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Homogenisation theory

The physical idea of homogenisation is to average a heterogeneous media in order to derive effective properties.

{Au:f in Q

initial/boundary condition

The mathematical theory of homogenisation:
we consider a sequence of problems

{Anun:f in Q

initial/boundary condition .

If w, — u, A, — A the limit (effective) problem is

{Au:f in Q

initial/boundary condition ...

The mathematical problem is to determine an adequate topologies for these convergences.

Elastic plate equation

Homogeneous Dirichlet boundary value problem:

divdiv(IMVVu) =f in Q
u e HZ(Q)

e () C R? bounded domain

e € H?(Q) external load

o M e My(e, B;9Q) :={M € L*(; L(Sym, Sym)) : (VS € Sym) M(x)S:S > aS: Sand
M~}(x)S:S > %S : Sa.e.x} describes elastic properties of the given plate

e y transversal displacement of the plate
Antoni¢, Balenovi¢, 1999:

Definition 1 A sequence of tensor functions (M™) in Ms(a, §;2) H-converges to M € My(a, 5;2) if for
any f € H2(Q) the sequence of solutions (u,) of problems

divdiv(M"VVu,) =f in Q
u, € HZ(Q)

coverges weakly to a limit u in HZ(Q), while the sequence (M"V'Vu,) converges to MV N u weakly in the
space L?(€; Sym).

Theorem 1 Let (M") be a sequence in My (v, B;82). Then there is a subsequence (M™) and a tensor function
M € My(a, ;) such that (M™) H-converges to M.

Properties of H-convergence

Theorem 2 (Locality of the H-convergence) Let (M™) and (O") be two sequences of tensors in
My (v, §;2), which H-converge to M and O, respectively. Let w be an open subset compactly embedded in €.
If M™(z) = O™(z) in w, then M(z) = O(z) in w.

Theorem 3 (Irrelevance of the boundary condition) Let (M™) be a sequence of tensors in My (a, 5;2)
that H-converges to M. For any sequence (z,) such that

divdiv(M"VVz,) =f in Q
z, — zinHZ (Q)

loc

M™ satisfies M"VVz, — MVVz in L?

loc

(€; Sym).

Theorem 4 (Energy convergence) Let (M") be a sequence of tensors in My (v, B; Q) that H-converges to
M. For any f € H=2(Q), the sequence (u,) of solutions of

divdiv(M"VVu,) =f in
u, € H3(Q)

satisfies
M"*"VVu, : VVu, = MVVu: VVu
in My(S2) and
/ M"VVu, : VNVu, dr — / MVVu : VVudz,
Q Q

where u is the solution of the homogenised equation

divdiv(MVVu) =f in Q
u € HZ(Q).

Theorem 5 (Ordering property) Let (M"™) and (O") be two sequences of tensors in Ma(a, 5;2) that
H-converge to homogenised tensors M and O, respectively. Assume that, for any n,

M™EESOTEE, VE € Sym.
Then the homogenised limits are also ordered:
MEE<OE: € VE € Sym.

Theorem 6 Let (M") be a sequence of tensors in Msy (v, B; Q) that either converges strongly to a limit tensor
M in LY(; L(Sym, Sym)), or converges to M almost everywhere in Q0. Then M™ H-converges to M.

Corrector results

Definition 2 Let (M") be a sequence of tensors in My(a, 3;Q) that H-converges to a limit M. Let
(w))1<ij<n be a family of test functions satisfying

wi{ — 51’1'513']' in Hz(Q)

divdiv(M"VVwi) — - inH, 2(Q)
M"VVw? — - in L _(€;Sym).

The tensor W™ defined as [aijim)i; = [VVwWE™]; is called a corrector tensor.

Theorem 7 Let (M") be a sequence of tensors in My(c, 3;Q2) that H-converges to a tensor M. A sequence
of correctors (W™) is unique in the sense that, for any two sequences of correctors (W") and (W™), their
difference (W™ — Wn) converges strongly to zero in L% _(2; £L(Sym, Sym)).

loc

Theorem 8 (Corrector result) Let (M"™) be a sequence of tensors in My(c, 5; Q) which H-converges to
M. For f € H%(Q), let (u,) be the solution of

divdiv(M*VVu,) =f in Q
u, € H3(Q).

Let u be the weak limit of (u,) in HE(QY), i. e., the solution of the homogenised equation

divdiv(MVVu) =f in Q
u € HZ(Q).

Then, 1, := VVu, — W"VVu — 0 strongly in L. (Q; Sym).

loc
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