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Problem statement

[¢]

Q C [0,00) x R open bounded domain
boundary 0Q = TnUTp of class C*!, where I'p C {t = 0}
o consider the following mixed boundary problem:

[e]

Oru+ O (f(t, z,u)) =0in Q (1)
V(tﬂ.)u -v=0o0n FN (2)
u(0,.) = u’(.) € L(R) on I'p, (3)

[e]

f(t,xz, \) is a function of bounded variation with respect to the variables (¢, x)
and differentiable with respect to the third variable .



An example of domain © C [0,00) x R




Additional assumptions on f

Take p € (2,00) fixed. Assume that for all compact sets A C R and K C €,
the following holds:

Al: (3C1 = Ci(K,A) > 0)(VE e A)

e [ szna], <
0

LP(Q)

A2: (3Cy = Co(K,A) > 0)(VE € A)

¢
XK / Lo nd| <o,
0 L1(Q)
A3: (3C5 = C3(K,A) > 0)(VA € A)
HXKf(t,J?,)\) gy Cs.



Assumptions Al and A3, due to the boundedness of €2, imply that for every
A C R compact and every p € C.(Q2), the following holds for positive
constants C1,p, k,a and Csp kA With K = suppey:

Cl: (Ve A) Htp(t,x) JEFt, A)dA‘

<C 0 (€),
L < Crrmaligllie @

C3: (VAeA) Hap(t,m)f(t,:v,/\))

< C-
L) 3,p, K, A

|80HL°°(Q)-



Approximation! of the problem

Ortn + O (fn(t,x,un)) = %A(t,z)un in Q
V(t,x)un -v=0o0n FN (4)

un(0,.) =ud(.) on I'p,

o falt,z,\) = f(-,-,A) x nw(nt,nx) is a regularization of the flux f via the
standard non-negative mollifier w € C°((—1,1)?),

o (ul) is a bounded sequence of functions converging strongly in L{,.(R) toward
up.

Problem: what is the appropriate solution concept?

LChapter 3 of J. L. Lions, E. Magenes: Non-homogeneous Boundary value Problems and
Applications I, Springer—Verlag, 1972.



Concept of solution

Multiplying equation
Brtin + 0u(fu(t, 7, un)) = (1/n) Do ayin
by sgn(un(t,z) — A), we get:
Otlun = Al + 0 (sgn(un — A)(fu(un) = fa(A)) <
< A = N = sgn(un — N fha(t,2,3) in Q.

Multiply by ¢ € C?(Q) supported away from {t = 0} and integrate over .
After taking into account (2), we get:

- /Q (Jun — A|Ore + sgn(un — A)(fr(un) — fn(N)0ayp) dxdt + (5)
[ (= Al s = )(uln) = o)) -vp ds <

< 1 / Vit,a)ltun — Al - Vg )@ drdt f/ wsgn(un — A) fr o (t, 2, N)dX dzdt.
nJa Q



Concept of solution - continued

Using the main idea of the recent article by Andreianov & Mitrovi¢?, we
introduce the following definition:

Definition
Function u € L2(Q) is called the solution to (1), (2), (3) if there exists a
function p € L' (T'w) such that for every ¢ € C.(Q\I'p) the following holds:

/Q (Ju — A Oep + sgn(u — N (f(t, z,u) — f(t,z,X))0xp) dxdt — (6)
— / (|p — Al sgn(p — N (f(¢,z,p) — f(t, x, A))) vepds >
o9

> / wsgn(u — ) fo(t,z, X) d) dzdt.
Q

o Initial data are satisfied in the strong sense i.e. for almost every x € I'p it holds
lim |u(t, ) — uo(z)| = 0.
t—0

2Formula 7 of B. Andreianov, D. Mitrovié: Entropy conditions for scalar conservation laws with
discontinuous flux revisited, Annales Inst. Henry Poincare — Analyse Nonlineaire 32 (2015)
1307-1335



The main result

Theorem

Assume that the sequence (uy) of solutions to (4) is uniformly bounded by a
constant M. If flux f satisfies the assumptions A1, A2 and A3, then a weak
L2(Q)-limit of (u) along a subsequence satisfies the equation (1) in §2.

OUTLINE OF THE PROOF:
Autin + Oy (f(t,,un)) — 0 in HL(R)

o for all entropy-entropy flux pairs (®(\), ¥, (¢, z, \)):

0t (®(un)) + 0z (Vp(t, z,u,)) is precompact in Hy, ()

o for all k € R:

Oeltn — k| + u (sgn(un — k) (f(t,x,un) — f(t,2,k))) is precompact in H,!(Q)



Case when f € C!

A corollary of the proof of the theorem and Panov’s result® in the case when
the flux is continuously differentiable with respect to all variables is the fact
that the limiting function u satisfies the Kruzhkov admissibility conditions.
However, we do not have a working solution concept for (1), (3), (2) so we
cannot say anything about uniqueness.

Corollary

Assume that the flux f € C*(Q x (=M, M)). The distributional limit u of the
sequence (uy) of solutions to (4) satisfies for every entropy-entropy flux pair
(@, V)

01 (D () +0: (T (L, x,u)) < —/Ou FL(t,z, \)B"(N)dA in D'(9).

3Remark 1 of E. Yu. Panov: On weak completeness of the set of entropy solutions to a scalar
conservation law, SIAM J. Math. Anal. 41 (2009) 26-36



Lighthill-Whitham-Richards model for traffic flow

Op + 9=(pv(p)) =0,

where the velocity is assumed to have linear dependence upon density of the
cars

U(p) = Umazx (1_ p ) 5 0§p§pma:c~

Pmax

Let L and 7 be a typical length and time, respectively, such that vmae> = L/7T.
Introducing new variables

z =2 u=1- 2

x:Lv Zv )

we obtain the inviscid Burgers equation

2
_ P _ _pmaz‘ _ Pmax a Uf —
Otp + Og {p (1 pmaz>:| = 2, Oru o Oz ( 5 ) 0.




Examples

Let Q= {(t,2) cR*:0<2<1,0<t< —da(x—1)}.
We focus on solving the (regularized) Burgers equation

Owu + O (u2/2) =eAgu  inQ,
Viau-v=0 onlIy,

u(0,2) =up onI'p,

where I'p = {(t,z) € 9Q:t =0} and 'y = 0Q\ I'p.
Let Vp(Q)={v € HY(Q) : v|rp=up} and HL(Q)={v € H'(Q) : v|r,= 0}.

We use the following iterative scheme:

For given initial guess ug, construct sequence u,, € Vp, n > 1, that are
solutions of

/(&un + Un—10un)dtdz + e/ Vit,z)Un - V(g,z)Pdtde =0, Vi € HlD(Q)
Q Q
(7)



Example 1

Two scenarios: in the first one ¢ = 1/N and in the second one ¢ = 1/N? with

up = —2z(x — 1) in both.
We performed two convergence tests, where referent solution ur has been

computed on N x N = 6407 grid.

N =1/e | lux —urll2/|lurl2 || N =1/v/e | [luxn —ur]2/|ur|:
10 0.179448 10 0.0539613
20 0.130928 20 0.0137841
40 0.076787 40 0.0038117
80 0.038821 80 0.0010069
160 0.0167232 160 0.00029879
320 0.0054824 320 0.000093223




Example 1 - N = 160 and € = 1/160?
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Example 1 - N = 160 and € = 1/1602, iso-values of the solution
M

/ 0.49216
Vi G dut
e
Gl
Sl
Gdizer
frd
r
§3itte
Ga
]
ke
e
T
/ e
]
| v
o3
s
63
o3
e
e
Sl
e
i
/ e
4
A
et
03ei
it
e
| )
o35
e
S5
G
ot
i
it
Giidr
Gitene
e
Gl
Gidin
Gismm
Sxi
G
6 1ok
Gontzer
Goassis
) G
e ]
son
Gotsses
Geires
Goirss
sane,
i
b
Gora
§88ttar
-2.752-0]

0.00 0,199 0.200 0.300 0409 02.509 0.999 0.799 0.300 0.709 109

)i




Example 2

up = H(0.5 — z), where H is the Heaviside function




Example 3

up = H(z — 0.5), where H is the Heaviside function
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