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Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in
the late 1980s and their existence is established by the following theorem.

Theorem 1. If (un) is a sequence in L2(Rd;Cr) such that un −⇀ 0, then
there exist a subsequence (un′) and an r × r Hermitian complex matrix Radon
measure µ on Rd × Sd−1 such that for any ϕ1, ϕ2 ∈ C0(Rd) and ψ ∈ C(Sd−1)
one has:

lim
n′

∫
Rd

(ϕ1un′)⊗Aψ(ϕ2un′) dx = 〈µ, (ϕ1ϕ2)� ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ2(x)ψ(ξ) dµ(x, ξ) ,

where F(Aψv)(ξ) = ψ( ξ
|ξ| )Fv(ξ).
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First commutation lemma

The crucial step in Tartar’s construction of H-measures is the result called the
First commutation lemma . More precisely, for ψ ∈ L∞(Rd) we define the
Fourier multiplier operator by

Pψ : L2(Rd) −→ L2(Rd) , Pψu := (ψû)∨ ,

and the operator of multiplication by φ ∈ L∞(Rd) by

Mφ : L2(Rd) −→ L2(Rd) , Mφu := φu .

The above operators are bounded on L2(Rd), with the norm equal to the L∞

norm of ψ, respectively φ.

Therefore, the commutator of these operators

K := [Pψ,Mφ] = PψMφ −MφPψ ,

is also bounded on L2(Rd). Furthermore, Tartar proved that if we take ψ to be
homogeneous of order zero and continuous (except at the origin), while
φ ∈ C0(Rd), then K is compact on L2(Rd).
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Fractional H-measures

Theorem 2. Let Q be an ellipsoid

ξ2
1

α1
+
ξ2
2

α2
+ · · ·+ ξ2

d

αd
=

1

αmin
,

and for each η = (η1, . . . , ηd) ∈ Q we define

ϕη(s) = diag {s
1
α1 , . . . , s

1
αd }η,

where αk ∈ 〈0, 1]. Also, πQ is a projection on Q along ϕη.

If un −⇀ 0 in L2(Rd;Cr), then there exist a subsequence (un′) and a
Hermitian matrix Radon measure µ = {µij}i,j=1,...,r on Rd ×Q so that for
ϕ1, ϕ2 ∈ C0(Rd), ψ ∈ C(Q), and i, j = 1, . . . , r:

lim
n′→∞

∫
Rd

(ϕ1u
i
n′)(x)Aψ◦πQ(ϕ2u

j
n′)(x) dx = 〈µij , ϕ1ϕ2ψ〉

=

∫
Rd×Q

ϕ1(x)ϕ2(x)ψ(ξ) dµij(x, ξ).
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Properties of projections

The projection is given by the formula

πQ(ξ) =

(
ξ1

s(ξ)
1
α1

, . . . ,
ξd

s(ξ)
1
αd

)
,

where s(ξ) is the positive solution of the equation

d∑
k=1

ξ2
k

αks
2
αk

=
1

αmin
.

i) s ∈ C∞(Rd \ {0};R+) and s ∈ C(Rd) with s(0) = 0 ,

ii) s
(
λ

1
α1 ξ1, . . . , λ

1
αd ξd

)
= λs(ξ), λ ∈ R+ ,

iii) |ηk| > |ξk|, k = 1, . . . , d =⇒ s(η) > s(ξ) ,

iv) (∀ ξ ∈ Rd) C1

∑d
k=1 |ξk|

αk 6 s(ξ) 6 C2

∑d
k=1 |ξk|

αk ,

v) ds(ξ,η) := s(ξ − η) defines a metric on Rd .
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Anisotropic Tartar spaces

For m ∈ N and α ∈ 〈0, 1]d we define

Xmα(Rd) := {u ∈ S ′ : kmα û ∈ L1(Rd)},

where

kα(ξ) :=
(

1 +

d∑
k=1

|ξk|αk
)
.

Xmα(Rd) is a Banach space with the norm

‖u‖Xmα :=

∫
Rd

kmα |û| dξ.

Assumption: α1, α2, . . . , αm < 1, and αm+1 = · · · = αd = 1

Notation: x = (x̄,x′), x̄ = (x1, . . . , xm), x′ = (xm+1, . . . , xd), 0 6 m 6 d
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Crutial properties

Lemma 1. Let m ∈ N and α ∈ 〈0, 1]d. For φ ∈ Xmα(Rd) we have

(∀β ∈ [0,∞〉d) β1

α1
+ . . .+

βd
αd
6 m =⇒ ∂βφ ∈ C0(Rd) .

Moreover, the following estimate holds

‖∂βφ‖L∞(Rd) 6 ‖∂̂βφ‖L1(Rd) 6 (2π)m‖φ‖Xmα(Rd) .

Lemma 2. Let m ∈ N and α ∈ 〈0, 1]d. If s > m+ 1
2α1

+ . . .+ 1
2αd

, then we
have a continuous embedding

Hsα(Rd) ↪→ Xmα(Rd).
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Second commutation lemma

Theorem 3. Let Pψ and Mφ be a Fourier and pointwise multiplier operators
on L2(Rd) defined by F(Pψu) = ψFu, Mφu = φu, with associated symbols
ψ ∈ C1(P d) and φ ∈ Xα(Rd) respectively.

Then for a commutator
K := [Pψ,Mφ] = PψMφ −MφPψ we have (up to a compact operator on
L2(Rd)):

∂
αj
j K = P (2πiξj)

αj

2πi
∇ξ′ψQ

M∇x′φ,

where ψQ = ψ ◦ πQ.
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The first step in the proof

I. It is sufficient to consider φ ∈ S(Rd) such that φ̂ has compact support

This is based on the fact that such functions are dense in Xα(Rd) and on the
following continuity result.

Theorem 4. For ψ ∈ C1(Q) and φ ∈ Xα(Rd) a commutator K := [PψQ ,Mφ]

is continuous from L2(Rd) to Hα(Rd). Moreover, there exists C > 0
(depending on ψ) such that

‖K‖L(L2(Rd);Hα(Rd)) 6 C‖φ‖Xα(Rd) .
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The second step in the proof

II. Cutoff around the origin in the Fourier space

By a simple application of the theory of Hilbert-Schmidt operators we can
replace ψQ with ψ̃ = (1− θ)ψQ, where θ ∈ C∞c (Rd) is equal to 1 on a
neighbourhood of the origin, and so it remains to prove that

D̃ := ∂
αj
j [Pψ̃,Mφ]− P (2πiξj)

αj

2πi
∇ξ′ ψ̃

M∇x′φ

is compact.
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The third step in the proof

III. The decomposition: FD̃ = Am +Bm, m ∈ N

We decompose FD̃ = Am +Bm, where

(Amu)(ξ) :=

∫
Rd

χKm(ξ)Ψ(ξ,η) · ∇̂xφ(ξ − η)û(η) dη ,

(Bmu)(ξ) :=

∫
Rd

(1− χKm(ξ))Ψ(ξ,η) · ∇̂xφ(ξ − η)û(η) dη ,

Km := {ξ ∈ Rd : s(ξ) 6 m} ,

Ψ(ξ,η) :=
(2πiξj)

αj

2πi

[
∇ξ̄ψ̃(ζ)

∇ξ′ ψ̃(ζ)−∇ξ′ ψ̃(ξ)

]
,

and then prove that (∀m ∈ N) Am is compact, while Bm −→ 0.
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An example application

We study sequence of equations

iunt + (a(t, x)unxx)xx = fn,

where a ∈ X( 1
4
,1)(R2), f ∈ L2(R2) and a is real.

Using second commutation lemma and assumptions

un −→ 0 in L2, unx −→ 0 in L2

and
fn −⇀ 0 in L2, unxx −⇀ 0 in L2

we obtain
4〈µ, aφx � ψ〉 − 〈µ, axφ� (ψ + ξ(ψQ)ξ)〉 = 0,

where µ is a fractional (α1 = 1
4
, α2 = 1) H-measure associated with the

sequence (unxx) and ψ ∈ C1(Q), φ ∈ C1
c(R

2).
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Sketch of the proof

For ψ ∈ C1(Q) and φ ∈ C1
c(R

2) we apply operators Pψ and Mφ on our
equation, and then form a scalar product in L2(R2) with unx obtaining

〈 iφPψunt | unx 〉+ 〈φPψ(aunxx)xx | unx 〉 = 〈φPψfn | unx 〉 .

The idea is to get (aunxx)xx in the second argument, by using integration by
parts.

The second commutation lemma comes in the following calculation

lim
n
〈φ([Pψ,Ma)]unxx)x | unxx 〉 = lim

n
〈φPξ(ψQ)ξ (axu

n
xx) | unxx 〉

= 〈µ, axφ� ξ(ψQ)ξ〉 .
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Concluding remarks

After some manipulations we also obtain

〈µ, {Ψ,W}〉+
〈
µ,Ψ

3κ2(5− κ2)

16(κ2 − 1)
ξWx

〉
= 0 ,

where Ψ = φ� ψQ, W = 2πτ − 16π4ξ4a and κ = (τ2
0 +

ξ20
16

)−
1
2 .

Also, under assumption that µ is absolutely continuous with respect to the
Lebesgue measure, we get

∂xµ

(
∂ξW−

(
κ2

16
+
κ2

4
+

3κ2(5− κ2)

16(κ2 − 1)

)
ξW

)
−∇τ,ξµ·

([
0

∂xW

]
−
([

0
∂xW

]
·n
)

n

)
= 0 ,

which we call the propagation principle for µ associated to our equation.
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