Homogenization of elastic plate equation

Jelena Jankov

J. J. Strossmayer University of Osijek/Department of Mathematics/Joint work with K. Burazin and M. Vrdoljak

Homogenization theory

The physical idea of homogenization is to average a heterogeneous media in order to derive effective properties.
$\{A u=f$ in Ω
$\{$ initial/boundary condition

The mathematical theory of homogenization:
we consider a sequence of problems

$$
\left\{\begin{array}{l}
A_{n} u_{n}=f \quad \text { in } \quad \Omega \\
\text { initial/boundary condition }
\end{array}\right.
$$

If $u_{n} \rightarrow u, A_{n} \rightarrow A$ the limit (effective) problem is

The mathematical problem is to determine an adequate topologies for these convergences.

Elastic plate equation

Homogeneous Dirichlet boundary value problem:

$$
\left\{\begin{array}{l}
\operatorname{divdiv}(\mathbf{M} \nabla \nabla \mathrm{u})=\mathrm{f} \quad \text { in } \quad \Omega \\
u \in H^{2}(\Omega)
\end{array}\right.
$$

- $\Omega \subset \mathbb{R}^{2}$ bounded domain
- $f \in H^{-2}(\Omega)$ external load
- $\mathbf{M} \in \mathfrak{M}_{2}(\alpha, \beta ; \Omega):=\left\{\mathbf{M} \in L^{\infty}(\Omega ; \mathcal{L}(\operatorname{Sym}, \operatorname{Sym})):(\forall \mathbf{S} \in \operatorname{Sym}) \mathbf{M}(x) \mathbf{S}: \mathbf{S} \geq \alpha \mathbf{S}: \mathbf{S}\right.$ and $\mathbf{M}^{-1}(\mathbf{x}) \mathbf{S}: \mathbf{S} \geq \frac{1}{\beta} \mathbf{S}: \mathbf{S}$ a.e. $\left.\mathbf{x}\right\}$ describes elastic properties of the given plate
- u transversal displacement of the plate

Antonić, Balenović, 1999:
Definition $1 A$ sequence of tensor functions $\left(\mathbf{M}^{n}\right)$ in $\mathfrak{M}_{2}(\alpha, \beta ; \Omega) H$-converges to $\mathbf{M} \in \mathfrak{M}_{2}\left(\alpha^{\prime}, \beta^{\prime} ; \Omega\right)$ if for any $f \in H^{-2}(\Omega)$ the sequence of solutions $\left(u_{n}\right)$ of problems

$$
\left\{\begin{array}{l}
\operatorname{divdiv}\left(\mathbf{M}^{\mathrm{n}} \nabla \nabla \mathrm{u}_{\mathrm{n}}\right)=\mathrm{f} \quad \text { in } \quad \Omega \\
u_{n} \in H_{0}^{2}(\Omega)
\end{array}\right.
$$

coverges weakly to a limit u in $H_{0}^{2}(\Omega)$, while the sequence $\left(\mathbf{M}^{n} \nabla \nabla u_{n}\right)$ converges to $\mathbf{M} \nabla \nabla u$ weakly in the space $L^{2}(\Omega ; \mathrm{Sym})$.

Theorem 1 Let $\left(\mathbf{M}^{n}\right)$ be a sequence in $\mathfrak{M}_{2}(\alpha, \beta ; \Omega)$. Then there is a subsequence $\left(\mathbf{M}^{n_{k}}\right)$ and a tensor function $\mathbf{M} \in \mathfrak{M}_{2}(\alpha, \beta ; \Omega)$ such that $\left(\mathbf{M}^{n_{k}}\right) H$-converges to \mathbf{M}.

Properties of H -convergence and corrector result

Theorem 2 (Irrelevance of boundary conditions) Let $\left(\mathbf{M}^{n}\right)$ be a sequence of tensors in $\mathfrak{M}_{2}(\alpha, \beta ; \Omega)$ that H-converges to \mathbf{M}. For any sequence $\left(z_{n}\right)$ such that

$$
\begin{array}{rll}
z_{n} & \text { in } H_{\text {loc }}^{2}(\Omega) \\
\operatorname{div} \operatorname{div}\left(\mathbf{M}^{n} \nabla \nabla z_{n}\right)=f_{n} \rightarrow f & \text { in } \mathrm{H}_{\text {loc }}^{-2}(\Omega),
\end{array}
$$

the weak convergence $\mathbf{M}^{n} \nabla \nabla z_{n} \rightharpoonup \mathbf{M} \nabla \nabla z$ in $\mathrm{L}_{\mathrm{loc}}^{2}(\Omega ;$ Sym $)$ holds.
Theorem 3 Let $\left(\mathbf{M}^{n}\right)$ be a sequence of tensors in $\mathfrak{M}_{2}(\alpha, \beta ; \Omega)$ that either converges strongly to a limit tensor \mathbf{M} in $L^{1}\left(\Omega ; \mathcal{L}(\operatorname{Sym}, S y m)\right.$), or converges to \mathbf{M} almost everywhere in Ω. Then $\mathbf{M}^{n} H$-converges to \mathbf{M}.

Theorem 4 Let $F=\left\{f_{n}: n \in \mathbf{N}\right\}$ be a dense countable family in $H^{-2}(\Omega), \mathbf{M}$ and \mathbf{O} tensors in $\mathfrak{M}_{2}(\alpha, \beta ; \Omega)$, and $\left(u_{n}\right),\left(v_{n}\right)$ sequences of solutions to

```
divdiv}(\mathbf{M}\nabla\nabla\mp@subsup{\textrm{u}}{\textrm{n}}{})=\mp@subsup{\textrm{f}}{\textrm{n}}{
\(\left\{\begin{array}{l}u_{n} \in H_{0}^{2}(\Omega)\end{array}\right.\)
```

and
$\left\{\operatorname{divdiv}\left(\mathbf{O} \nabla \nabla \mathrm{v}_{\mathrm{n}}\right)=\mathrm{f}_{\mathrm{n}}\right.$
$\left\{v_{n} \in H_{0}^{2}(\Omega)\right.$
respectively. Then,

$$
d(\mathbf{M}, \mathbf{O}):=\sum_{n=1}^{\infty} 2^{-n} \frac{\left\|u_{n}-v_{n}\right\|_{L^{2}(\Omega)}+\left\|\mathbf{M} \nabla \nabla u_{n}-\mathbf{O} \nabla \nabla v_{n}\right\|_{H^{-1}(\Omega ; \text { Sym })}}{\left\|f_{n}\right\|_{H^{-2}(\Omega)}}
$$

is a metric function on $\mathfrak{M}_{2}(\alpha, \beta ; \Omega)$ and H-convergence is equivalent to the convergence with respect to d.
Definition 2 Let $\left(\mathbf{M}^{n}\right)$ be a sequence of tensors in $\mathfrak{M}_{2}(\alpha, \beta ; \Omega)$ that H-converges to a limit \mathbf{M}. Let $\left(w_{n}^{i j}\right)_{1 \leq i, j \leq N}$ be a family of test functions satisfying

$$
\begin{gathered}
w_{n}^{i j} \rightharpoonup \frac{1}{2} x_{i} x_{j} \quad \text { in } \mathrm{H}^{2}(\Omega) \\
\operatorname{divdiv}\left(\mathbf{M}^{\mathrm{n}} \nabla \nabla \mathrm{w}_{\mathrm{n}}^{\mathrm{ij}}\right) \rightarrow \cdot \quad \text { in } \mathrm{H}_{\mathrm{loc}}^{-2}(\Omega) \\
\mathbf{M}^{n} \nabla \nabla w_{n}^{i j} \rightharpoonup \cdot \quad \text { in } \quad \mathrm{L}_{\mathrm{loc}}^{2}(\Omega ; \operatorname{Sym}) .
\end{gathered}
$$

The tensor \mathbf{W}^{n} defined as $\left[a_{i j k m}\right]_{i j}=\left[\nabla \nabla w_{n}^{k m}\right]_{i j}$ is called a corrector tensor.
Theorem 5 (Corrector result) Let $\left(\mathbf{M}^{n}\right)$ be a sequence of tensors in $\mathfrak{M}_{2}(\alpha, \beta ; \Omega)$ which H-converges to M. For $f \in H^{-2}(\Omega)$, let $\left(u_{n}\right)$ be the solution of
$\left\{\operatorname{divdiv}\left(\mathbf{M}^{\mathrm{n}} \nabla \nabla \mathrm{u}_{\mathrm{n}}\right)=\mathrm{f}\right.$ in Ω
$\left\{u_{n} \in H_{0}^{2}(\Omega)\right.$
Let u be the weak limit of $\left(u_{n}\right)$ in $H_{0}^{2}(\Omega)$, i. e., the solution of the homogenized equation

$$
\left\{\begin{array}{l}
\operatorname{divdiv}(\mathbf{M} \nabla \nabla \mathrm{u})=\mathrm{f} \quad \text { in } \quad \Omega \\
u \in H_{0}^{2}(\Omega) .
\end{array}\right.
$$

Small-amplitude homogenization

Theorem 6 Let $\left(\mathbf{M}^{n}\right)$ be a sequence of tensors defined by $\mathbf{M}^{n}(\mathbf{x}):=\mathbf{M}(n \mathbf{x}), x \in \Omega, Y=[0,1]^{d}$, $H_{\#}^{2}(Y):=\left\{f \in H_{\mathrm{loc}}^{2}\left(\mathbf{R}^{d}\right)\right.$ such that f is Y - periodic $\}$ with the norm $\|\cdot\|_{H^{2}(Y)}$ and $\mathbf{E}_{i j}, 1 \leq i, j \leq d$ are $M_{d \times d}$ matrices defined as

$$
\left[\mathbf{E}_{i j}\right]_{k l}= \begin{cases}1, & \text { if } i=j=k=l \\ \frac{1}{2}, & \text { if } i \neq j,(k, l) \in\{(i, j),(j, i)\} \\ 0, & \text { otherwise. }\end{cases}
$$

Then $\left(\mathbf{M}^{n}\right) H$-converges to a constant tensor $\mathbf{M}^{*} \in \mathfrak{M}_{2}(\alpha, \beta ; \Omega)$ defined as

$$
m_{k l i j}^{*}=\int_{Y} \mathbf{M}(\mathbf{y})\left(\mathbf{E}_{i j}+\nabla \nabla w_{i j}(\mathbf{y})\right):\left(\mathbf{E}_{k l}+\nabla \nabla w_{k l}(\mathbf{y})\right) d \mathbf{y}
$$

where $\left(w_{i j}\right)_{1 \leq i, j \leq d}$ is the family of unique solutions in $H_{\#}^{2}(Y) / \mathbf{R}$ of boundary value problems

$$
\left\{\begin{array}{l}
\operatorname{div} \operatorname{div}\left(\mathbf{M}(\mathbf{y})\left(\mathbf{E}_{i j}+\nabla \nabla w_{i j}(\mathbf{y})\right)\right)=0 \text { in } \mathrm{Y}, \mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{~d}
\end{array}\right.
$$

$$
\left\{\mathbf{y} \rightarrow w_{i j}(\mathbf{y})\right.
$$

Theorem 7 Let $\mathbf{A}_{0} \in \mathcal{L}(S y m ; S y m)$ be a constant coercive tensor, $Y=[0,1]^{d}, \mathbf{B}^{n}(y):=\mathbf{B}(n y), y \in \Omega$, where $\Omega \subseteq \mathbf{R}^{d}$ is a bounded, open set. Additionally, let \mathbf{B} be a Y-periodic, L^{∞} tensor function, for which we assume that $\int_{Y} \mathbf{B}(y) d y=0, p \in P$ where $P \subseteq \mathbf{R}$ is an open set, and

$$
\mathbf{A}_{p}^{n}(\mathbf{y})=\mathbf{A}_{0}+p \mathbf{B}^{n}(\mathbf{y}) .
$$

Then

$$
\mathbf{A}_{p}^{n}(\mathbf{y}):=\mathbf{A}_{0}+p \mathbf{B}^{n}(y)
$$

H-converges to a tensor

$$
\mathbf{A}_{p}:=\mathbf{A}_{0}+p \mathbf{B}_{0}+p^{2} \mathbf{C}_{0}+o\left(p^{2}\right)
$$

with coefficients $\mathbf{B}_{0}=0$ and

$$
\begin{aligned}
\mathbf{C}_{0} \mathbf{E}_{m n}: \mathbf{E}_{r s} & =(2 \pi i)^{2} \sum_{\mathbf{k} \in J} a_{-\mathbf{k}}^{m n} \mathbf{B}_{\mathbf{k}}(\mathbf{k} \otimes \mathbf{k}): \mathbf{E}_{r s}+ \\
& +(2 \pi i)^{4} \sum_{\mathbf{k} \in J} a_{\mathbf{k}}^{m n} \mathbf{A}_{0}(\mathbf{k} \otimes \mathbf{k}): a_{-\mathbf{k}}^{r s} \mathbf{k} \otimes \mathbf{k}+ \\
& +(2 \pi i)^{2} \sum_{\mathbf{k} \in J} \mathbf{B}_{\mathbf{k}} \mathbf{E}_{m n}: a_{-\mathbf{k}}^{r s} \mathbf{k} \otimes \mathbf{k}
\end{aligned}
$$

where $m, n, r, s \in\{1,2, \cdots$

$$
a_{\mathbf{k}}^{m n}=-\frac{\mathbf{B}_{\mathbf{k}} \mathbf{E}_{m n} \mathbf{k} \cdot \mathbf{k}}{(2 \pi i)^{2} \mathbf{A}_{0}(\mathbf{k} \otimes \mathbf{k}):(\mathbf{k} \otimes \mathbf{k})}, \quad \mathbf{k} \in J, \quad m, n \in\{1,2, \cdots, d\}
$$

and $\mathbf{B}_{k}, k \in J$, are Fourier coefficients of functions $w_{1}^{m n}$ and \mathbf{B}, respectively.

Then, $r_{n}:=\nabla \nabla u_{n}-\mathbf{W}^{n} \nabla \nabla u \rightarrow 0$ strongly in $L_{\mathrm{loc}}^{1}(\Omega ;$ Sym $)$

