Anisotropic distributions, microlocal defect functionals, and applications

Marin Mišur

email: mmisur@math.hr University of Zagreb

joint work with Nenad Antonić, Marko Erceg and Darko Mitrović

18/05/2017

What are H-measures?

Mathematical objects introduced (1989/90) by:

- $\circ\,$ Luc Tartar, who was motivated by possible applications in homogenisation, and independently by
- · Patrick Gérard, whose motivation were problems in kinetic theory.

Theorem 1. If $u_n \rightarrow 0$ and $v_n \rightarrow 0$ in $L^2(\mathbf{R}^d)$, then there exist their subsequences and a complex valued Radon measure μ on $\mathbf{R}^d \times S^{d-1}$, such that for any $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^d)$ and $\psi \in C(S^{d-1})$ one has

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}} \overline{\widehat{\varphi_2 v_{n'}}} (\psi \circ \pi) d\boldsymbol{\xi} = \langle \mu, \varphi_1 \overline{\varphi_2} \boxtimes \psi \rangle,$$

where $\pi : \mathbf{R}^d \setminus \{\mathbf{0}\} \longrightarrow S^{d-1}$ is the projection along rays.

Question: How to replace L^2 with L^p ?

Notice: if we denote by \mathcal{A}_{ψ} the Fourier multiplier operator with symbol $\psi \in L^{\infty}(\mathbf{R}^d)$:

 $\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee},$

we can rewrite the equality from the theorem as

$$\langle \mu, \varphi_1 \overline{\varphi_2} \boxtimes \psi \rangle = \lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}} \overline{\widehat{\varphi_2 v_{n'}}} (\psi \circ \pi) d\boldsymbol{\xi}$$

$$= \lim_{n'} \int_{\mathbf{R}^d} \varphi_1 u_{n'}(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi \circ \pi}}} (\varphi_2 u_{n'})(\mathbf{x}) d\mathbf{x} +$$

Hörmander-Mihlin Theorem

Theorem 2. Let $\psi \in L^{\infty}(\mathbb{R}^d)$ have partial derivatives of order less than or equal to $\kappa = [d/2] + 1$. If for some k > 0

$$(\forall r > 0)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d) \quad |\boldsymbol{\alpha}| \le \kappa \Longrightarrow \int_{r/2 \le |\boldsymbol{\xi}| \le r} |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} \le k^2 r^{d-2|\boldsymbol{\alpha}|},$$

then for any $p \in \langle 1, \infty \rangle$ and the associated multiplier operator A_{ψ} there exists a constant C_d such that

$$\|\mathcal{A}_{\psi}\|_{\mathbf{L}^{p}\to\mathbf{L}^{p}} \leq C_{d} \max\{p, 1/(p-1)\}(k+\|\psi\|_{\mathbf{L}^{\infty}(\mathbf{R}^{d})}).$$

For $\psi \in C^{\kappa}(S^{d-1})$, extended by homogeneity to $\mathbf{R}^d \setminus \{\mathbf{0}\}$, we can take $k = \|\psi\|_{C^{\kappa}(S^{d-1})}$.

Y. Heo, F. Nazarov, A. Seeger, *Radial Fourier multipliers in high dimensions*, Acta Mathematica **206** (2011) 55-92.

Introduction H-measures

First commutation lemma

H-distributions

Existence Conjecture Schwartz kernel theorem

Compensated compactness

Classical results Result by Panov Definition Localisation principle Application to the parabolic type equation

What is the First commutation lemma?

 $\circ \ \mathcal{A}_{\psi} u := (\psi \hat{u})^{\vee}$

 $\circ M_b u := b u$

$$[\mathcal{A}_{\psi}, M_b] := \mathcal{A}_{\psi} M_b - M_b \mathcal{A}_{\psi}$$

Question: Why do we need such a result?

Compactness on L^2 - Cordes' result^1

Theorem

If bounded continuous functions b and ψ satisfy

 $\lim_{|\boldsymbol{\xi}|\to\infty} \sup_{|\mathbf{h}|\leq 1} \left\{ |\psi(\boldsymbol{\xi}+\mathbf{h}) - \psi(\boldsymbol{\xi})| \right\} = 0 \quad \text{and} \quad \lim_{|\mathbf{x}|\to\infty} \sup_{|\mathbf{h}|\leq 1} \left\{ |b(\mathbf{x}+\mathbf{h}) - b(\mathbf{x})| \right\} = 0 \;,$

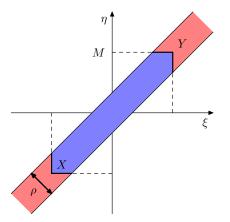
then the commutator $[\mathcal{A}_{\psi}, M_b]$ is a compact operator on $L^2(\mathbf{R}^d)$.

¹H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal. **18** (1975) 115–131.

Compactness on L^2 - Tartar's version

For given $M, \varrho \in \mathbf{R}^+$ we denote the set

$$Y(M,\varrho) = \{(\boldsymbol{\xi},\boldsymbol{\eta}) \in \mathbf{R}^{2d} : |\boldsymbol{\xi}|, |\boldsymbol{\eta}| \ge M \& |\boldsymbol{\xi} - \boldsymbol{\eta}| \le \varrho\} .$$

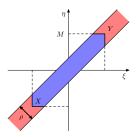


Compactness on L^2 - Tartar's version²

Lemma (general form of the First commutation lemma) If $b \in C_0(\mathbf{R}^d)$, while $\psi \in L^{\infty}(\mathbf{R}^d)$ satisfies the condition

 $(\forall \, \varrho, \varepsilon \in \mathbf{R}^+)(\exists \, M \in \mathbf{R}^+) \quad |\psi(\boldsymbol{\xi}) - \psi(\boldsymbol{\eta})| \leq \varepsilon \quad (\text{s.s.} \ (\boldsymbol{\xi}, \boldsymbol{\eta}) \in Y(M, \varrho)) , \quad (1)$

then $[\mathcal{A}_{\psi}, M_b]$ is a compact operator on $L^2(\mathbf{R}^d)$.



Lemma

Let $\pi : \mathbf{R}^d_* \to \Sigma$ be a smooth projection to a smooth compact hypersurface Σ , such that $\|\nabla \pi(\boldsymbol{\xi})\| \to 0$ for $|\boldsymbol{\xi}| \to \infty$, and let $\psi \in C(\Sigma)$. Then $\psi \circ \pi$ (ψ extended by homogeneity of order 0) satisfies (1).

²L. Tartar, The general theory of homogenization: A personalized introduction, Springer, 2009.

Where is it used?

- L. Tartar, *H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations,* Proc. Roy. Soc. Edinburgh **115A** (1990) 193–230.³
- E. Ju. Panov, Ultra-parabolic H-measures and compensated compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire C 28 (2011) 47–62.
- N. Antonić, M. Lazar, *Parabolic H-measures*, J. Funct. Anal. 265 (2013) 1190–1239.
- Z. Lin, Instability of nonlinear dispersive solitary waves, J. Funct. Anal. 255 (2008) 1191–1224.
- Z. Lin, On Linear Instability of 2D Solitary Water Waves, International Mathematics Research Notices 2009 (2009) 1247–1303.
- S. Richard, R. T. de Aldecoa, New Formulae for the Wave Operators for a Rank One Interaction, Integr. Equ. Oper. Theory 66 (2010) 283–292.

³P. Gérard, *Microlocal defect measures*, Comm. Partial Diff. Eq. 16 (1991) 1761–1794.

What about the L^p variant of the First commutation lemma?

One variant can be found in the article by Cordes - complicated proof and higher regularity assumptions. Namely, the symbol is requird to satisfy:

$$\begin{array}{l} \circ \ \psi \in \mathrm{C}^{2\kappa}(\mathbf{R}^d), \\ \circ \ \text{for every} \ \boldsymbol{\alpha} \in \mathbf{N}_0^d, |\boldsymbol{\alpha}| \leq 2\kappa: \\ \\ (1+|\boldsymbol{\xi}|)^{|\boldsymbol{\alpha}|} D^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi}) \qquad \text{is bounded}. \end{array}$$

A different variant was given by Antonić and Mitrović⁴:

Lemma

Assume $\psi \in C^{\kappa}(S^{d-1})$ and $b \in C_0(\mathbf{R}^d)$. Let (v_n) be a bounded sequence, both in $L^2(\mathbf{R}^d)$ and in $L^r(\mathbf{R}^d)$, for some $r \in \langle 2, \infty]$, and such that $v_n \rightharpoonup 0$ in the sense of distributions.

Then
$$[\mathcal{A}_{\psi}, M_b]v_n \longrightarrow 0$$
 strongly in $L^q(\mathbf{R}^d)$, for any $q \in [2, r)$.

The proof was based on a simple interpolation inequality of L^p spaces: $\|f\|_{L^q} \leq \|f\|_{L^2}^{\theta} \|f\|_{L^r}^{1-\theta}$, where $1/q = \theta/2 + (1-\theta)/r$.

⁴N. Antonić, D. Mitrović, *H-distributions: an extension of H-measures to an* $L^p - L^q$ *setting*, Abs. Appl. Analysis **2011** Article ID 901084 (2011) 12 pp.

A variant of Krasnoselskij's type of result⁵

Lemma

Assume that linear operator A is compact on $L^2(\mathbf{R}^d)$ and bounded on $L^r(\mathbf{R}^d)$, for some $r \in \langle 1, \infty \rangle \setminus \{2\}$. Then A is also compact on $L^p(\mathbf{R}^d)$, for any p between 2 and r (i.e. such that $1/p = \theta/2 + (1-\theta)/r$, for some $\theta \in \langle 0, 1 \rangle$).

Corollary

If $b \in C_0(\mathbf{R}^d)$, while $\psi \in C^{\kappa}(\mathbf{R}^d)$ satisfies the conditions of the Hörmander-Mihlin theorem, then the commutator $[\mathcal{A}_{\psi}, M_b]$ is a compact operator on $L^p(\mathbf{R}^d)$, for any $p \in \langle 1, \infty \rangle$.

⁵M. A. Krasnoselskij, *On a theorem of M. Riesz*, Dokl. Akad. Nauk SSSR **131** (1960) 246–248 (in russian); translated as Soviet Math. Dokl. **1** (1960) 229–231.

Theorem Let $\psi \in C^{\kappa}(\mathbf{R}^{d} \setminus \{0\})$ be bounded and satisfy Hörmander's condition, while $b \in C_{c}(\mathbf{R}^{d})$. Then for any $u_{n} \xrightarrow{*} 0$ in $L^{\infty}(\mathbf{R}^{d})$ and $p \in \langle 1, \infty \rangle$ one has: $(\forall \varphi, \phi \in C_{c}^{\infty}(\mathbf{R}^{d})) \qquad \phi C(\varphi u_{n}) \longrightarrow 0 \quad \text{in} \quad L^{p}(\mathbf{R}^{d}).$

Corollary

Let (u_n) be a bounded, uniformly compactly supported sequence in $L^{\infty}(\mathbf{R}^d)$, converging to 0 in the sense of distributions. Assume that $\psi \in C^{\kappa}(\mathbf{R}^d \setminus \{0\})$ satisfies Hörmander's condition and condition from the general form of the First commutation lemma.

Then for any $b \in L^{s}(\mathbf{R}^{d})$, s > 1 arbitrary, it holds

$$\lim_{n \to \infty} \|b\mathcal{A}_{\psi}(u_n) - \mathcal{A}_{\psi}(bu_n)\|_{\mathcal{L}^r(\mathbf{R}^d)} = 0, \quad r \in \langle 1, s \rangle.$$

Introduction H-measures

First commutation lemma

H-distributions

Existence Conjecture Schwartz kernel theorem

Compensated compactness

Classical results Result by Panov Definition Localisation principle Application to the parabolic type equation

H-distributions

H-distributions were introduced by N. Antonić and D. Mitrović as an extension of H-measures to the ${\rm L}^p-{\rm L}^q$ context.

Existing applications are related to the velocity averaging 6 and ${\rm L}^p-{\rm L}^q$ compactness by compensation $^7.$

⁶M. Lazar, D. Mitrović, On an extension of a bilinear functional on $L^p(\mathbf{R}^d) \times E$ to Bochner spaces with an application to velocity averaging, C. R. Math. Acad. Sci. paris **351** (2013) 261–264.

⁷M. Mišur, D. Mitrović, On a generalization of compensated compactness in the $L^p - L^q$ setting, Journal of Functional Analysis **268** (2015) 1904–1927.

Existence of H-distributions

Theorem 3. If $u_n \longrightarrow 0$ in $L^p_{loc}(\mathbf{R}^d)$ and $v_n \xrightarrow{*} v$ in $L^q_{loc}(\mathbf{R}^d)$ for some $p \in \langle 1, \infty \rangle$ and $q \ge p'$, then there exist subsequences $(u_{n'})$, $(v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times \mathbf{S}^{d-1})$, such that, for every $\varphi_1, \varphi_2 \in \mathbf{C}^\infty_c(\mathbf{R}^d)$ and $\psi \in \mathbf{C}^\kappa(\mathbf{S}^{d-1})$, for $\kappa = [d/2] + 1$, one has:

$$\lim_{n' \to \infty} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} = \lim_{n' \to \infty} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x}$$
$$= \langle \mu, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \rangle,$$

where $\mathcal{A}_{\psi} : L^{p}(\mathbf{R}^{d}) \longrightarrow L^{p}(\mathbf{R}^{d})$ is the Fourier multiplier operator with symbol $\psi \in C^{\kappa}(S^{d-1}).$

Distributions of anisotropic order

Let X and Y be open sets in \mathbf{R}^d and \mathbf{R}^r (or \mathbf{C}^{∞} manifolds of dimenions d and r) and $\Omega \subseteq X \times Y$ an open set. By $\mathbf{C}^{l,m}(\Omega)$ we denote the space of functions f on Ω , such that for any $\boldsymbol{\alpha} \in \mathbf{N}_0^d$ and $\boldsymbol{\beta} \in \mathbf{N}_0^r$, if $|\boldsymbol{\alpha}| \leq l$ and $|\boldsymbol{\beta}| \leq m$, $\partial^{\boldsymbol{\alpha},\boldsymbol{\beta}} f = \partial^{\boldsymbol{\alpha}}_{\mathbf{x}} \partial^{\boldsymbol{\beta}}_{\mathbf{y}} f \in \mathbf{C}(\Omega)$.

 $\mathrm{C}^{l,m}(\Omega)$ becomes a Fréchet space if we define a sequence of seminorms

$$p_{K_n}^{l,m}(f) := \max_{|\boldsymbol{\alpha}| \le l, |\boldsymbol{\beta}| \le m} \|\partial^{\boldsymbol{\alpha},\boldsymbol{\beta}} f\|_{\mathcal{L}^{\infty}(K_n)} ,$$

where $K_n \subseteq \Omega$ are compacts, such that $\Omega = \bigcup_{n \in \mathbf{N}} K_n$ and $K_n \subseteq Int K_{n+1}$, Consider the space

$$\mathcal{C}^{l,m}_c(\Omega) := \bigcup_{n \in \mathbf{N}} \mathcal{C}^{l,m}_{K_n}(\Omega) ,$$

and equip it by the topology of strict inductive limit.

Conjecture

Definition. A distribution of order l in \mathbf{x} and order m in \mathbf{y} is any linear functional on $C_c^{l,m}(\Omega)$, continuous in the strict inductive limit topology. We denote the space of such functionals by $\mathcal{D}'_{l,m}(\Omega)$.

Conjecture. Let X, Y be C^{∞} manifolds and let u be a linear functional on $C_c^{l,m}(X \times Y)$. If $u \in \mathcal{D}'(X \times Y)$ and satisfies $(\forall K \in \mathcal{K}(X))(\forall L \in \mathcal{K}(Y)(\exists C > 0)(\forall \varphi \in C_K^{\infty}(X))(\forall \psi \in C_L^{\infty}(Y))$

 $|\langle u, \varphi \boxtimes \psi \rangle| \le C p_K^l(\varphi) p_L^m(\psi),$

then u can be uniquely extended to a continuous functional on $C_c^{l,m}(X \times Y)$ (i.e. it can be considered as an element of $\mathcal{D}'_{l,m}(X \times Y)$). From the proof of the existence theorem, we already have $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$ and the following bound with $\varphi := \varphi_1 \overline{\varphi_2}$:

$$|\langle \mu, \varphi \boxtimes \psi \rangle| \le C \|\psi\|_{\mathcal{C}^{\kappa}(\mathcal{S}^{d-1})} \|\varphi\|_{\mathcal{C}_{K_{I}}(\mathbf{R}^{d})},$$

where C does not depend on φ and ψ .

If the conjecture were true, then the H-distribution μ from the preceeding theorem belongs to the space $\mathcal{D}'_{0,\kappa}(\mathbf{R}^d \times S^{d-1})$, i.e. it is a distribution of order 0 in x and of order not more than κ in $\boldsymbol{\xi}$.

But the conjecture is not true. Indeed, take a distribution $u = \frac{-1}{\pi} \partial_y \ln |x - y|$ on \mathbf{R}^2 . It is an element of $\mathcal{D}'_{0,1}(\mathbf{R} \times \mathbf{R})$. It holds:

$$\begin{split} \langle u, \varphi(x)\psi(y)\rangle &= \frac{1}{\pi} \int_{\mathbf{R}} \varphi(x) \int_{\mathbf{R}} \ln|x-y|\psi'(y)\, dy dx = \int_{\mathbf{R}} \varphi(x)H\psi(x)\, dx\,,\\ &|\langle u, \varphi(x)\psi(y)\rangle| \leq C_{\operatorname{supp}\varphi,\operatorname{supp}\psi} \|\varphi\|_{\mathrm{L}^{\infty}} \, \|\psi\|_{\mathrm{L}^{\infty}}\,. \end{split}$$

If u were locally finite measure on \mathbf{R}^2 , in case $\operatorname{supp} g$ does not intersect the diagonal we would get $\langle u,g\rangle = \frac{1}{\pi} \int_{\mathbf{R}^2} \frac{g(x,y)}{x-y} dx dy$.

Let X and Y be two C^{∞} manifolds. Then the following statements hold:

- a) Let $K \in \mathcal{D}'(X \times Y)$. Then for every $\varphi \in \mathcal{D}(X)$, the linear form K_{φ} defined as $\psi \mapsto \langle K, \varphi \boxtimes \psi \rangle$ is a distribution on Y. Furthermore, the mapping $\varphi \mapsto K_{\varphi}$, taking $\mathcal{D}(X)$ to $\mathcal{D}'(Y)$ is linear and continuous.
- b) Let $A : \mathcal{D}(X) \to \mathcal{D}'(Y)$ be a continous linear operator. Then there exists unique distribution $K \in \mathcal{D}'(X \times Y)$ such that for any $\varphi \in \mathcal{D}(X)$ and $\psi \in \mathcal{D}(Y)$

$$\langle K, \varphi \boxtimes \psi \rangle = \langle K_{\varphi}, \psi \rangle = \langle A \varphi, \psi \rangle.$$

⁸Theorem 23.9.2 of J. Dieudonné, Éléments d'Analyse, Tome VII, Éditions Jacques Gabay, 2007.

Schwartz kernel theorem for anisotropic distributions

Let X and Y be two ${\rm C}^\infty$ manifolds of dimensions d and r, respectively. Then the following statements hold:

- a) Let $K \in \mathcal{D}'_{l,m}(X \times Y)$. Then for every $\varphi \in C_c^l(X)$, the linear form K_{φ} defined as $\psi \mapsto \langle K, \varphi \boxtimes \psi \rangle$ is a distribution of order not more than m on Y. Furthermore, the mapping $\varphi \mapsto K_{\varphi}$, taking $C_c^l(X)$ to $\mathcal{D}'_m(Y)$ is linear and continuous.
- b) Let $A : C_c^l(X) \to \mathcal{D}'_m(Y)$ be a continous linear operator. Then there exists unique distribution $K \in \mathcal{D}'(X \times Y)$ such that for any $\varphi \in \mathcal{D}(X)$ and $\psi \in \mathcal{D}(Y)$

$$\langle K, \varphi \boxtimes \psi \rangle = \langle K_{\varphi}, \psi \rangle = \langle A\varphi, \psi \rangle.$$

Furthermore, $K \in \mathcal{D}'_{l,r(m+2)}(X \times Y)$.

Use the structure theorem of distributions (Dieudonné).

Two steps:

```
Step I: assume the range of A is C(Y)
Step II: use structure theorem and go back to Step I
```

Consequence: H-distributions are of order 0 in x and of finite order not greater than $d(\kappa + 2)$ with respect to $\boldsymbol{\xi}$.

Introduction H-measures

First commutation lemma

H-distributions

Existence Conjecture Schwartz kernel theorem

Compensated compactness

Classical results Result by Panov Definition Localisation principle Application to the parabolic type equation

Motivation - Maxwell's equations

Let $\Omega \subseteq \mathbf{R}^3$. Denote by E and H the electric and magnetic field, and by D and B the electric and magnetic induction. Let ρ denote the charge, and j the current density. Maxwell's system of equations reads:

$$\partial_t B + \text{rot } E = G,$$

 $\text{div } B = 0,$
 $\partial_t D + \text{j} - \text{rot } H = F,$
 $\text{div } D = \rho.$

Assume that properties of the material can be expressed by following linear constitutive equations:

$$D = \epsilon E, B = \mu H.$$

The energy of electromagnetic field at time t is given by:

$$T(t) = \frac{1}{2} \int_{\Omega} (\mathsf{D} \cdot \mathsf{E} + \mathsf{B} \cdot \mathsf{H}) d\mathbf{x}.$$

It's natural to consider

$$\begin{split} \mathsf{D},\mathsf{B} \in \mathrm{L}^{\infty}([0,T];\mathrm{L}^{2}_{\mathsf{div}}(\Omega;\mathbf{R}^{3})),\\ \mathsf{E},\mathsf{H} \in \mathrm{L}^{\infty}([0,T];\mathrm{L}^{2}_{\mathsf{rot}}(\Omega;\mathbf{R}^{3})),\\ \mathsf{J} \in \mathrm{L}^{\infty}([0,T];\mathrm{L}^{2}(\Omega;\mathbf{R}^{3})), \quad \mathsf{F},\mathsf{G} \in \mathrm{L}^{2}([0,T];\mathrm{L}^{2}(\Omega;\mathbf{R}^{3})). \end{split}$$

Let us consider a family of problems:

$$\partial_t B^n + \operatorname{rot} E^n = G^n,$$

 $\partial_t D^n + J^n - \operatorname{rot} H^n = F^n,$

with constitution equations:

$$\mathsf{D}^n = \boldsymbol{\epsilon}^n \mathsf{E}^n, \quad \mathsf{B}^n = \boldsymbol{\mu}^n \mathsf{H}^n, \quad \mathsf{J}^n = \boldsymbol{\sigma}^n \mathsf{E}^n.$$

What can we say about energy T(t) if we know

$$T^{n}(t) = \frac{1}{2} \int_{\Omega} (\mathsf{D}^{n} \cdot \mathsf{E}^{n} + \mathsf{B}^{n} \cdot \mathsf{H}^{n}) d\mathbf{x}.$$

Theorem 4. Assume that Ω is open and bounded subset of \mathbb{R}^3 , and that it holds:

$$\mathbf{u}_n \rightharpoonup \mathbf{u} \text{ in } \mathrm{L}^2(\Omega; \mathbf{R}^3),$$
$$\mathbf{v}_n \rightharpoonup \mathbf{v} \text{ in } \mathrm{L}^2(\Omega; \mathbf{R}^3),$$

rot \mathbf{u}_n bounded in $L^2(\Omega; \mathbf{R}^3)$, div \mathbf{v}_n bounded in $L^2(\Omega)$.

Then

$$\mathbf{u}_n \cdot \mathbf{v}_n \rightharpoonup \mathbf{u} \cdot \mathbf{v}$$

in the sense of distributions.

Quadratic theorem

Theorem 5. (Quadratic theorem) Assume that $\Omega \subseteq \mathbf{R}^d$ is open and that $\Lambda \subseteq \mathbf{R}^r$ is defined by

$$\Lambda := \left\{ \boldsymbol{\lambda} \in \mathbf{R}^r : (\exists \boldsymbol{\xi} \in \mathbf{R}^d \setminus \{0\}) \quad \sum_{k=1}^d \xi_k \mathbf{A}^k \boldsymbol{\lambda} = \mathbf{0} \right\},$$

where Q is a real quadratic form on \mathbf{R}^r , which is nonnegative on Λ , i.e.

 $(\forall \lambda \in \Lambda) \quad Q(\lambda) \ge 0.$

Furthermore, assume that the sequence of functions (\mathbf{u}_n) satisfies

$$\begin{split} \mathbf{u}_n &\longrightarrow \mathbf{u} \quad \text{weakly in} \quad \mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathbf{R}^r) \,, \\ \left(\sum_k \mathbf{A}^k \partial_k \mathbf{u}_n \right) \quad \text{relatively compact in} \quad \mathrm{H}^{-1}_{\mathrm{loc}}(\Omega; \mathbf{R}^q) \,. \end{split}$$

Then every subsequence of $(Q \circ \mathbf{u}_n)$ which converges in distributions to it's limit L, satisfies

$$L \geqslant Q \circ \mathbf{u}$$

in the sense of distributions.

The most general version of the classical L^2 results has recently been proved by E. Yu. Panov⁹:

Assume that the sequence (\mathbf{u}_n) is bounded in $L^p(\mathbf{R}^d; \mathbf{R}^r)$, $2 \le p < \infty$, and converges weakly in $\mathcal{D}'(\mathbf{R}^d)$ to a vector function \mathbf{u} . Let q = p' if $p < \infty$, and q > 1 if $p = \infty$. Assume that the sequence

$$\sum_{k=1}^{\nu} \partial_k(\mathbf{A}^k \mathbf{u}_n) + \sum_{k,l=\nu+1}^{d} \partial_{kl}(\mathbf{B}^{kl} \mathbf{u}_n)$$

is precompact in the anisotropic Sobolev space $W_{loc}^{-1,-2;q}(\mathbf{R}^d;\mathbf{R}^m)$, where $m \times r$ matrices \mathbf{A}^k and \mathbf{B}^{kl} have variable coefficients belonging to $L^{2\bar{q}}(\mathbf{R}^d)$, $\bar{q} = \frac{p}{p-2}$ if p > 2, and to the space $C(\mathbf{R}^d)$ if p = 2.

⁹E. Yu. Panov, *Ultraparabolic H-measures and compensated compactness*, Annales Inst. H.Poincaré **28** (2011) 47–62.

We introduce the set $\Lambda(\mathbf{x})$

$$\Lambda(\mathbf{x}) = \left\{ \boldsymbol{\lambda} \in \mathbf{C}^{r} | (\exists \boldsymbol{\xi} \in \mathbf{R}^{d} \setminus \{0\}) : \left(i \sum_{k=1}^{\nu} \xi_{k} \mathbf{A}^{k}(\mathbf{x}) - 2\pi \sum_{k,l=\nu+1}^{d} \xi_{k} \xi_{l} \mathbf{B}^{kl}(\mathbf{x}) \right) \boldsymbol{\lambda} = \mathbf{0}_{m} \right\},$$
(2)

and consider the bilinear form on ${\bf C}^r$

$$q(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\eta}) = \mathbf{Q}(\mathbf{x})\boldsymbol{\lambda} \cdot \boldsymbol{\eta}, \tag{3}$$

where $\mathbf{Q} \in \mathrm{L}^{\bar{q}}_{loc}(\mathbf{R}^d; \mathrm{Sym}_r)$ if p > 2 and $\mathbf{Q} \in \mathrm{C}(\mathbf{R}^d; \mathrm{Sym}_r)$ if p = 2. Finally, let $q(\mathbf{x}, \mathbf{u}_n, \mathbf{u}_n) \rightharpoonup \omega$ weakly in the space of distributions. The following theorem holds

Theorem 6. Assume that $(\forall \lambda \in \Lambda(\mathbf{x})) q(\mathbf{x}, \lambda, \lambda) \ge 0$ (a.e. $\mathbf{x} \in \mathbf{R}^d$) and $\mathbf{u}_n \rightharpoonup \mathbf{u}$, then $q(\mathbf{x}, \mathbf{u}(\mathbf{x}), \mathbf{u}(\mathbf{x})) \le \omega$.

The connection between q and Λ given in the previous theorem, we shall call the consistency condition.

Appropriate symbols

We need Fourier multiplier operators with symbols defined on a manifold P determined by *d*-tuple $\alpha \in (\mathbf{R}^+)^d$:

$$\mathbf{P} = \Big\{ \boldsymbol{\xi} \in \mathbf{R}^d : \sum_{k=1}^d |\xi_k|^{2\alpha_k} = 1 \Big\},\$$

where $\alpha_k \in \mathbf{N}$ or $\alpha_k \ge d$. In order to associate an L^p Fourier multiplier to a function defined on P, we extend it to $\mathbf{R}^d \setminus \{0\}$ by means of the projection

$$(\pi_{\mathrm{P}}(\boldsymbol{\xi}))_{j} = \xi_{j} \left(|\xi_{1}|^{2\alpha_{1}} + \dots + |\xi_{d}|^{2\alpha_{d}} \right)^{-1/2\alpha_{j}}, \quad j = 1, \dots, d$$

We need the following extension of the results given above.

Theorem 7. Let (u_n) be a bounded sequence in $L^p(\mathbf{R}^d)$, p > 1, and let (v_n) be a bounded sequence of uniformly compactly supported functions in $L^q(\mathbf{R}^d)$, 1/q + 1/p < 1. Then, after passing to a subsequence (not relabelled), for any $\overline{s} \in (1, \frac{pq}{p+q})$ there exists a continuous bilinear functional B on $L^{\overline{s}'}(\mathbf{R}^d) \otimes C^d(P)$ such that for every $\varphi \in L^{\overline{s}'}(\mathbf{R}^d)$ and $\psi \in C^d(P)$, it holds

$$B(\varphi,\psi) = \lim_{n \to \infty} \int_{\mathbf{R}^d} \varphi(\mathbf{x}) u_n(\mathbf{x}) (\mathcal{A}_{\psi_{\mathbf{P}}} v_n)(\mathbf{x}) d\mathbf{x} \,,$$

where $\mathcal{A}_{\psi_{\mathrm{P}}}$ is the Fourier multiplier operator on \mathbf{R}^{d} associated to $\psi \circ \pi_{\mathrm{P}}$. The bilinear functional B can be continuously extended¹⁰ as a linear functional on $\mathrm{L}^{s'}(\mathbf{R}^{d}; \mathrm{C}^{d}(\mathrm{P}))$.

¹⁰M. Lazar, D. Mitrović, On an extension of a bilinear functional on $L^p(\mathbf{R}^d) \times E$ to Bochner spaces with an application to velocity averaging, C. R. Math. Acad. Sci. paris **351** (2013) 261–264.

For separable Banach space E, the dual of $\mathrm{L}^p(\mathbf{R}^d;E)$ consists of all weakly-* measurable functions $B:\mathbf{R}^d\to E'$ such that

$$\int_{\mathbf{R}^d} \|B(\mathbf{x})\|_{E'}^{p'} d\mathbf{x}$$

is finite¹¹.

Sometimes the dual is denoted by $L_{w*}^{p'}(\mathbf{R}^d; E')$.

¹¹p. 606 of R.E. Edwards, *Functional Analysis*, Holt, Rinehart and Winston, 1965.

Localisation principle

Lemma

Assume that sequences (\mathbf{u}_n) and (\mathbf{v}_n) are bounded in $L^p(\mathbf{R}^d; \mathbf{R}^r)$ and $L^q(\mathbf{R}^d; \mathbf{R}^r)$, respectively, and converge toward $\mathbf{0}$ and \mathbf{v} in the sense of distributions.

Furthermore, assume that sequence (\mathbf{u}_n) satisfies:

$$\mathbf{G}_{n} := \sum_{k=1}^{d} \partial_{k}^{\alpha_{k}}(\mathbf{A}^{k} \mathbf{u}_{n}) \to \mathbf{0} \text{ in } \mathbf{W}^{-\alpha_{1}, \dots, -\alpha_{d}; p}(\Omega; \mathbf{R}^{m}),$$
(4)

where either $\alpha_k \in \mathbf{N}$, k = 1, ..., d or $\alpha_k > d$, k = 1, ..., d, and elements of matrices \mathbf{A}^k belong to $\mathbf{L}^{\bar{s}'}(\mathbf{R}^d)$, $\bar{s} \in (1, \frac{pq}{p+q})$. Finally, by $\boldsymbol{\mu}$ denote a matrix H-distribution corresponding to subsequences of (\mathbf{u}_n) and $(\mathbf{v}_n - \mathbf{v})$. Then the following relation holds

$$\Big(\sum_{k=1}^d (2\pi i\xi_k)^{\alpha_k} \mathbf{A}^k\Big)\boldsymbol{\mu} = \mathbf{0}.$$

Strong consistency condition

Introduce the set

$$\Lambda_{\mathcal{D}} = \Big\{ \boldsymbol{\mu} \in \ \mathrm{L}^{\bar{s}}(\mathbf{R}^{d}; (\mathrm{C}^{d}(\mathrm{P}))')^{r} : \Big(\sum_{k=1}^{n} (2\pi i \xi_{k})^{\alpha_{k}} \mathbf{A}^{k} \Big) \boldsymbol{\mu} = \mathbf{0}_{m} \Big\},\$$

where the given equality is understood in the sense of $L^{\bar{s}}(\mathbf{R}^d; (C^d(P))')^m$.

Let us assume that coefficients of the bilinear form q from (3) belong to space $L_{loc}^{t}(\mathbf{R}^{d})$, where 1/t + 1/p + 1/q < 1.

Definition

We say that set $\Lambda_{\mathcal{D}}$, bilinear form q from (3) and matrix $\boldsymbol{\mu} = [\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_r], \boldsymbol{\mu}_j \in L^{\bar{s}}(\mathbf{R}^d; (\mathbf{C}^d(\mathbf{P}))')^r$ satisfy the strong consistency condition if $(\forall j \in \{1, \dots, r\}) \ \boldsymbol{\mu}_j \in \Lambda_{\mathcal{D}}$, and it holds

 $\langle \phi \mathbf{Q} \otimes 1, \boldsymbol{\mu} \rangle \geq \mathbf{0}, \ \phi \in \mathrm{L}^{\bar{s}}(\mathbf{R}^d; \mathbf{R}_0^+).$

Compactness by compensation

Theorem 8. Assume that sequences (\mathbf{u}_n) and (\mathbf{v}_n) are bounded in $L^p(\mathbf{R}^d; \mathbf{R}^r)$ and $L^q(\mathbf{R}^d; \mathbf{R}^r)$, respectively, and converge toward \mathbf{u} and \mathbf{v} in the sense of distributions.

Assume that (4) holds and that

$$q(\mathbf{x};\mathbf{u}_n,\mathbf{v}_n) \rightharpoonup \omega$$
 in $\mathcal{D}'(\mathbf{R}^d)$.

If the set Λ_D , the bilinear form (3), and matrix H-distribution μ , corresponding to subsequences of $(\mathbf{u}_n - \mathbf{u})$ and $(\mathbf{v}_n - \mathbf{v})$, satisfy the strong consistency condition, then

$$q(\mathbf{x}; \mathbf{u}, \mathbf{v}) \leq \omega$$
 in $\mathcal{D}'(\mathbf{R}^d)$.

Application to the parabolic type equation

Now, let us consider the non-linear parabolic type equation

$$L(u) = \partial_t u - \operatorname{div} \operatorname{div} (g(t, \mathbf{x}, u) \mathbf{A}(t, \mathbf{x})),$$

on $(0,\infty) \times \Omega$, where Ω is an open subset of \mathbf{R}^d . We assume that

$$u \in \mathcal{L}^{p}((0,\infty) \times \Omega), \quad g(t, \mathbf{x}, u(t, \mathbf{x})) \in \mathcal{L}^{q}((0,\infty) \times \Omega), \quad 1 < p, q,$$
$$\mathbf{A} \in \mathcal{L}^{s}_{loc}((0,\infty) \times \Omega)^{d \times d}, \quad \text{where} \quad 1/p + 1/q + 1/s < 1,$$

and that the matrix \mathbf{A} is strictly positive definite, i.e.

$$\mathbf{A}\boldsymbol{\xi}\cdot\boldsymbol{\xi}>0, \quad \boldsymbol{\xi}\in\mathbf{R}^d\setminus\{\mathbf{0}\}, \quad (a.e.(t,\mathbf{x})\in(0,\infty)\times\Omega).$$

Furthermore, assume that g is a Carathèodory function and non-decreasing with respect to the third variable.

Then we have the following theorem.

Theorem 9. Assume that sequences (u_r) and $g(\cdot, u_r)$ are such that $u_r, g(u_r) \in L^2(\mathbf{R}^+ \times \mathbf{R}^d)$ for every $r \in \mathbf{N}$; assume that they are bounded in $L^p(\mathbf{R}^+ \times \mathbf{R}^d)$, $p \in (1, 2]$, and $L^q(\mathbf{R}^+ \times \mathbf{R}^d)$, q > 2, respectively, where 1/p + 1/q < 1; furthermore, assume $u_r \rightharpoonup u$ and, for some, $f \in W^{-1,-2;p}(\mathbf{R}^+ \times \mathbf{R}^d)$, the sequence

$$L(u_r) = f_r \to f$$
 strongly in $W^{-1,-2;p}(\mathbf{R}^+ \times \mathbf{R}^d)$.

Under the assumptions given above, it holds

$$L(u) = f$$
 in $\mathcal{D}'(\mathbf{R}^+ \times \mathbf{R}^d)$.

References

- N. Antonić, M. Mišur, D. Mitrović, On the First commutation lemma, submitted, 18 pages
- N. Antonić, M. Erceg, M. Mišur, *Distributions of anisotropic order and applications*, in preparation, 24 pages
- M. Mišur, D. Mitrović, On a generalization of compensated compactness in the L^p - L^q setting, Journal of Functional Analysis 268 (2015) 1904–1927.