

BONN INTERNATIONAL GRADUATE SCHOOL OF MATHEMATICS

Homogenisation of elastic plate equation

Jelena Jankov

J. J. Strossmayer University of Osijek/Department of Mathematics/Joint work with K. Burazin and M. Vrdoljak

Homogenisation theory	Elastic plate equation
The physical idea of homogenisation is to average a heterogeneous media in order to derive effective properties.	Homogeneous Dirichlet boundary value problem:
$\begin{cases} Au = f \text{ in } \Omega \\ \text{initial/boundary condition} \end{cases}$	$\begin{cases} \operatorname{divdiv}(M\nabla\nabla u) = f & \text{in } \Omega \\ u \in H_0^2(\Omega) \end{cases}$ • $\Omega \subseteq \mathbb{R}^2$ bounded domain • $f \in H^{-2}(\Omega)$ external load • $M \in \mathfrak{M}_2(\alpha, \beta; \Omega) := \{M \in L^{\infty}(\Omega; \mathcal{L}(\operatorname{Sym}, \operatorname{Sym})) : (\forall S \in \operatorname{Sym}) \operatorname{M}(x)S : S \ge \alpha S : S \text{ and } M^{-1}(x)S : S \ge \frac{1}{\beta}S : S \text{ a. e. } x \}$ describes elastic properties of the given plate • u transversal displacement of the plate Antonić, Balenović, 1999:
The mathematical theory of homogenisation: we consider a sequence of problems $\left\{ \begin{array}{l} A_n u_n = f {\rm in} \Omega \\ {\rm initial/boundary \ condition} \end{array} \right.$ If $u_n \to u, \ A_n \to A$ the limit (effective) problem is	Definition 1 A sequence of tensor functions (M^n) in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ H-converges to $M \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ if for any $f \in H^{-2}(\Omega)$ the sequence of solutions (u_n) of problems $\begin{cases} \operatorname{divdiv}(M^n \nabla \nabla u_n) = f & \text{in } \Omega \\ u_n \in H_0^2(\Omega) \end{cases}$ coverges weakly to a limit u in $H_0^2(\Omega)$, while the sequence $(M^n \nabla \nabla u_n)$ converges to $M \nabla \nabla u$ weakly in the space $L^2(\Omega; \operatorname{Sym})$.
$\begin{cases} Au = f & \text{in } \Omega\\ \text{initial/boundary condition } \dots \end{cases}$ The mathematical problem is to determine an adequate topologies for these convergences.	Theorem 1 Let (M^n) be a sequence in $\mathfrak{M}_2(\alpha, \beta; \Omega)$. Then there is a subsequence (M^{n_k}) and a tensor function $M \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ such that (M^{n_k}) H-converges to M .

Properties of H-convergence

Theorem 2 (Locality of the H-convergence) Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$, which H-converge to M and O, respectively. Let ω be an open subset compactly embedded in Ω . If $M^n(x) = O^n(x)$ in ω , then M(x) = O(x) in ω .

Theorem 3 (Irrelevance of the boundary condition) Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that H-converges to M. For any sequence (z_n) such that

$$\begin{aligned} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{z}_{\mathbf{n}}) &= \mathbf{f} \quad \text{in} \quad \Omega \\ z_n &\rightharpoonup z \text{ in } \mathbf{H}^2_{\operatorname{loc}}(\Omega) \end{aligned}$$

 M^n satisfies $M^n \nabla \nabla z_n \rightharpoonup M \nabla \nabla z$ in $L^2_{\text{loc}}(\Omega; Sym)$.

Theorem 4 (Energy convergence) Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that H-converges to M. For any $f \in H^{-2}(\Omega)$, the sequence (u_n) of solutions of

$$\begin{aligned} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{u}_{\mathbf{n}}) &= \mathbf{f} \quad \text{in} \quad \Omega \\ u_n \in H^2_0(\Omega) \end{aligned}$$

satisfies

$$M^n \nabla \nabla u_n : \nabla \nabla u_n \rightharpoonup M \nabla \nabla u : \nabla \nabla u$$

in $M_b(\Omega)$ and

 $\int_{\Omega} M^n \nabla \nabla u_n : \nabla \nabla u_n \, dx \to \int_{\Omega} M \nabla \nabla u : \nabla \nabla u \, dx,$

where u is the solution of the homogenised equation

$$\begin{cases} \operatorname{divdiv}(\mathbf{M}\nabla\nabla\mathbf{u}) = \mathbf{f} & \text{in} \quad \Omega\\ u \in H_0^2(\Omega) \,. \end{cases}$$

Theorem 5 (Ordering property) Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that H-converge to homogenised tensors M and O, respectively. Assume that, for any n, $M^n\xi: \xi \leq O^n\xi: \xi, \quad \forall \xi \in \text{Sym.}$

Then the homogenised limits are also ordered: $M\xi: \xi \leq O\xi: \xi, \quad \forall \xi \in \text{Sym.}$

Theorem 6 Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that either converges strongly to a limit tensor M in $L^1(\Omega; L(\text{Sym}, \text{Sym}))$, or converges to M almost everywhere in Ω . Then M^n H-converges to M.

Corrector results

Definition 2 Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to a limit M. Let $(w_n^{ij})_{1\leq i,j\leq N}$ be a family of test functions satisfying

$$w_n^{ij} \rightharpoonup \frac{1}{2} x_i x_j \quad \text{in} \quad \mathrm{H}^2(\Omega)$$

divdiv $(\mathrm{M}^n \nabla \nabla w_n^{ij}) \rightarrow \cdot \quad \mathrm{in} \, \mathrm{H}^{-2}_{\mathrm{loc}}(\Omega)$

 $M^n \nabla \nabla w_n^{ij} \rightharpoonup \cdot \text{ in } L^2_{\text{loc}}(\Omega; \text{Sym}).$

The tensor W^n defined as $[a_{ijkm}]_{ij} = [\nabla \nabla w_n^{km}]_{ij}$ is called a corrector tensor.

Theorem 7 Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that *H*-converges to a tensor *M*. A sequence of correctors (W^n) is unique in the sense that, for any two sequences of correctors (W^n) and $(\tilde{W^n})$, their difference $(W^n - \tilde{W^n})$ converges strongly to zero in $L^2_{loc}(\Omega; \mathcal{L}(Sym, Sym))$.

Theorem 8 (Corrector result) Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ which H-converges to M. For $f \in H^{-2}(\Omega)$, let (u_n) be the solution of

```
\begin{cases} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{u}_{\mathbf{n}}) = \mathbf{f} & \text{in} \quad \Omega\\ u_{n} \in H_{0}^{2}(\Omega) \,. \end{cases}
```

Let u be the weak limit of (u_n) in $H^2_0(\Omega)$, i. e., the solution of the homogenised equation

 $\begin{cases} \operatorname{divdiv}(\mathsf{M}\nabla\nabla\mathsf{u}) = \mathsf{f} & \text{in} \quad \Omega\\ u \in H^2_0(\Omega) \,. \end{cases}$

Then, $r_n := \nabla \nabla u_n - W^n \nabla \nabla u \to 0$ strongly in $L^1_{\text{loc}}(\Omega; Sym)$.

References

- G. ALLAIRE, Shape optimization by the homogenization method, Springer, 2001.
- N. ANTONIĆ, N. BALENOVIĆ, Homogenisation and optimal design for plates, Zeitschrift fur Angewandte Mathematik und Mechanik 80, 757–758, 2000.
- N. ANTONIĆ, N. BALENOVIĆ, Optimal design for plates and relaxation, *Math. Communications* 4, 1999.
- J. MUNOZ, P. PEDREGAL, On the relaxation of an optimal design problem for plates, *Asymptotic Analysis* 16, 1998.
- L. TARTAR, The general theory of homogenization, Springer, 2009.