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Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in
the late 1980s and their existence is established by the following theorem.

Theorem 1. If (u,) is a sequence in L?(R%; C") such that u,, — 0, then
there exist a subsequence (u,+) and an r X r Hermitian complex matrix Radon
measure pu on R® x S~ such that for any o1, p2 € Co(R?) and o € C(S4™1)
one has:
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First commutation lemma

The crucial step in Tartar’s construction of H-measures is the result called the
First commutation lemma . More precisely, for ¢» € L°°(R%) we define the
Fourier multiplier operator by

Py :LX(RY) — L*(RY), Pyu:=(ya)’,
and the operator of multiplication by ¢ € L=°(R%) by
My : L*(RY) — L*(RY), Myu = ¢u.

The above operators are bounded on L?(R%), with the norm equal to the L>°
norm of 1, respectively ¢.
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First commutation lemma

The crucial step in Tartar’s construction of H-measures is the result called the
First commutation lemma . More precisely, for ¢» € L°°(R%) we define the
Fourier multiplier operator by

Py :LX(RY) — L*(RY), Pyu:=(ya)’,
and the operator of multiplication by ¢ € L=°(R%) by
My : L*(RY) — L*(RY), Myu = ¢u.

The above operators are bounded on L?(R%), with the norm equal to the L>°
norm of 1), respectively ¢. Therefore, the commutator of these operators

K =[Py, My] = PyMy — My Py,

is also bounded on L2(R%). Furthermore, Tartar proved that if we take 1 to be
homogeneous of order zero and continuous (except at the origin), while
¢ € Co(R?), then K is compact on L*(R%).



Fractional H-measures

Theorem 2. Let QQ be an ellipsoid

1 Q2 Qq Qmin

2 2 2
1
g.8, ,6_1
«
and for each m = (n1,...,m4) € Q we define

1 N
on(s) =diag{s>1,...,s%a}n,

where ay, € (0,1]. Also, mq is a projection on Q along ¢y,.
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and for each m = (n1,...,m4) € Q we define

1 1
on(s) =diag{s>1,...,s%a}n,
where ay, € (0,1]. Also, mq is a projection on Q along ¢y,.

If up, — 0 in L*(R% C7), then there exist a subsequence (u,/) and a
Hermitian matrix Radon measure p = {*}; j=1,.., on R? x Q so that for
P1,p2 € CO(Rd)7 (NS C(Q)7 and thj=1,...,7:

lim (1) (X) Agorg (@21l ) (x) dx = (1, p10029))
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Properties of projections

The projection is given by the formula

m@)—( S f)
s@ar s(e)7

where s(£) is the positive solution of the equation

d 2
£ 1
Z =

k=1 apsok  Cmin




Properties of projections

The projection is given by the formula

ﬂ—Q(g)_( f115"'7 £d1>7
s(§) 5(§)

where s(£) is the positive solution of the equation

d 2
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Z kizi@

k=1 QS Ok Omin

i) s € C®(R*\ {0};R™) and s € C(R?) with s(0) =0,
i) s(,\algl,...,,\ad gd) =s(€), AeERT,
iit) el 2 &l k=1,....d = s(n) >s(§),
iw) (VEERY) CrYi, 6™ < s(€) < C2 iy |6k]™
v) ds(€,m) := 5(& —n) defines a metric on R?.



Anisotropic Tartar spaces

For m € N and « € (0,1]* we define
X" R = {ueS : klaeL'(RY},

where

ka(f) = (1 + i |§k‘ak)
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Assumption: ai,a2,...,am <1,and amy1 = =aqg =1

Notation: x = (X,X'), X = (Z1,...,%Tm), X = (Tmt1,..-,2a), 0 <m < d



Crutial properties

Lemma 1. Let m € N and a € (0,1]%. For ¢ € X™*(R?) we have

(oo’ B+ Bam = gepecum?).
1
Moreover, the following estimate holds

||aﬁ¢||L°°(Rd) < ||36¢||L1(Rd) < (277)m”¢’”xma(Rd)-



Crutial properties

Lemma 1. Let m € N and a € (0,1]%. For ¢ € X™*(R?) we have

(VB € [0,00)%) %+ +@ <m — 9 c CoRY).

Moreover, the following estimate holds

||aﬁ¢||L°O(Rd) < ||36¢||L1(Rd) < (277)m”¢”xma(Rd)-

Lemma 2. Letm € N and a € (0,1]. If s > m + 5 + ..o+ 5o, then we
have a continuous embedding

H**(R%) < X™*(RY).



Second commutation lemma

Theorem 3. Let Py, and My be a Fourier and pointwise multiplier operators
on L%(RY) defined by F(Pyu) = ¢ Fu, Myu = ¢u, with associated symbols
¢ € CH(P%) and ¢ € X*(R?) respectively.



Second commutation lemma

Theorem 3. Let Py, and My be a Fourier and pointwise multiplier operators
on L%(RY) defined by F(Pyu) = ¢ Fu, Myu = ¢u, with associated symbols
¢ € CH(P?) and ¢ € X*(R?) respectively. Then for a commutator
K := [Py, My] = PyMy — My Py we have (up to a compact operator on
L*(RY)):

0" K = Ppric)i _,,

27

wQMV"’w

where Y% = 9 o 1q.



The first step in the proof

I. It is sufficient to consider ¢ € S(R?) such that qg has compact support

This is based on the fact that such functions are dense in X*(R%) and on the
following continuity result.
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The first step in the proof

I. It is sufficient to consider ¢ € S(R?) such that qg has compact support

This is based on the fact that such functions are dense in X*(R%) and on the
following continuity result.

Theorem 4. For ¢ € C'(Q) and ¢ € X*(R?) a commutator K := [P,q, My)
is continuous from L*(R%) to H*(R?). Moreover, there exists C' > 0
(depending on 1)) such that

1K 22 mayma may) < Clldllxamay -
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The second step in the proof

Il. Cutoff around the origin in the Fourier space
By a simple application of the theory of Hilbert-Schmidt operators we can

replace 9@ with ¢ = (1 — 0)y?, where § € C2°(R?) is equal to 1 on a
neighbourhood of the origin, and so it remains to prove that

- o
D := 8]' ! [P1L7 M¢] - P(zm‘,gj)"j VE/zZva,(b
PE]

is compact.
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The third step in the proof

Il. The decomposition: FD = A+ By, meN

We decompose FD = Ay, + By, where

(Amu)(€) == / Xk (E)U(E,m) - Vb (€ — myi(n) dn.,

R4

(Br€) = [ (1=, (€)¥(€m) - bl — myi(m) i,
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The third step in the proof

Il. The decomposition: FD = A+ By, meN

We decompose FD = A, + B, where

(Amu)(€) == / Xk (E)U(E,m) - Vb (€ — myi(n) dn.,

(Br€) = [ (1=, (€)¥(€m) - bl — myi(m) i,

Km :={& e R": s(&) <m},
(2mig;)* { VR
2mi VD) - VEY(E©) ]

and then prove that (Vm € N) A,, is compact, while B,,, — 0.

V() =
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An example application

We study sequence of equations
wy + (alt, T)upe)se = fy

where a € X(%’l)(Rz), f €L?(R?) and a is real.
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An example application

We study sequence of equations

iuy + (alt, 2)uiy)es = [,
where a € X(%’l)(Rz), f €L?(R?) and a is real.
Using second commutation lemma and assumptions

un — 0in L%, w? — 0in L?

and
fn—0inL? wl, —0inL?
we obtain
A, ae B Y) — {1,000 B (1 + 6(1)e)) =
where p is a fractional (a1 = i a2 ) H-measure associated with the
sequence (uZ,) and ¢ € C(Q), ¢ € CL(R?).
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Sketch of the proof

For ¢ € C'(Q) and ¢ € CL(R?) we apply operators Py, and My on our
equation, and then form a scalar product in L?(R?) with uZ obtaining

(ipPyur | uz ) + (PPyp(auzs)es | ug ) = (PP f" [ uz ).

The idea is to get (auy, )z in the second argument, by using integration by
parts.

14



Sketch of the proof

For ¢ € C'(Q) and ¢ € CL(R?) we apply operators Py, and My on our
equation, and then form a scalar product in L?(R?) with uZ obtaining

(ipPyur | uz ) + (PPyp(auzs)es | ug ) = (PP f" [ uz ).

The idea is to get (auy, )z in the second argument, by using integration by
parts.

The second commutation lemma comes in the following calculation
W (¢([Py, Ma)|uza)s | tze ) = Nm(dPey0)e (aruna) | tas )

= (1, azp REW)e) .
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Concluding remarks

After some manipulations we also obtain

3r%(5 — K2)

(s A0, W)+ (40 0 5

W, ) =0,

2
where U = ¢ M9, W = 277 — 167*¢*a and k = (& + %)’%.
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Concluding remarks

After some manipulations we also obtain

3r2(5 — )§W>

(p, {T, W} + <M7 ‘I’w

2
where U = ¢ M9, W = 277 — 167*¢*a and k = (& + f—%)’%.

Also, under assumption that p is absolutely continuous with respect to the
Lebesgue measure, we get

Dept <8§W—<16+22+?m((52)))£W) —vﬂ%qazow} —([azow} ~n)n> =0

which we call the propagation principle for p associated to our equation.
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