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Problem statement

◦ Ω ⊆ [0,∞〉 ×R open bounded domain
◦ boundary ∂Ω = ΓN ∪̇ΓD of class C0,1, where ΓD ⊂ {t = 0}
◦ consider the following mixed boundary problem:

∂tu+ ∂x(f(t, x, u)) = 0 in Ω (1)

∇(t,x)u · ν = 0 on ΓN (2)

u(0, .) = u0(.) ∈ L∞(R) on ΓD, (3)

◦ f(t, x, λ) is a function of bounded variation with respect to the variables (t, x)
and differentiable with respect to the third variable λ.



An example of domain Ω ⊆ [0,∞〉 ×R



Additional assumptions on f

Take p ∈ 〈2,∞〉 fixed. Assume that for all compact sets Λ ⊂ R and K ⊂ Ω,
the following holds:

A1: (∃C1 = C1(K,Λ) > 0)(∀ξ ∈ Λ)∥∥∥χK ∫ ξ

0

f(t, x, λ)dλ
∥∥∥

Lp(Ω)
< C1,

A2: (∃C2 = C2(K,Λ) > 0)(∀ξ ∈ Λ)∥∥∥∥∥χK
∫ ξ

0

f ′x(t, x, λ)dλ

∥∥∥∥∥
L1(Ω)

< C2,

A3: (∃C3 = C3(K,Λ) > 0)(∀λ ∈ Λ)∥∥∥χKf(t, x, λ)
∥∥∥

Lp(Ω)
< C3.



Assumptions A1 and A3, due to the boundedness of Ω, imply that for every
Λ ⊂ R compact and every ϕ ∈ Cc(Ω), the following holds for positive
constants C1,p,K,Λ and C3,p,K,Λ with K = suppϕ:

C1: (∀ξ ∈ Λ)
∥∥∥ϕ(t, x)

∫ ξ
0
f(t, x, λ)dλ

∥∥∥
L1(Ω)

< C1,p,K,Λ‖ϕ‖L∞(Ω),

C3: (∀λ ∈ Λ)
∥∥∥ϕ(t, x)f(t, x, λ)

∥∥∥
L1(Ω)

< C3,p,K,Λ‖ϕ‖L∞(Ω).



Approximation1 of the problem

∂tun + ∂x(fn(t, x, un)) =
1

n
4(t,x)un in Ω

∇(t,x)un · ν = 0 on ΓN (4)

un(0, .) = u0
n(.) on ΓD,

◦ fn(t, x, λ) = f(·, ·, λ) ? n2ω(nt, nx) is a regularization of the flux f via the
standard non-negative mollifier ω ∈ C∞c ((−1, 1)2),
◦ (u0

n) is a bounded sequence of functions converging strongly in L1
loc(R) toward

u0.

Problem: what is the appropriate solution concept?

1Chapter 3 of J. L. Lions, E. Magenes: Non-homogeneous Boundary value Problems and
Applications I, Springer–Verlag, 1972.



Concept of solution

Multiplying equation

∂tun + ∂x(fn(t, x, un)) = (1/n)4(t,x)un

by sgn(un(t, x)− λ), we get:

∂t|un − λ|+ ∂x (sgn(un − λ)(fn(un)− fn(λ)) ≤

≤ 1

n
∆(t,x)|un − λ| − sgn(un − λ)f ′n,x(t, x, λ) in Ω.

Multiply by ϕ ∈ C2(Ω) supported away from {t = 0} and integrate over Ω.
After taking into account (2), we get:

−
∫

Ω

(|un − λ|∂tϕ+ sgn(un − λ)(fn(un)− fn(λ))∂xϕ) dxdt + (5)

+

∫
∂Ω

(
|un − λ|, sgn(un − λ)(fn(un)− fn(λ))

)
· ν ϕ ds ≤

≤ 1

n

∫
Ω

∇(t,x)|un − λ| · ∇(t,x)ϕ dxdt−
∫

Ω

ϕ sgn(un − λ)f ′n,x(t, x, λ)dλ dxdt.



Concept of solution - continued

Using the main idea of the recent article by Andreianov & Mitrović2, we
introduce the following definition:

Definition
Function u ∈ L2(Ω) is called the solution to (1), (2), (3) if there exists a
function p ∈ L1(ΓN ) such that for every ϕ ∈ Cc(Ω\ΓD) the following holds:
◦ ∫

Ω

(|u− λ|∂tϕ+ sgn(u− λ)(f(t, x, u)− f(t, x, λ))∂xϕ) dxdt − (6)

−
∫
∂Ω

(
|p− λ|, sgn(p− λ)(f(t, x, p)− f(t, x, λ))

)
· ν ϕ ds ≥

≥
∫

Ω

ϕ sgn(u− λ)f ′x(t, x, λ) dλ dxdt.

◦ Initial data are satisfied in the strong sense i.e. for almost every x ∈ ΓD it holds
lim
t→0
|u(t, x)− u0(x)| = 0.

2Formula 7 of B. Andreianov, D. Mitrović: Entropy conditions for scalar conservation laws with
discontinuous flux revisited, Annales Inst. Henry Poincare – Analyse Nonlineaire 32 (2015)
1307–1335



The main result

Theorem
Assume that the sequence (un) of solutions to (4) is uniformly bounded by a
constant M . If flux f satisfies the assumptions A1, A2 and A3, then a weak
L2(Ω)-limit of (un) along a subsequence satisfies the equation (1) in Ω.

Outline of the proof:

◦
∂tun + ∂x (f(t, x, un)) −→ 0 in H−1

loc(Ω)

◦ for all entropy-entropy flux pairs (Φ(λ),Ψn(t, x, λ)):

∂t(Φ(un)) + ∂x(Ψn(t, x, un)) is precompact in H−1
loc(Ω)

◦ for all k ∈ R:

∂t|un − k|+ ∂x(sgn(un − k)(f(t, x, un)− f(t, x, k))) is precompact in H−1
loc(Ω)



Case when f ∈ C1

A corollary of the proof of the theorem and Panov’s result3 in the case when
the flux is continuously differentiable with respect to all variables is the fact
that the limiting function u satisfies the Kruzhkov admissibility conditions.
However, we do not have a working solution concept for (1), (3), (2) so we
cannot say anything about uniqueness.

Corollary

Assume that the flux f ∈ C1(Ω× (−M,M)). The distributional limit u of the
sequence (un) of solutions to (4) satisfies for every entropy-entropy flux pair
(Φ,Ψ)

∂t(Φ(u))+∂x(Ψ(t, x, u)) ≤ −
∫ u

0

f ′x(t, x, λ)Φ′′(λ)dλ in D′(Ω).

3Remark 1 of E. Yu. Panov: On weak completeness of the set of entropy solutions to a scalar
conservation law, SIAM J. Math. Anal. 41 (2009) 26–36



Lighthill-Whitham-Richards model for traffic flow

∂tρ+ ∂x(ρv(ρ)) = 0,

where the velocity is assumed to have linear dependence upon density of the
cars

v(ρ) = vmax

(
1− ρ

ρmax

)
, 0 ≤ ρ ≤ ρmax.

Let L and τ be a typical length and time, respectively, such that vmax = L/τ .
Introducing new variables

x̄ =
x

L
, t̄ =

x

L
, u = 1− 2ρ

ρmax
,

we obtain the inviscid Burgers equation

∂tρ+ ∂x

[
ρ

(
1− ρ

ρmax

)]
= −ρmax

2τ
∂t̄u−

ρmax
2τ

∂x̄

(
u2

2

)
= 0.



Examples

Let Ω = {(t, x) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ t ≤ −4x(x− 1)}.
We focus on solving the (regularized) Burgers equation

∂tu+ ∂x
(
u2/2

)
= ε∆(t,x)u in Ω,

∇(t,x)u · ν = 0 on ΓN ,

u(0, x) = uD on ΓD,

where ΓD = {(t, x) ∈ ∂Ω : t = 0} and ΓN = ∂Ω \ ΓD.
Let VD(Ω)={v ∈ H1(Ω) : v|ΓD= uD} and H1

D(Ω)={v ∈ H1(Ω) : v|ΓD= 0}.

We use the following iterative scheme:

For given initial guess u0, construct sequence un ∈ VD, n ≥ 1, that are
solutions of∫

Ω

(∂tun + un−1∂xun)ψdtdx+ ε

∫
Ω

∇(t,x)un · ∇(t,x)ψdtdx = 0, ∀ψ ∈ H1
D(Ω).

(7)



Example 1

Two scenarios: in the first one ε = 1/N and in the second one ε = 1/N2 with
uD = −2x(x− 1) in both.
We performed two convergence tests, where referent solution uR has been
computed on N ×N = 6402 grid.

N = 1/ε ‖uN − uR‖2/‖uR‖2 N = 1/
√
ε ‖uN − uR‖2/‖uR‖2

10 0.179448 10 0.0539613
20 0.130928 20 0.0137841
40 0.076787 40 0.0038117
80 0.038821 80 0.0010069

160 0.0167232 160 0.00029879
320 0.0054824 320 0.000093223



Example 1 - N = 160 and ε = 1/1602



Example 1 - N = 160 and ε = 1/1602, iso-values of the solution



Example 2

uD = H(0.5− x), where H is the Heaviside function



Example 3

uD = H(x− 0.5), where H is the Heaviside function
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