Homogenization of Kirchhoff plate equation

Jelena Jankov

J. J. STROSSMAYER UNIVERSITY OF OSIJEK
DEPARTMENT OF MATHEMATICS
Trg Ljudevita Gaja 6
31000 Osijek, Croatia
http://www.mathos.unios.hr

jjankov@mathos.hr

WeConMApp

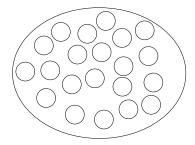
Joint work with:

K. Burazin, M. Vrdoljak

H-convergence
Properties of H-convergence
Corrector results
Small-amplitude homogenization

The physical idea of homogenization is to average a heterogeneous media in order to derive effective properties.

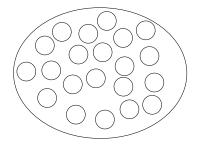
$$Au = f$$
 in Ω initial/boundary condition



H-convergence
Properties of H-convergence
Corrector results
Small-amplitude homogenization

The physical idea of homogenization is to average a heterogeneous media in order to derive effective properties.

$$\begin{cases} Au = f & \text{in } \Omega \\ & \text{initial/boundary condition} \end{cases}$$



H-convergence

Properties of H-convergence

Corrector results

Small-amplitude homogenization

Sequence of similar problems

$$\begin{cases} A_n u_n = f & \text{in } \Omega \\ \text{initial/boundary condition} . \end{cases}$$

If $u_n \to u$, $A_n \to A$ the limit (effective) problem is

$$\begin{cases} Au = f & \text{in } \Omega \\ \text{initial/boundary condition } \dots \end{cases}$$

H-convergence

Properties of H-convergence

Corrector results

Small-amplitude homogenization

Sequence of similar problems

$$\begin{cases} A_n u_n = f & \text{in } \Omega \\ \text{initial/boundary condition} . \end{cases}$$

If $u_n \to u$, $A_n \to A$ the limit (effective) problem is

$$\left\{ \begin{array}{ll} Au=f & \text{in} \quad \Omega \\ & \text{initial/boundary condition} \ ... \end{array} \right.$$

H-convergence

Properties of H-convergence

Corrector results

Small-amplitude homogenization

Kirchhoff plate equation

Homogeneous Dirichlet boundary value problem:

$$\left\{ \begin{array}{ll} \operatorname{divdiv}(\mathbf{M}\nabla\nabla\mathbf{u}) = \mathbf{f} & \text{in} \quad \Omega \\ u \in H_0^2(\Omega). \end{array} \right.$$

- $\Omega \subseteq \mathbb{R}^2$ bounded domain
- $f \in H^{-2}(\Omega)$ external load
- $M \in \mathfrak{M}_2(\alpha, \beta; \Omega) := \{ M \in L^{\infty}(\Omega; \mathcal{L}(\operatorname{Sym}, \operatorname{Sym})) : (\forall S \in \operatorname{Sym}) \, M(x)S : S \geq \alpha S : S \text{ and } M^{-1}S : S \geq \frac{1}{\beta}S : S \text{ a.e.} x \}$ describes properties of material of the given plate
- $u \in H^2_0(\Omega)$ vertical displacement of the plate

H-convergence

Properties of H-convergence
Corrector results
Small-amplitude homogenization

Kirchhoff plate equation

Homogeneous Dirichlet boundary value problem:

$$\left\{ \begin{array}{ll} \operatorname{divdiv}(\mathbf{M}\nabla\nabla\mathbf{u}) = \mathbf{f} & \text{in} & \Omega \\ u \in H_0^2(\Omega). \end{array} \right.$$

- $\Omega \subseteq \mathbb{R}^2$ bounded domain
- $f \in H^{-2}(\Omega)$ external load
- $M \in \mathfrak{M}_2(\alpha, \beta; \Omega) := \{M \in L^{\infty}(\Omega; \mathcal{L}(\operatorname{Sym}, \operatorname{Sym})) : (\forall S \in \operatorname{Sym}) M(x)S : S \geq \alpha S : S \text{ and } M^{-1}S : S \geq \frac{1}{\beta}S : S \text{ a.e.}x \}$ describes properties of material of the given plate
- $u \in H^2_0(\Omega)$ vertical displacement of the plate

Antonić, Balenović, 1999.

Definition

A sequence of tensor functions (M^n) in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ H-converges to $M\in\mathfrak{M}_2(\alpha,\beta;\Omega)$ if for any $f\in H^{-2}(\Omega)$ the sequence of solutions (u_n) of problems

$$\left\{ \begin{array}{ll} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{u}_{\mathbf{n}}) = \mathbf{f} & \text{in} & \Omega \\ u_{n} \in H_{0}^{2}(\Omega) \end{array} \right.$$

coverges weakly to a limit u in $H_0^2(\Omega)$, while the sequence $(M^n\nabla\nabla u_n)$ converges to $M\nabla\nabla u$ weakly in the space $L^2(\Omega;\mathrm{Sym})$.

Theorem

Let (M^n) be a sequence in $\mathfrak{M}_2(\alpha,\beta;\Omega)$. Then there is a subsequence (M^{n_k}) and a tensor function $M \in \mathfrak{M}_2(\alpha,\beta;\Omega)$ such that (M^{n_k})

Antonić, Balenović, 1999.

Definition

A sequence of tensor functions (M^n) in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ H-converges to $M\in\mathfrak{M}_2(\alpha,\beta;\Omega)$ if for any $f\in H^{-2}(\Omega)$ the sequence of solutions (u_n) of problems

$$\left\{ \begin{array}{ll} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{u}_{\mathbf{n}}) = \mathbf{f} & \text{in} & \Omega \\ u_n \in H^2_0(\Omega) \end{array} \right.$$

coverges weakly to a limit u in $H_0^2(\Omega)$, while the sequence $(M^n\nabla\nabla u_n)$ converges to $M\nabla\nabla u$ weakly in the space $L^2(\Omega;\mathrm{Sym})$.

Theorem

Let (M^n) be a sequence in $\mathfrak{M}_2(\alpha,\beta;\Omega)$. Then there is a subsequence (M^{n_k}) and a tensor function $M\in\mathfrak{M}_2(\alpha,\beta;\Omega)$ such that (M^{n_k})

Theorem (Locality of the H-convergence)

Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$, which H-converge to M and O, respectively. Let ω be an open subset compactly embedded in Ω . If $M^n(x)=O^n(x)$ in ω , then M(x)=O(x) in ω .

Theorem (Irrelevance of boundary conditions)

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to M. For any sequence (z_n) such that

$$\begin{cases} \operatorname{divdiv}(\mathbf{M}^{n}\nabla\nabla\mathbf{z}_{n}) = \mathbf{f} & \text{in } \Omega \\ z_{n} \rightharpoonup z & \text{in } \mathbf{H}^{2}_{\text{loc}}(\Omega) \end{cases}$$

 M^n satisfies $M^n \nabla \nabla z_n \rightharpoonup M \nabla \nabla z$ in $L^2_{loc}(\Omega; Sym)$.

Theorem (Locality of the H-convergence)

Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$, which H-converge to M and O, respectively. Let ω be an open subset compactly embedded in Ω . If $M^n(x) = O^n(x)$ in ω , then M(x) = O(x) in ω .

Theorem (Irrelevance of boundary conditions)

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to M. For any sequence (z_n) such that

$$\left\{ \begin{array}{ll} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{z}_{\mathbf{n}}) = \mathbf{f} & \text{in} & \Omega \\ z_{n} \rightharpoonup z \operatorname{in} \mathbf{H}^{2}_{\mathrm{loc}}(\Omega) \end{array} \right.$$

 M^n satisfies $M^n \nabla \nabla z_n \rightharpoonup M \nabla \nabla z$ in $L^2_{loc}(\Omega; Sym)$.

Theorem (Energy convergence)

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to M. For any $f\in H^{-2}(\Omega)$, the sequence (u_n) of solutions of

$$\left\{ \begin{array}{ll} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{u}_{\mathbf{n}}) = \mathbf{f} & \text{in} & \Omega \\ u_n \in H^2_0(\Omega) \, . \end{array} \right.$$

satisfies $M^n \nabla \nabla u_n : \nabla \nabla u_n \rightharpoonup M \nabla \nabla u : \nabla \nabla u$ weakly-* in the space of Radon measures and

 $\int_{\Omega} M^n \nabla \nabla u_n : \nabla \nabla u_n \, dx \to \int_{\Omega} M \nabla \nabla u : \nabla \nabla u \, dx, \text{ where } u \text{ is the solution of the homogenized equation}$

$$\left\{ \begin{array}{ll} \operatorname{divdiv}(\mathbf{M}\nabla\nabla\mathbf{u}) = \mathbf{f} & \text{in} & \Omega \\ u \in H_0^2(\Omega) \, . \end{array} \right.$$

Theorem (Ordering property)

Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converge to the homogenized tensors M and O, respectively. Assume that, for any n,

 $M^n \xi : \xi \le O^n \xi : \xi, \quad \forall \xi \in \text{Sym.}$

Then the homogenized limits are also ordered:

 $M\xi: \xi \leq O\xi: \xi, \quad \forall \xi \in \text{Sym}.$

Theorem

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that either converges strongly to a limit tensor M in $L^1(\Omega;L(\operatorname{Sym},\operatorname{Sym}))$, or converges to M almost everywhere in Ω . Then, M^n also H-converges to M.

Theorem (Ordering property)

Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converge to the homogenized tensors M and O, respectively. Assume that, for any n,

 $M^n \xi : \xi \le O^n \xi : \xi, \quad \forall \xi \in \text{Sym.}$

Then the homogenized limits are also ordered:

 $M\xi: \xi \leq O\xi: \xi, \quad \forall \xi \in \text{Sym}.$

Theorem

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that either converges strongly to a limit tensor M in $L^1(\Omega;L(\operatorname{Sym},\operatorname{Sym}))$, or converges to M almost everywhere in Ω . Then, M^n also H-converges to M.

Theorem (Compensated compactness result)

Let the following convergences be valid: $w_n \rightharpoonup w$ in $H^2_{\mathrm{loc}}(\Omega)$ and $D^n \rightharpoonup D$ in $L^2_{\mathrm{loc}}(\Omega; M_{2\times 2})$ with an additional assumption that the sequence $(\mathrm{div}\mathrm{div}D^{\mathrm{n}})$ is contained in a precompact (for the strong topology) set of the space $H^{-2}_{\mathrm{loc}}(\Omega)$. Then we have that $E^n:D^n \rightharpoonup E:D$ weakly-* in the space of Radon measures, where we denote $E^n:=\nabla\nabla w^n$, for $n\in\mathbb{N}\cup\{\infty\}$.

Can be seen from Tartar's quadratic theorem of compensated compactness ...

Theorem (Compensated compactness result)

Let the following convergences be valid: $w_n \rightharpoonup w$ in $H^2_{\mathrm{loc}}(\Omega)$ and $D^n \rightharpoonup D$ in $L^2_{\mathrm{loc}}(\Omega; M_{2\times 2})$ with an additional assumption that the sequence $(\mathrm{div}\mathrm{div}D^n)$ is contained in a precompact (for the strong topology) set of the space $H^{-2}_{\mathrm{loc}}(\Omega)$. Then we have that $E^n:D^n \rightharpoonup E:D$ weakly-* in the space of Radon measures, where we denote $E^n:=\nabla\nabla w^n$, for $n\in\mathbb{N}\cup\{\infty\}$.

Can be seen from Tartar's quadratic theorem of compensated compactness . . .

Introduction H-convergence

Properties of H-convergence

Corrector results

Small-amplitude homogenization

Definition

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to a limit M. Let $(w_n^{ij})_{1\leq i,j\leq N}$ be a family of test functions satisfying

$$w_n^{ij} \rightharpoonup \frac{1}{2} x_i x_j$$
 in $H^2(\Omega)$

$$\operatorname{divdiv}(M^n\nabla\nabla w_n^{ij})\to \cdot \ \operatorname{in} H^{-2}_{\operatorname{loc}}(\Omega)$$

$$M^n \nabla \nabla w_n^{ij} \rightharpoonup \cdot \text{ in } L^2_{loc}(\Omega; \text{Sym}).$$

The tensor W^n defined as $[a_{ijkm}]_{ij} = [\nabla \nabla w_n^{km}]_{ij}$ is called a corrector tensor.

Introduction H-convergence

Properties of H-convergence

Corrector results

Small-amplitude homogenization

Theorem

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to a tensor M. A sequence of correctors (W^n) is unique in the sense that, if there exist two sequences of correctors (W^n) and (\tilde{W}^n) , their difference $(W^n-\tilde{W}^n)$ converges strongly to zero in $L^2_{\mathrm{loc}}(\Omega;\mathcal{L}(\mathrm{Sym},\mathrm{Sym}))$.

Theorem (Corrector result)

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ which H-converges to M. For $f\in H^{-2}(\Omega)$, let (u_n) be the solution of

$$\left\{ \begin{array}{ll} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{u}_{\mathbf{n}}) = \mathbf{f} & \text{in} & \Omega \\ u_n \in H^2_0(\Omega) \, . \end{array} \right.$$

Let u be the weak limit of (u_n) in $H_0^2(\Omega)$, i.e., the solution of the homogenized equation

$$\left\{ \begin{array}{ll} \operatorname{divdiv}(\mathbf{M}\nabla\nabla\mathbf{u}) = \mathbf{f} & \text{in} & \Omega \\ u \in H_0^2(\Omega) \, . \end{array} \right.$$

Then, $r_n := \nabla \nabla u_n - W^n \nabla \nabla u \to 0$ strongly in $L^1_{loc}(\Omega; Sym)$.

Introduction H-convergence

Properties of H-convergence

Corrector results

Small-amplitude homogenization

Small-amplitude homogenization

$$A_{\gamma}^{n}(x) := A_0 + \gamma B^{n}(x), \, \gamma \in \mathbf{R}$$

$$A_{\gamma} := A_0 + \gamma B_0 + \gamma^2 C_0 + o(\gamma^2), \ \gamma \in \mathbf{R}$$

Introduction H-convergence

Properties of H-convergence

Corrector results

Small-amplitude homogenization

Small-amplitude homogenization

$$A_{\gamma}^{n}(x) := A_0 + \gamma B^{n}(x), \ \gamma \in \mathbf{R}$$

$$A_{\gamma} := A_0 + \gamma B_0 + \gamma^2 C_0 + o(\gamma^2), \ \gamma \in \mathbf{R}$$

Theorem

Let $M^n:\Omega\times P\to \mathcal{L}(\operatorname{Sym},\operatorname{Sym})$ be a sequence of tensors, such that $M^n(\cdot,p)\in\mathfrak{M}_2(\alpha,\beta;\Omega)$, for $p\in P$, where $P\subseteq\mathbf{R}$ is an open set. Assume that (for some $k\in\mathbf{N}_0$) a mapping $p\mapsto M^n(\cdot,p)$ is of class C^k from P to $L^\infty(\Omega;\mathcal{L}(\operatorname{Sym},\operatorname{Sym}))$, with derivatives which are equicontinuous on every compact set $K\subseteq P$ up to order k:

$$(\forall K \in \mathcal{K}(P)) (\forall \varepsilon > 0)(\exists \delta > 0)(\forall p, q \in K)(\forall n \in \mathbf{N})$$

$$(\forall i \in \{0, \dots, k\})$$

$$|p - q| < \delta \Rightarrow ||(M^n)^{(i)}(\cdot, p) - (M^n)^{(i)}(\cdot, q)||_{L^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym}))} < \varepsilon.$$

Then there is a subsequence (M^{n_k}) such that for every $p \in P$

$$M^{n_k}(\cdot, p) \xrightarrow{H} M(\cdot, p)$$
 in $\mathfrak{M}_2(\alpha, \beta; \Omega)$

Introduction
H-convergence
Properties of H-convergence
Corrector results
Small-amplitude homogenization

and $p \mapsto M(\cdot, p)$ is a C^k mapping from P to $L^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym}))$.

Periodic case

- $Y = [0, 1]^d$
- $M^n(x) := M(nx), x \in \Omega$
- $H^2_{\#}(Y) := \{ f \in H^2_{loc}(\mathbf{R}^d) \text{ such that f is } Y \text{periodic} \}$ with the norm $\|\cdot\|_{H^2(Y)}$
- $H^2_{\#}(Y)/\mathbf{R}$ equipped with the norm $\|\nabla\nabla\cdot\|_{L^2(Y)}$
- E_{ii} , $1 \le i, j \le d$ are $M_{d \times d}$ matrices defined as

$$[E_{ij}]_{kl} = \begin{cases} 1, & \text{if } i = j = k = l \\ \frac{1}{2}, & \text{if } i \neq j, (k, l) \in \{(i, j), (j, i)\} \\ 0, & \text{otherwise.} \end{cases}$$

Theorem

Let (M^n) be a sequence of tensors defined by

 $M^n(x) := M(nx), x \in \Omega$. Then (M^n) H-converges to a constant tensor $M^* \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ defined as

$$m_{klij}^* = \int_Y M(y)(E_{ij} + \nabla \nabla w_{ij}(y)) : (E_{kl} + \nabla \nabla w_{kl}(y)) dy,$$

where $(w_{ij})_{1 \le i,j \le d}$ is the family of unique solutions in $H^2_{\#}(Y)/\mathbf{R}$ of boundary value problems

$$\begin{cases} \operatorname{div}\operatorname{div}\left(M(y)(E_{ij} + \nabla\nabla w_{ij}(y))\right) = 0 \text{ in } Y, i, j = 1, \dots, d \\ y \to w_{ij}(y). \end{cases}$$

$$A_{\gamma}^{n}(x) := A_0 + \gamma B^{n}(x)$$

- A₀ constant, coercive tensor
- $B^n(x):=B(nx)$ Y-periodic, L^∞ tensor function and $\int_Y B(y)\,dy=0$

$$A_{\gamma} := A_0 + \gamma B_0 + \gamma^2 C_0 + o(\gamma^2)$$

Small-amplitude homogenization

$$B_0 E_{ij} : E_{kl} = 0$$

$$C_0 E_{ij} : E_{kl} = (2\pi i)^2 \int_Y \sum_{k \in J} a_{-k} B_k k \cdot k^T : E_{kl} \, dy$$
$$+ (2\pi i)^4 \int_Y \sum_{k \in J} A_0 k \cdot k^T a_k : a_{-k} k \cdot k^T \, dy$$
$$+ (2\pi i)^2 \int_Y \sum_{k \in J} B_k E_{ij} : a_{-k} k \cdot k^T \, dy$$

Introduction
H-convergence
Properties of H-convergence
Corrector results
Small-amplitude homogenization

Thank you for your attention!