Exact solutions in optimal design problems for stationary diffusion equation

Krešimir Burazin

University J. J. Strossmayer of Osijek
Department of Mathematics
Trg Ljudevita Gaja 6
31000 Osijek, Croatia
http://www.mathos.unios.hr//kburazin

kburazin@mathos.hr

Joint work with Marko Vrdoljak, University of Zagreb

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array} \quad, \quad i=1, \ldots, m\right.
$$

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array} \quad, \quad i=1, \ldots, m\right.
$$

where \mathbf{A} is a mixture of two isotropic materials with conductivities $0<\alpha<\beta$:

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array} \quad, \quad i=1, \ldots, m\right.
$$

where \mathbf{A} is a mixture of two isotropic materials with conductivities $0<\alpha<\beta: \mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}$, where $\chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$, $\int_{\Omega} \chi d \mathbf{x}=q_{\alpha}$, for given $0<q_{\alpha}<|\Omega|$.

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}, \quad i=1, \ldots, m\right.
$$

where \mathbf{A} is a mixture of two isotropic materials with conductivities $0<\alpha<\beta: \mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}$, where $\chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$, $\int_{\Omega} \chi d \mathbf{x}=q_{\alpha}$, for given $0<q_{\alpha}<|\Omega|$.
For given $\Omega, \alpha, \beta, q_{\alpha}, f_{i}$, and some given weights $\mu_{i}>0$, we want to find such material \mathbf{A} which minimizes the weighted sum of compliances (total amounts of heat/electrical energy dissipated in Ω):

Multiple state optimal design problem

$\Omega \subseteq \mathbf{R}^{d}$ open and bounded, $f_{1}, \ldots, f_{m} \in \mathrm{~L}^{2}(\Omega)$ given; stationary diffusion equations with homogenous Dirichlet b. c.:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\mathbf{A} \nabla u_{i}\right)=f_{i} \tag{1}\\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)
\end{array} \quad, \quad i=1, \ldots, m\right.
$$

where \mathbf{A} is a mixture of two isotropic materials with conductivities $0<\alpha<\beta: \mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I}$, where $\chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$, $\int_{\Omega} \chi d \mathbf{x}=q_{\alpha}$, for given $0<q_{\alpha}<|\Omega|$.
For given $\Omega, \alpha, \beta, q_{\alpha}, f_{i}$, and some given weights $\mu_{i}>0$, we want to find such material \mathbf{A} which minimizes the weighted sum of compliances (total amounts of heat/electrical energy dissipated in Ω):

$$
I(\chi):=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} d \mathbf{x} \rightarrow \min , \quad \chi \in \mathrm{~L}^{\infty}(\Omega ;\{0,1\})
$$

single state, $f \equiv 1, \Omega$ circle / square

Murat \& Tartar
Lurie \& Cherkaev

single state, $f \equiv 1, \Omega$ circle / square

Murat \& Tartar
Lurie \& Cherkaev

single state, $f \equiv 1, \Omega$ circle / square

Murat \& Tartar
Lurie \& Cherkaev

$$
\begin{array}{rll}
\chi \in \mathrm{L}^{\infty}(\Omega ;\{0,1\}) & \cdots & \theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]) \\
\mathbf{A}=\chi \alpha \mathbf{I}+(1-\chi) \beta \mathbf{I} & & \mathbf{A} \in \mathcal{K}(\theta) \text { a.e. on } \Omega \\
\text { classical material } & & \text { composite mateiral - relaxation }
\end{array}
$$

Composite material

Definition

If a sequence of characteristic functions $\chi_{\varepsilon} \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$ and conductivities

$$
\mathbf{A}^{\varepsilon}(x)=\chi_{\varepsilon}(x) \alpha \mathbf{I}+\left(1-\chi_{\varepsilon}(x)\right) \beta \mathbf{I}
$$

satisfy $\chi_{\varepsilon} \rightharpoonup \theta$ weakly $*$ and $\mathbf{A}^{\varepsilon} H$-converges to \mathbf{A}^{*}, then it is said that \mathbf{A}^{*} is homogenised tensor of two-phase composite material with proportions θ of first material and microstructure defined by the sequence $\left(\chi_{\varepsilon}\right)$.

Composite material

Definition

If a sequence of characteristic functions $\chi_{\varepsilon} \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$ and conductivities

$$
\mathbf{A}^{\varepsilon}(x)=\chi_{\varepsilon}(x) \alpha \mathbf{I}+\left(1-\chi_{\varepsilon}(x)\right) \beta \mathbf{I}
$$

satisfy $\chi_{\varepsilon} \rightharpoonup \theta$ weakly $*$ and $\mathbf{A}^{\varepsilon} H$-converges to \mathbf{A}^{*}, then it is said that \mathbf{A}^{*} is homogenised tensor of two-phase composite material with proportions θ of first material and microstructure defined by the sequence $\left(\chi_{\varepsilon}\right)$.
Example - simple laminates: if χ_{ε} depend only on x_{1}, then

$$
\mathbf{A}^{*}=\operatorname{diag}\left(\lambda_{\theta}^{-}, \lambda_{\theta}^{+}, \lambda_{\theta}^{+}, \ldots, \lambda_{\theta}^{+}\right),
$$

where

$$
\lambda_{\theta}^{+}=\theta \alpha+(1-\theta) \beta, \quad \frac{1}{\lambda_{\theta}^{-}}=\frac{\theta}{\alpha}+\frac{1-\theta}{\beta}
$$

Composite material

Definition

If a sequence of characteristic functions $\chi_{\varepsilon} \in \mathrm{L}^{\infty}(\Omega ;\{0,1\})$ and conductivities

$$
\mathbf{A}^{\varepsilon}(x)=\chi_{\varepsilon}(x) \alpha \mathbf{I}+\left(1-\chi_{\varepsilon}(x)\right) \beta \mathbf{I}
$$

satisfy $\chi_{\varepsilon} \rightharpoonup \theta$ weakly $*$ and $\mathbf{A}^{\varepsilon} H$-converges to \mathbf{A}^{*}, then it is said that \mathbf{A}^{*} is homogenised tensor of two-phase composite material with proportions θ of first material and microstructure defined by the sequence $\left(\chi_{\varepsilon}\right)$.
Example - simple laminates: if χ_{ε} depend only on x_{1}, then

$$
\mathbf{A}^{*}=\operatorname{diag}\left(\lambda_{\theta}^{-}, \lambda_{\theta}^{+}, \lambda_{\theta}^{+}, \ldots, \lambda_{\theta}^{+}\right),
$$

where

$$
\lambda_{\theta}^{+}=\theta \alpha+(1-\theta) \beta, \quad \frac{1}{\lambda_{\theta}^{-}}=\frac{\theta}{\alpha}+\frac{1-\theta}{\beta}
$$

Set of all composites:

$$
\mathcal{A}:=\left\{(\theta, \mathbf{A}) \in \mathrm{L}^{\infty}\left(\Omega ;[0,1] \times \mathrm{M}_{d}(\mathbf{R})\right): \int_{\Omega} \theta d \mathbf{x}=q_{\alpha}, \mathbf{A} \in \mathcal{K}(\theta) \text { a.e. }\right\}
$$

Effective conductivities - set $\mathcal{K}(\theta)$

G-closure problem: for given θ find all possible homogenised (effective)
tensors A*

Effective conductivities - set $\mathcal{K}(\theta)$

2D:

G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^{*}
$\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat \& Tartar; Lurie \& Cherkaev):

$$
\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d
$$

$$
\sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha}
$$

$$
\sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}}
$$

Effective conductivities - set $\mathcal{K}(\theta)$

2D:
G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^{*}
$\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat \& Tartar; Lurie \& Cherkaev):

$$
\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d
$$

$\sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha}$
$\sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}}$,

Effective conductivities - set $\mathcal{K}(\theta)$

G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^{*}
$\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat \& Tartar; Lurie \& Cherkaev):

$$
\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d
$$

2D:

$\sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha}$
$\sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}}$,

Effective conductivities - set $\mathcal{K}(\theta)$

G-closure problem: for given θ find all possible homogenised (effective) tensors \mathbf{A}^{*}
$\mathcal{K}(\theta)$ is given in terms of eigenvalues (Murat \& Tartar; Lurie \& Cherkaev):

$$
\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j=1, \ldots, d
$$

$\sum_{j=1}^{d} \frac{1}{\lambda_{j}-\alpha} \leq \frac{1}{\lambda_{\theta}^{-}-\alpha}+\frac{d-1}{\lambda_{\theta}^{+}-\alpha}$
$\sum_{j=1}^{d} \frac{1}{\beta-\lambda_{j}} \leq \frac{1}{\beta-\lambda_{\theta}^{-}}+\frac{d-1}{\beta-\lambda_{\theta}^{+}}$,
$\min _{\mathcal{A}} J$ is a proper relaxation of

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)

How do we find a solution?

Goal: find explicit solution for some simple domains (circle) Motivation: test examples for robust numerical algorithms

How do we find a solution?

Goal: find explicit solution for some simple domains (circle) Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar]

This problem can be rewritten as a simpler convex minimization problem.

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar]

This problem can be rewritten as a simpler convex minimization problem.

$$
\begin{aligned}
& I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow \min \\
& \mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\} \\
& \theta \in \mathcal{T}, \text { and } u \text { determined uniquely by } \\
& \left\{\begin{array}{l}
-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f \\
u \in \mathrm{H}_{0}^{1}(\Omega)
\end{array}\right.
\end{aligned}
$$

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar]

This problem can be rewritten as a simpler convex minimization problem.
$I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow$ min
$\mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\}$
$\theta \in \mathcal{T}$, and u determined uniquely by
$\left\{-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f\right.$
$u \in \mathrm{H}_{0}^{1}(\Omega)$
$\min _{\mathcal{A}} J \quad \Longleftrightarrow \quad \min _{\mathcal{T}} I$

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.
B. Multiple state equations: Simpler relaxation fails, but in spherically symmetric case it can be done!
$I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow$ min
$\mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\}$
$\theta \in \mathcal{T}$, and u determined uniquely by
$\left\{-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u\right)=f\right.$
$u \in \mathrm{H}_{0}^{1}(\Omega)$
$\min _{\mathcal{A}} J \Longleftrightarrow \min _{\mathcal{T}} I$

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$
\left.\begin{array}{ll}
I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow \min & I(\theta)=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} d \mathbf{x} \longrightarrow \min \\
\mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\} & \mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\}
\end{array}\right\} \begin{array}{ll}
\theta \in \mathcal{T}, \text { and } u \text { determined uniquely by } & \theta \in \mathcal{T}, \text { and } u_{i} \text { determined uniquely by } \\
u \in \mathrm{H}_{0}^{1}(\Omega) & \begin{cases}-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right)=f_{i} & i=1, \ldots, m, \\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)\end{cases}
\end{array}
$$

B. Multiple state equations: Simpler relaxation fails, but in spherically symmetric case it can be done!

$$
\min _{\mathcal{A}} J \Longleftrightarrow \min _{\mathcal{T}} l
$$

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat \& Tartar] This problem can be rewritten as a simpler convex minimization problem.

$$
\left.\begin{array}{ll}
I(\theta)=\int_{\Omega} f u d \mathbf{x} \longrightarrow \min & I(\theta)=\sum_{i=1}^{m} \mu_{i} \int_{\Omega} f_{i} u_{i} d \mathbf{x} \longrightarrow \min \\
\mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\} & \mathcal{T}=\left\{\theta \in \mathrm{L}^{\infty}(\Omega ;[0,1]): \int_{\Omega} \theta=q_{\alpha}\right\}
\end{array}\right\} \begin{array}{ll}
\theta \in \mathcal{T}, \text { and } u \text { determined uniquely by } & \theta \in \mathcal{T}, \text { and } u_{i} \text { determined uniquely by } \\
u \in \mathrm{H}_{0}^{1}(\Omega) & \begin{cases}-\operatorname{div}\left(\lambda_{\theta}^{+} \nabla u_{i}\right)=f_{i} & i=1, \ldots, m, \\
u_{i} \in \mathrm{H}_{0}^{1}(\Omega)\end{cases}
\end{array}
$$

B. Multiple state equations: Simpler relaxation fails, but in spherically symmetric case it can be done!
$\min _{\mathcal{A}} J \quad \Longleftrightarrow \quad \min _{\mathcal{T}} I$

Minimization problem $\min _{\mathcal{B}} J$

$$
\mathcal{A}:=\left\{(\theta, \mathbf{A}) \in \mathrm{L}^{\infty}\left(\Omega ;[0,1] \times \mathrm{M}_{d}(\mathbf{R})\right): \int_{\Omega} \theta d \mathbf{x}=q_{\alpha}, \mathbf{A} \in \mathcal{K}(\theta) \text { a.e. }\right\}
$$

Minimization problem $\min _{\mathcal{B}} J$

$$
\mathcal{A}:=\left\{(\theta, \mathbf{A}) \in \mathrm{L}^{\infty}\left(\Omega ;[0,1] \times \mathrm{M}_{d}(\mathbf{R})\right): \int_{\Omega} \theta d \mathbf{x}=q_{\alpha}, \mathbf{A} \in \mathcal{K}(\theta) \text { a.e. }\right\}
$$

Further relaxation:

$$
\begin{array}{ll}
\mathcal{B} & \ldots \quad \int_{\Omega} \theta d \mathbf{x}=q_{\alpha} \\
& \lambda_{\theta}^{-} \leq \lambda_{i}(\mathbf{A}) \leq \lambda_{\theta}^{+}
\end{array}
$$

Minimization problem $\min _{\mathcal{B}} J$

$$
\mathcal{A}:=\left\{(\theta, \mathbf{A}) \in \mathrm{L}^{\infty}\left(\Omega ;[0,1] \times \mathrm{M}_{d}(\mathbf{R})\right): \int_{\Omega} \theta d \mathbf{x}=q_{\alpha}, \mathbf{A} \in \mathcal{K}(\theta) \text { a.e. }\right\}
$$

Further relaxation:

$$
\begin{array}{ll}
\mathcal{B} & \ldots \quad \int_{\Omega} \theta d \mathbf{x}=q_{\alpha} \\
& \lambda_{\theta}^{-} \leq \lambda_{i}(\mathbf{A}) \leq \lambda_{\theta}^{+}
\end{array}
$$

\mathcal{B} is convex and compact and J is continuous on \mathcal{B}, so there is a solution of $\min _{\mathcal{B}} \mathrm{J}$.

University of Osijek - Department of Mathematics
$\min _{\mathcal{B}} J \Longleftrightarrow \min _{\mathcal{T}} I$

Theorem

- There is unique $\mathrm{u}^{*} \in \mathrm{H}_{0}^{1}\left(\Omega ; \mathbf{R}^{m}\right)$ which is the state for every solution of $\min _{\mathcal{B}} J$ and $\min _{\mathcal{T}} l$.

Theorem

- There is unique $u^{*} \in \mathrm{H}_{0}^{1}\left(\Omega ; \mathbf{R}^{m}\right)$ which is the state for every solution of $\min _{\mathcal{B}} J$ and $\min _{\mathcal{T}}$ l.
- If $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is an optimal design for the problem $\min _{\mathcal{B}} J$, then θ^{*} is optimal design for $\min _{\mathcal{T}}$ I.

Theorem

- There is unique $u^{*} \in H_{0}^{1}\left(\Omega ; \mathbf{R}^{m}\right)$ which is the state for every solution of $\min _{\mathcal{B}} J$ and $\min _{\mathcal{T}} l$.
- If $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is an optimal design for the problem $\min _{\mathcal{B}} \mathrm{J}$, then θ^{*} is optimal design for $\min _{\mathcal{T}} \mathrm{l}$.
- Conversely, if θ^{*} is a solution of optimal design problem $\min _{\mathcal{T}}$ I, then any $\left(\theta^{*}, \mathbf{A}^{*}\right) \in \mathcal{B}$ satisfying $\mathbf{A}^{*} \nabla u_{i}^{*}=\lambda_{\theta^{*}}^{+} \nabla u_{i}^{*}$ almost everywhere on Ω (e.g. $\mathbf{A}^{*}=\lambda_{\theta^{*}}^{+} \mathbf{I}$) is an optimal design for the problem $\min _{\mathcal{B}} \mathrm{J}$.

Theorem

- There is unique $u^{*} \in H_{0}^{1}\left(\Omega ; \mathbf{R}^{m}\right)$ which is the state for every solution of $\min _{\mathcal{B}} J$ and $\min _{\mathcal{T}} l$.
- If $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is an optimal design for the problem $\min _{\mathcal{B}} \mathrm{J}$, then θ^{*} is optimal design for $\min _{\mathcal{T}} I$.
- Conversely, if θ^{*} is a solution of optimal design problem $\min _{\mathcal{T}}$ I, then any $\left(\theta^{*}, \mathbf{A}^{*}\right) \in \mathcal{B}$ satisfying $\mathbf{A}^{*} \nabla u_{i}^{*}=\lambda_{\theta^{*}}^{+} \nabla u_{i}^{*}$ almost everywhere on Ω (e.g. $\mathbf{A}^{*}=\lambda_{\theta^{*}}^{+}$) is an optimal design for the problem $\min _{\mathcal{B}} \mathrm{J}$.
- If $m<d$, then there exists minimizer $\left(\theta^{*}, \mathbf{A}^{*}\right)$ for J on \mathcal{B}, such that $\left(\theta^{*}, \mathbf{A}^{*}\right) \in \mathcal{A}$, and thus it is also minimizer for J on \mathcal{A}.

Spherical symmetry: $\min _{\mathcal{A}} J \Longleftarrow \min _{\mathcal{B}} J \Longleftrightarrow \min _{\mathcal{T}} I$

Theorem
Let $\Omega \subseteq \mathbf{R}^{d}$ be spherically symmetric, and let the right-hand sides $f_{i}=f_{i}(r), r \in \omega, i=1, \ldots, m$ be radial functions. Then there exists a minimizer $\left(\theta^{*}, \mathbf{A}^{*}\right)$ of the optimal design problem $\min _{\mathcal{A}} J$ which is a radial function.

Spherical symmetry: $\min _{\mathcal{A}} J \Longleftarrow \min _{\mathcal{B}} J \Longleftrightarrow \min _{\mathcal{T}} I$

Theorem

Let $\Omega \subseteq \mathbf{R}^{d}$ be spherically symmetric, and let the right-hand sides $f_{i}=f_{i}(r), r \in \omega, i=1, \ldots, m$ be radial functions. Then there exists a minimizer $\left(\theta^{*}, \mathbf{A}^{*}\right)$ of the optimal design problem $\min _{\mathcal{A}} J$ which is a radial function. More precisely
a) For any minimizer θ of functional I over \mathcal{T}, let us define a radial function $\theta^{*}: \Omega \longrightarrow \mathbf{R}$ as the average value over spheres of θ : for $r \in \omega$ we take

$$
\theta^{*}(r):=f_{\partial B(0, r)} \theta d S,
$$

where S denotes the surface measure on a sphere. Then θ^{*} is also minimizer for I over \mathcal{T}.

Spherical symmetry...cont.

Theorem

b) For any radial minimizer θ^{*} of I over \mathcal{T}, let us define \mathbf{A}^{*} as a simple laminate layered with respect to a radial direction \mathbf{e}_{r}, as below, and local proportion of the first material θ^{*}. To be specific, we can define $\mathbf{A}^{*}: \Omega \longrightarrow \mathrm{M}_{d}(\mathbf{R})$ in the following way:

Spherical symmetry...cont.

Theorem

b) For any radial minimizer θ^{*} of I over \mathcal{T}, let us define \mathbf{A}^{*} as a simple laminate layered with respect to a radial direction \mathbf{e}_{r}, as below, and local proportion of the first material θ^{*}. To be specific, we can define $\mathbf{A}^{*}: \Omega \longrightarrow \mathrm{M}_{d}(\mathbf{R})$ in the following way:

- If $\mathbf{x}=r \mathrm{e}_{1}=(r, 0,0, \ldots, 0)$, then

$$
\mathbf{A}^{*}(\mathbf{x}):=\operatorname{diag}\left(\lambda_{\theta^{*}}^{+}(r), \lambda_{\theta^{*}}^{-}(r), \lambda_{\theta^{*}}^{+}(r), \ldots, \lambda_{\theta^{*}}^{+}(r)\right) .
$$

Spherical symmetry...cont.

Theorem

b) For any radial minimizer θ^{*} of I over \mathcal{T}, let us define \mathbf{A}^{*} as a simple laminate layered with respect to a radial direction \mathbf{e}_{r}, as below, and local proportion of the first material θ^{*}. To be specific, we can define $\mathbf{A}^{*}: \Omega \longrightarrow \mathrm{M}_{d}(\mathbf{R})$ in the following way:

- If $\mathbf{x}=r \mathrm{e}_{1}=(r, 0,0, \ldots, 0)$, then

$$
\mathbf{A}^{*}(\mathbf{x}):=\operatorname{diag}\left(\lambda_{\theta^{*}}^{+}(r), \lambda_{\theta^{*}}^{-}(r), \lambda_{\theta^{*}}^{+}(r), \ldots, \lambda_{\theta^{*}}^{+}(r)\right) .
$$

- For all other $\mathbf{x} \in \Omega$, we take the unique rotation $\mathbf{R}(\mathbf{x}) \in S O(d)$ such that $\mathbf{x}=|\mathbf{x}| \mathbf{R}(\mathbf{x}) \mathrm{e}_{1}$, and define

$$
\mathbf{A}^{*}(\mathbf{x}):=\mathbf{R}(\mathbf{x}) \mathbf{A}^{*}\left(\mathbf{R}^{\tau}(\mathbf{x}) \mathbf{x}\right) \mathbf{R}^{\tau}(\mathbf{x}) .
$$

Spherical symmetry...cont.

Theorem

b) For any radial minimizer θ^{*} of I over \mathcal{T}, let us define \mathbf{A}^{*} as a simple laminate layered with respect to a radial direction \mathbf{e}_{r}, as below, and local proportion of the first material θ^{*}. To be specific, we can define $\mathbf{A}^{*}: \Omega \longrightarrow \mathrm{M}_{d}(\mathbf{R})$ in the following way:

- If $\mathbf{x}=r \mathrm{e}_{1}=(r, 0,0, \ldots, 0)$, then

$$
\mathbf{A}^{*}(\mathbf{x}):=\operatorname{diag}\left(\lambda_{\theta^{*}}^{+}(r), \lambda_{\theta^{*}}^{-}(r), \lambda_{\theta^{*}}^{+}(r), \ldots, \lambda_{\theta^{*}}^{+}(r)\right) .
$$

- For all other $\mathbf{x} \in \Omega$, we take the unique rotation $\mathbf{R}(\mathbf{x}) \in S O(d)$ such that $\mathbf{x}=|\mathbf{x}| \mathbf{R}(\mathbf{x}) \mathrm{e}_{1}$, and define

$$
\mathbf{A}^{*}(\mathbf{x}):=\mathbf{R}(\mathbf{x}) \mathbf{A}^{*}\left(\mathbf{R}^{\tau}(\mathbf{x}) \mathbf{x}\right) \mathbf{R}^{\tau}(\mathbf{x}) .
$$

Then $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is a radial optimal design for $\min _{\mathcal{B}} J$.

Spherical symmetry...cont.

Theorem

b) For any radial minimizer θ^{*} of I over \mathcal{T}, let us define \mathbf{A}^{*} as a simple laminate layered with respect to a radial direction \mathbf{e}_{r}, as below, and local proportion of the first material θ^{*}. To be specific, we can define $\mathbf{A}^{*}: \Omega \longrightarrow \mathrm{M}_{d}(\mathbf{R})$ in the following way:

- If $\mathbf{x}=r \mathrm{e}_{1}=(r, 0,0, \ldots, 0)$, then

$$
\mathbf{A}^{*}(\mathbf{x}):=\operatorname{diag}\left(\lambda_{\theta^{*}}^{+}(r), \lambda_{\theta^{*}}^{-}(r), \lambda_{\theta^{*}}^{+}(r), \ldots, \lambda_{\theta^{*}}^{+}(r)\right) .
$$

- For all other $\mathbf{x} \in \Omega$, we take the unique rotation $\mathbf{R}(\mathbf{x}) \in S O(d)$ such that $\mathbf{x}=|\mathbf{x}| \mathbf{R}(\mathbf{x}) \mathrm{e}_{1}$, and define

$$
\mathbf{A}^{*}(\mathbf{x}):=\mathbf{R}(\mathbf{x}) \mathbf{A}^{*}\left(\mathbf{R}^{\tau}(\mathbf{x}) \mathbf{x}\right) \mathbf{R}^{\tau}(\mathbf{x}) .
$$

Then $\left(\theta^{*}, \mathbf{A}^{*}\right)$ is a radial optimal design for $\min _{\mathcal{B}} J$. Moreover, $\left(\theta^{*}, \mathbf{A}^{*}\right) \in \mathcal{A}$, and thus it is also a solution for $\min _{\mathcal{A}} \mathrm{J}$.

Optimality conditions for $\min _{\mathcal{T}}$ I

Lemma

$\theta^{*} \in \mathcal{T}$ is a solution $\min _{\mathcal{T}}$ I if and only if there exists a Lagrange multiplier $c \geq 0$ such that
or equivalently

$$
\begin{aligned}
\theta^{*} \in\langle 0,1\rangle & \Rightarrow \sum_{\substack{i=1}}^{m} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2}=c \\
\theta^{*}=0 & \Rightarrow \sum_{\substack{i=1 \\
m}} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2} \geq c \\
\theta^{*}=1 & \Rightarrow \sum_{i=1}^{m} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2} \leq c
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\substack{i=1 \\
m}}^{m} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2}>c \Rightarrow \theta^{*}=0 \\
& \sum_{i=1}^{m} \mu_{i}\left|\nabla u_{i}^{*}\right|^{2}<c \Rightarrow \theta^{*}=1
\end{aligned}
$$

Ball $\Omega=B(\mathbf{0}, 2) \subseteq \mathbf{R}^{2}$ with nonconstant right-hand side
In all examples $\alpha=1, \beta=2$, one state equation $f(r)=1-r$

Ball $\Omega=B(\mathbf{0}, 2) \subseteq \mathbf{R}^{2}$ with nonconstant right-hand side

In all examples $\alpha=1, \beta=2$, one state equation $f(r)=1-r$
optimality conditions: $\gamma:=\sqrt{c}>0$ γ is uniquely determined by

$$
f_{\Omega} \theta^{*} d \mathbf{x}=\eta:=\frac{q_{\alpha}}{|\Omega|} \in[0,1]
$$

which is an algebraic equation for γ.

Ball $\Omega=B(\mathbf{0}, 2) \subseteq \mathbf{R}^{2}$ with nonconstant right-hand side

In all examples $\alpha=1, \beta=2$, one state equation $f(r)=1-r$
optimality conditions: $\gamma:=\sqrt{c}>0$ γ is uniquely determined by

$$
f_{\Omega} \theta^{*} d \mathbf{x}=\eta:=\frac{q_{\alpha}}{|\Omega|} \in[0,1]
$$

which is an algebraic equation for γ.

Two state equations on a ball $\Omega=B(0,2)$

- $f_{1}=\chi_{B(0,1)}, f_{2} \equiv 1$,

Two state equations on a ball $\Omega=B(0,2)$

- $f_{1}=\chi_{B(0,1)}, f_{2} \equiv 1$,
- $\mu \int_{\Omega} f_{1} u_{1} d \mathbf{x}+\int_{\Omega} f_{2} u_{2} d \mathbf{x} \rightarrow$ min

Two state equations on a ball $\Omega=B(0,2)$

- $f_{1}=\chi_{B(0,1)}, f_{2} \equiv 1$,
- $\mu \int_{\Omega} f_{1} u_{1} d \mathbf{x}+\int_{\Omega} f_{2} u_{2} d \mathbf{x} \rightarrow$ min

C: $4<\mu \leq 16$

Optimal θ^{*} for case B

As before, Lagrange multiplier can be numerically calculated from corresponding algebraic equation $f_{\Omega} \theta^{*} d \mathbf{x}=\eta$.

Optimal θ^{*} for case B

As before, Lagrange multiplier can be numerically calculated from corresponding algebraic equation $f_{\Omega} \theta^{*} d \mathbf{x}=\eta$.

Optimal θ^{*} for case B

As before, Lagrange multiplier can be numerically calculated from corresponding algebraic equation $f_{\Omega} \theta^{*} d \mathbf{x}=\eta$.

Thank you for your attention!

