

Homogenisation of elastic plate equation

Jelena Jankov

UNIVERSITY J. J. STROSSMAYER OF OSIJEK DEPARTMENT OF MATHEMATICS Trg Ljudevita Gaja 6 31000 Osijek, Croatia http://www.mathos.unios.hr

jjankov@mathos.hr

Joint work with:

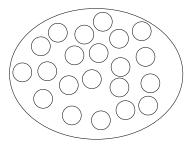
K. Burazin, M. Vrdoljak

[INTERNATIONAL CONFERENCE ON GENERALISED FUNCTIONS] 5.9.2016

H-convergence results

The physical idea of homogenisation is to average a heterogeneous media in order to derive effective properties.

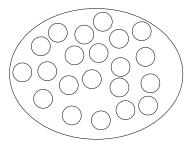
 $\begin{cases} Au = f & \text{in } \Omega \\ \text{initial/boundary condition} \end{cases}$



H-convergence results

The physical idea of homogenisation is to average a heterogeneous media in order to derive effective properties.

 $\begin{cases} Au = f & \text{in } \Omega \\ \text{initial/boundary condition} \end{cases}$



Introduction

H-convergence Properties of Corrector

H-convergence results

Sequence of similar problems

$$\begin{cases} A_n u_n = f & \text{in } \Omega \\ \text{initial/boundary condition.} \end{cases}$$

If $u_n \rightarrow u$, $A_n \rightarrow A$ the limit (effective) problem is

$$\begin{cases} Au = f & \text{in } \Omega \\ \text{initial/boundary condition} \dots \end{cases}$$

Introduction

H-convergence Properties of Corrector

H-convergence results

Sequence of similar problems

$$\begin{cases} A_n u_n = f & \text{in } \Omega \\ \text{initial/boundary condition.} \end{cases}$$

If $u_n \to u, A_n \to A$ the limit (effective) problem is

$$\left\{ \begin{array}{ll} Au=f \quad {
m in} \quad \Omega \ {
m initial/boundary \ condition \ \dots} \end{array}
ight.$$

H-convergence results

Elastic plate equation

Homogeneous Dirichlet boundary value problem:

$$\begin{cases} \operatorname{divdiv}(M^n \nabla \nabla u_n) = f & \text{in } \Omega \\ u \in H^2_0(\Omega) \end{cases}$$

- $\Omega \subseteq \mathbb{R}^2$ bounded domain
- $f \in H^{-2}(\Omega)$ external load
- $M \in \mathfrak{M}_2(\alpha, \beta; \Omega) := \{M \in L^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym})) : (\forall S \in \mathrm{Sym}) M(x)S : S \ge \alpha S : S \text{ and } M^{-1}S : S \ge \frac{1}{\beta}S : S a.e.x\}$ describes properties of material of the given plate
- $u \in H^2_0(\Omega)$ vertical displacement of the plate

H-convergence results

Elastic plate equation

Homogeneous Dirichlet boundary value problem:

$$\begin{cases} \operatorname{divdiv}(M^n \nabla \nabla u_n) = f & \text{in } \Omega \\ u \in H^2_0(\Omega) \end{cases}$$

- $\Omega \subseteq \mathbb{R}^2$ bounded domain
- $f \in H^{-2}(\Omega)$ external load
- $M \in \mathfrak{M}_2(\alpha, \beta; \Omega) := \{M \in L^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym})) : (\forall S \in \mathrm{Sym}) M(x)S : S \ge \alpha S : S \text{ and } M^{-1}S : S \ge \frac{1}{\beta}S : S a.e.x\}$ describes properties of material of the given plate
- $u \in H^2_0(\Omega)$ vertical displacement of the plate

Antonić, Balenović, 1999.

Definition

A sequence of tensor functions (M^n) in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ H-converges to $M\in\mathfrak{M}_2(\alpha,\beta;\Omega)$ if for any $f\in H^{-2}(\Omega)$ the sequence of solutions (u_n) of problems

$$\begin{cases} \operatorname{divdiv}(M^n \nabla \nabla u_n) = f & \text{in } \Omega \\ u_n \in H_0^2(\Omega) \end{cases}$$

coverges weakly to a limit u in $H_0^2(\Omega)$, while the sequence $(M^n \nabla \nabla u_n)$ converges to $M \nabla \nabla u$ weakly in the space $L^2(\Omega, \text{Sym})$.

Theorem

Let (M^n) be a sequence in $\mathfrak{M}_2(\alpha, \beta; \Omega)$. Then there is a subsequence (M^{n_k}) and a tensor function $M \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ such that (M^{n_k}) H-converges to M.

Jelena Jankov

Antonić, Balenović, 1999.

Definition

A sequence of tensor functions (M^n) in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ H-converges to $M\in\mathfrak{M}_2(\alpha,\beta;\Omega)$ if for any $f\in H^{-2}(\Omega)$ the sequence of solutions (u_n) of problems

$$\begin{cases} \operatorname{divdiv}(M^n \nabla \nabla u_n) = f & \text{in } \Omega \\ u_n \in H_0^2(\Omega) \end{cases}$$

coverges weakly to a limit u in $H_0^2(\Omega)$, while the sequence $(M^n \nabla \nabla u_n)$ converges to $M \nabla \nabla u$ weakly in the space $L^2(\Omega, \text{Sym})$.

Theorem

Let (M^n) be a sequence in $\mathfrak{M}_2(\alpha, \beta; \Omega)$. Then there is a subsequence (M^{n_k}) and a tensor function $M \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ such that (M^{n_k}) H-converges to M.

Jelena Jankov

Theorem (Locality of the H-convergence)

Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$, which H-converge to M and O, respectively. Let ω be an open subset compactly embedded in Ω . If $M^n(x) = O^n(x)$ in ω , then M(x) = O(x) in ω .

Theorem (Irrelevance of the boundary condition)

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to M. For any sequence (z_n) such that

$$\begin{cases} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{z}_{\mathbf{n}}) = \mathbf{f} & \text{in } \Omega \\ z_{n} \rightharpoonup z & \operatorname{in} H^{2}_{\operatorname{loc}}(\Omega) \end{cases}$$

 M^n satisfies $M^n \nabla \nabla z_n \rightharpoonup M \nabla \nabla z$ in $L^2_{loc}(\Omega; Sym)$.

Theorem (Locality of the H-convergence)

Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$, which H-converge to M and O, respectively. Let ω be an open subset compactly embedded in Ω . If $M^n(x) = O^n(x)$ in ω , then M(x) = O(x) in ω .

Theorem (Irrelevance of the boundary condition)

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to M. For any sequence (z_n) such that

$$\begin{cases} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{z}_{\mathbf{n}}) = \mathbf{f} & \text{in } \Omega \\ z_{n} \rightharpoonup z & \operatorname{in} H^{2}_{\operatorname{loc}}(\Omega) \end{cases}$$

 M^n satisfies $M^n \nabla \nabla z_n \rightharpoonup M \nabla \nabla z$ in $L^2_{\text{loc}}(\Omega; Sym)$.

Theorem (Energy convergence)

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to M. For any $f \in H^{-2}(\Omega)$, the sequence (u_n) of solutions of

$$\begin{cases} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{u}_{\mathbf{n}}) = \mathbf{f} & \text{in } \Omega \\ u_{n} \in H_{0}^{2}(\Omega) \,. \end{cases}$$

satisfies $M^n \nabla \nabla u_n : \nabla \nabla u_n \to M \nabla \nabla u : \nabla \nabla u$ in $M_b(\Omega)$ and $\int_{\Omega} M^n \nabla \nabla u_n : \nabla \nabla u_n \, dx \to \int_{\Omega} M \nabla \nabla u : \nabla \nabla u \, dx$, where u is the solution of the homogenized equation

$$\begin{cases} \operatorname{divdiv}(\mathsf{M}\nabla\nabla\mathsf{u}) = \mathsf{f} & \text{in } \Omega\\ u \in H^2_0(\Omega) \,. \end{cases}$$

Theorem (Ordering property)

Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converge to the homogenized tensors M and O, respectively. Assume that, for any n,

 $M^n\xi:\xi\leq O^n\xi:\xi,\quad \forall\xi\in \mathrm{Sym}.$

Then the homogenized limits are also ordered:

 $M\xi:\xi\leq O\xi:\xi,\quad \forall\xi\in {\rm Sym}.$

Theorem

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that either converges strongly to a limit tensor M in $L^1(\Omega; L(Sym, Sym))$, or converges to M almost everywhere in Ω . Then, M^n also H-converges to M.

Theorem (Ordering property)

Let (M^n) and (O^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that H-converge to the homogenized tensors M and O, respectively. Assume that, for any n, $M^n\xi: \xi \leq O^n\xi: \xi, \quad \forall \xi \in \text{Sym.}$

Then the homogenized limits are also ordered:

 $M\xi:\xi\leq O\xi:\xi,\quad \forall\xi\in \mathrm{Sym}.$

Theorem

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that either converges strongly to a limit tensor M in $L^1(\Omega; L(\operatorname{Sym}, \operatorname{Sym}))$, or converges to M almost everywhere in Ω . Then, M^n also H-converges to M.

results

Theorem

Let the following convergences be valid: $w_n \rightarrow w$ in $H^2_{loc}(\Omega)$ and $D^n \rightarrow D$ in $L^2_{loc}(\Omega; M_{2\times 2})$ with an additional assumption that the sequence $(\operatorname{divdivD}^n)$ is contained in a precompact (for the strong topology) set of the space $H^{-2}_{loc}(\Omega)$. Then we have that $E^n: D^n \rightarrow E: D$ weakly-* in the space of Radon measures, where we denote $E^n: = \nabla \nabla w^n$, for $n \in \mathbb{N} \cup \{\infty\}$.

Can be seen from Tartar's quadratic theorem of compensated compactness . . .

Theorem

Let the following convergences be valid: $w_n \rightarrow w$ in $H^2_{loc}(\Omega)$ and $D^n \rightarrow D$ in $L^2_{loc}(\Omega; M_{2\times 2})$ with an additional assumption that the sequence $(\operatorname{divdivD}^n)$ is contained in a precompact (for the strong topology) set of the space $H^{-2}_{loc}(\Omega)$. Then we have that $E^n: D^n \rightarrow E: D$ weakly-* in the space of Radon measures, where we denote $E^n: = \nabla \nabla w^n$, for $n \in \mathbb{N} \cup \{\infty\}$.

Can be seen from Tartar's quadratic theorem of compensated compactness ...

Definition

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to a limit M. Let $(w_n^{ij})_{1\leq i,j\leq N}$ be a family of test functions satisfying

$$w_n^{ij} \rightharpoonup \frac{1}{2} x_i x_j \text{ in } H^2(\Omega)$$

 $\operatorname{divdiv}(M^n \nabla \nabla w_n^{ij}) \to \cdot \operatorname{in} H_{\operatorname{loc}}^{-2}(\Omega)$
 $M^n \nabla \nabla w_n^{ij} \rightharpoonup \cdot \operatorname{in} L_{\operatorname{loc}}^2(\Omega; \operatorname{Sym}).$

The tensor W^n defined as $[a_{ijkm}]_{ij} = [\nabla \nabla w_n^{km}]_{ij}$ is called a corrector tensor.

Introduction H-convergence Properties H-convergence of Corrector

results

Theorem

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to a tensor M. A sequence of correctors (W^n) is unique in the sense that, if there exist two sequences of correctors (W^n) and $(\tilde{W^n})$, their difference $(W^n - \tilde{W^n})$ converges strongly to zero in $L^2_{loc}(\Omega; \mathcal{L}(Sym, Sym))$.

Theorem (Corrector result)

Let (M^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ which H-converges to M. For $f \in H^{-2}(\Omega)$, let (u_n) be the solution of

$$\begin{cases} \operatorname{divdiv}(\mathbf{M}^{\mathbf{n}}\nabla\nabla\mathbf{u}_{\mathbf{n}}) = \mathbf{f} & \text{in } \Omega \\ u_{n} \in H_{0}^{2}(\Omega) \,. \end{cases}$$

Let u be the weak limit of (u_n) in $H_0^2(\Omega)$, i.e., the solution of the homogenized equation

$$\begin{cases} divdiv(M\nabla\nabla u) = f & \text{in } \Omega \\ u \in H_0^2(\Omega) \,. \end{cases}$$

Then, $r_n := \nabla \nabla u_n - W^n \nabla \nabla u \to 0$ strongly in $L^1_{loc}(\Omega; Sym)$.

Introduction H-convergence Properties H-convergence of Corrector

results

Thank you for your attention!