}{|\mathbf{x}-\mathbf{y}|^{\alpha}} = 0$$

 \circ strict inductive limit of Banach spaces $c_{K_n}^{0, \alpha}$

Properties of $\mathbf{C}^{0, \alpha}_{c}$ and $\mathbf{c}^{0, \alpha}_{c}$

- \circ Hausdorff, complete
- \circ barrelled² Banach-Steinhaus holds
- \circ bornological for linear operators: continuity = boundedness
- \circ webbed open mapping and closed graph theorems holds
- Dieudonné-Schwartz theorem holds:

 $B \subset \mathcal{C}^{0,\alpha}_c$ bounded $\iff (\exists n \in \mathbf{N}) B \subset \mathcal{C}^{0,\alpha}_{K_n}$ and bounded there

- \circ NOT Montel closed and bounded sets are not compact
- NOT semi-reflexive

 $\label{eq:cc} \begin{array}{l} \circ \ c_c^{0,\alpha} \ \text{is separable} \\ \circ \ C_{K_n}^{0,\alpha} \ \text{is not separable}; \\ & \triangleright \ \text{Is } \ C_c^{0,\alpha} \ \text{separable}? \ \text{NO}! \end{array}$

²fr. espace tonnelé

Spaces of Hölder test functions – $C_c^{0,\alpha+}$

$$\circ~\mathrm{C}^{0,lpha+}_c$$
 – inductive limit (NOT strict) of $\mathrm{C}^{0,lpha+1/n}_{K_n}$

 \circ all ${\rm C}^{0,\alpha+\varepsilon}_c$ functions with the finest locally convex topology such the following natural inclusions are continuous:

$$\iota_n : \mathcal{C}^{0,\alpha+1/n}_{K_n} \to \mathcal{C}^{0,\alpha+1/n}_c$$

 $\circ \, \operatorname{ind} \lim \mathbf{c}_{K_n}^{0,\alpha+1/n} \equiv \operatorname{ind} \lim \mathbf{C}_{K_n}^{0,\alpha+1/n}$

 $\circ~\mathbf{C}^\infty_c$ embeds continuously and densly into $\mathbf{C}^{0,\alpha+}_c$

Properties of $C_c^{0,\alpha+}$

Embeddings:

$$i_{n,n+1} : \mathcal{C}_{K_n}^{0,\alpha+1/n} \to \mathcal{C}_{K_{n+1}}^{0,\alpha+1/(n+1)}$$

are compact! (Arzelà-Ascoli)

It follows:³

 \circ separable Hausdorff complete bornological (DF) Montel space. In particular: reflexive, barrelled, webbed.

• Dieudonné-Schwartz theorem holds

• (f_n) converges in $C_c^{0,\alpha+}$ if and only if it is contained in $C_{K_n}^{0,\alpha+1/n}$ for some $n \in \mathbf{N}$, and converges in its Banach space topology

³Theores 6'& 7' of H. Komatsu: Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan **19** (1967)

Hölder distributions

Definition

A distribution of order smaller or equal to α , $0 < \alpha < 1$, is any continuous linear functional T on $C_c^{\infty}(\Omega)$ satisfying the estimates of the form

$$|\langle T, \varphi \rangle| \le C_K \|\varphi\|_{\mathcal{C}^{0,\alpha}_K(\Omega)},$$

for all $K \subseteq \Omega$ compact and $\varphi \in C_K^{\infty}(\Omega)$. We denote the linear space of all such functionals by $\mathcal{D}'_{\alpha}(\Omega)$.

 $\circ \mathcal{D}'_{\alpha}(\Omega) = \left(\mathbf{c}^{0,\alpha}_c(\Omega) \right)' \text{ is a Fréchet space}.$

Definition

A distribution of order smaller or equal to $\alpha+$, $0 \leq \alpha < 1$, is any continuous linear functional on $C_c^{0,\alpha+}(\Omega)$.

We denote the space of all such functionals by $\mathcal{D}'_{\alpha+}(\Omega)$.

Theorem

The space $\mathcal{D}'_{\alpha+}(\Omega)$ with the strong topology is a Fréchet-Schwartz space, it is the projective limit of spaces $\left(C^{0,\alpha+1/n}_{K_n}(\Omega)\right)'$, and its topology is generated by the increasing sequence of seminorms

$$p_n(T) = \sup_{\substack{\varphi \in \mathcal{C}_{K_n}^{0,\alpha+1/n}(\Omega) \\ \|\varphi\|_{\mathcal{C}_{K_n}^{0,\alpha+1/n}(\Omega)} \le 1}} |T(\varphi)| = \|T\|_{\left(\mathcal{C}_{K_n}^{0,\alpha+1/n}(\Omega)\right)'}.$$

Francis Bonahon's work⁴

- Hölder distributions on metric spaces
 - \triangleright corresponds to our space \mathcal{D}'_{0+}
 - Investigation of geodesic laminations
 - \triangleright did not consider order nor properties of the space of such distributions
- o nice support property of Hölder distributions (similar to Radon measures)

⁴F. Bonahon: *Transverse Hölder distributions for geodesic laminations*, Topology **36** (1997) 103–122.

Examples

 $\circ^{5} \operatorname{vp.}\left(\frac{1}{x}\right) \text{ on } \mathbf{R} \text{ whose action on } \varphi \in C_{c}^{\infty}(\mathbf{R}) \text{ can be defined equivalently by} \\ \left\langle \operatorname{vp.}\left(\frac{1}{x}\right), \varphi \right\rangle = \lim_{\varepsilon \to 0+} \int_{\mathbf{R} \setminus [-\varepsilon,\varepsilon]} \frac{\varphi(x)}{x} \, dx = \int_{0}^{+\infty} \frac{\varphi(x) - \varphi(-x)}{x} \, dx \, .$

▷ classical order: 1
 ▷ non-integer order 0+

 \circ Partie finie of $\frac{1}{x^2},$ defined for $\varphi \in \mathrm{C}^\infty_c(\Omega)$ by

$$\left\langle \mathrm{Pf.}\frac{1}{x^2},\varphi\right\rangle = \lim_{\varepsilon \to 0+} \left(\int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x^2} dx + \int_{\varepsilon}^{+\infty} \frac{\varphi(x)}{x^2} dx - \frac{2\varphi(0)}{\varepsilon}\right)$$

 \triangleright classical order: 2 \triangleright non-integer order 1+

⁵Footnote 1 on p.18 of L. Tartar: An Introduction to Sobolev spaces and Interpolation Spaces, Springer, 2007.

Non-nuclearity

- o counterexample?
- metric entropy of Kolmogorov⁶⁷?
- Köthe spaces (Grothendieck-Pietsch theorem)

X Fréchet space with basis (e_n) , and $\|.\|_k$ increasing sequence of seminorms

Define $a_n^k = ||e_n||_k$, and $K(a) = \{ \boldsymbol{\xi} = (\xi_n)_{n \in \mathbf{Z}} : |\boldsymbol{\xi}|_k = \sum_{n \in \mathbf{Z}} |\xi_n| a_n^k < \infty \}$ \triangleright Fréchet space with seminorms $|.|_k$

If X is nuclear, then K(a) is nuclear, and

$$(\forall k \in \mathbf{N})(\exists j \in \mathbf{N}) \qquad \sum_{n \in \mathbf{Z}} \frac{a_n^k}{a_n^j} < \infty.$$

⁶A.N. Kolmogorov: *New Metric Invariant of Transitive Dynamical Systems and Endomorphisms of Lebesgue Spaces*, Doklady of Russian Academy of Sciences **119**(1958) 861–864.

⁷B.S. Mitiagin: *Approximate dimension and bases in nuclear spaces*, Uspekhi Mat. Nauk. **16** (1961) 63–132.

Non-nuclearity - continued

Lemma

The sequence $(x \mapsto e^{2\pi i nx})_{n \in \mathbb{Z}}$ is a Schauder basis for $C^{0,\alpha+}(\mathbb{T})$.

Calculate:

$$a_n^k = \|e_n\|_k = \sup_{\substack{\varphi \in \mathcal{C}^{0,\alpha+1/k}(\Omega) \\ \|\varphi\|_{\mathcal{C}^{0,\alpha+1/k}(\Omega)} \le 1}} |e_n(\varphi)| = \sup_{\substack{\varphi \in \mathcal{C}^{0,\alpha+1/k}(\Omega) \\ \|\varphi\|_{\mathcal{C}^{0,\alpha+1/k}(\Omega)} \le 1}} |\hat{\varphi}(n)| \,.$$

This implies:

$$\frac{c}{|n|^{\alpha+1/k}} \le a_n^k \le \frac{C}{|n|} \,.$$

It follows:

$$(\forall k, j \in \mathbf{N}) \qquad \sum_{n \in \mathbf{Z}} \frac{a_n^k}{a_n^j} = \infty$$

Fourier transform of L^p -functions, p > 2

• Chapter 7 of Hörmander's book⁸:

$$f \in L^p(\mathbf{R}^d), p > 2$$
, then $\mathcal{F}f \in \mathcal{D}'$ is of order $\left\lceil d\left(\frac{1}{2} - \frac{1}{p}\right) \right\rceil$
 \circ it is of order $d\left(\frac{1}{2} - \frac{1}{p}\right) +$

Theorem $C_c^{\left[\frac{d}{2}\right],\left(\frac{d}{2}-\left[\frac{d}{2}\right]\right)+}(\mathbf{R}^d)$ is continuously embedded into the Wiener algebra and each distribution having Fourier transform in $L^{\infty}(\mathbf{R}^d)$ is of order at most $\frac{d}{2}+$.

⁸L. Hörmander: The Analysis of Linear Partial Differential Operators I, Springer, 1983.

$d=1 \, \operatorname{case}$

Theorem

There exists a $C_c^{0,\frac{1}{2}}(\mathbf{R})$ function which is not in the Wiener algebra, i.e. it doesn't have an absolutely integrable Fourier transform.

Theorem

The dual of the Wiener algebra does not embed into $\mathcal{D}'_{1/2-\varepsilon}(\mathbf{R})$ for any ε , where both spaces are considered as subsets of the space of distributions.

 \triangleright There exist a distribution T satisfying

 $|\langle T, \varphi \rangle| \le C \|\mathcal{F}\varphi\|_{\mathrm{L}^{1}(\mathbf{R})}$

which is not of order at most $1/2 - \varepsilon$.

 \triangleright Its order is strictly larger than $1/2 - \varepsilon$.

Further work

- Paley-Wiener-Schwartz theorem
- \circ fractional derivatives of Radon measures
- \circ Ornstein's result⁹
- \circ kernel theorem

 $^{^9 \}rm D.$ Ornstein: A Non-Inequality for Differential Operators in the $\rm L^1$ -Norm, Arch. Rational Mech. Anal. 11 (1962) 40–49.

Reference

• M. Mišur, Lj. Pallé: A note on the order of distributions, in preparation, 24pp.