Fractional H-measures and transport property

Marko Erceg and Ivan Ivec

Torino, February 1, 2017.

Conference in memory of Todor V. Gramchev

H-measures
Classical H-measures
First commutation lemma

Fractional H-measures
Definition
Second commutation lemma
An example application

Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in the late 1980s and their existence is established by the following theorem.

Theorem 1. If $\left(\mathrm{u}_{n}\right)$ is a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$ such that $\mathrm{u}_{n} \longrightarrow 0$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and an $r \times r$ Hermitian complex matrix Radon measure $\boldsymbol{\mu}$ on $\mathbf{R}^{d} \times \mathrm{S}^{d-1}$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ one has:

Classical H-measures

H-measures were introduced independently by Luc Tartar and Patrick Gérard in the late 1980s and their existence is established by the following theorem.

Theorem 1. If $\left(\mathrm{u}_{n}\right)$ is a sequence in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$ such that $\mathrm{u}_{n} \longrightarrow 0$, then there exist a subsequence ($\mathrm{u}_{n^{\prime}}$) and an $r \times r$ Hermitian complex matrix Radon measure $\boldsymbol{\mu}$ on $\mathbf{R}^{d} \times \mathrm{S}^{d-1}$ such that for any $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$ and $\psi \in \mathrm{C}\left(\mathrm{S}^{d-1}\right)$ one has:

$$
\begin{aligned}
\lim _{n^{\prime}} \int_{\mathbf{R}^{d}}\left(\varphi_{1} \mathbf{u}_{n^{\prime}}\right) \otimes \mathcal{A}_{\psi}\left(\varphi_{2} \mathbf{u}_{n^{\prime}}\right) d \mathbf{x} & =\left\langle\boldsymbol{\mu},\left(\varphi_{1} \overline{\varphi_{2}}\right) \boxtimes \bar{\psi}\right\rangle \\
& =\int_{\mathbf{R}^{d} \times \mathbf{S}^{d-1}} \varphi_{1}(\mathbf{x}) \overline{\varphi_{2}(\mathbf{x}) \psi(\boldsymbol{\xi})} d \boldsymbol{\mu}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

where $\mathcal{F}\left(\mathcal{A}_{\psi} v\right)(\boldsymbol{\xi})=\psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \mathcal{F} v(\boldsymbol{\xi})$.

First commutation lemma

The crucial step in Tartar's construction of H -measures is the result called the First commutation lemma. More precisely, for $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ we define the Fourier multiplier operator by

$$
P_{\psi}: \mathrm{L}^{2}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \quad P_{\psi} u:=(\psi \hat{u})^{\vee}
$$

and the operator of multiplication by $\phi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ by

$$
M_{\phi}: \mathrm{L}^{2}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \quad M_{\phi} u:=\phi u
$$

The above operators are bounded on $L^{2}\left(\mathbf{R}^{d}\right)$, with the norm equal to the L^{∞} norm of ψ, respectively ϕ.

First commutation lemma

The crucial step in Tartar's construction of H -measures is the result called the First commutation lemma. More precisely, for $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ we define the Fourier multiplier operator by

$$
P_{\psi}: \mathrm{L}^{2}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \quad P_{\psi} u:=(\psi \hat{u})^{\vee}
$$

and the operator of multiplication by $\phi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ by

$$
M_{\phi}: \mathrm{L}^{2}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \quad M_{\phi} u:=\phi u
$$

The above operators are bounded on $L^{2}\left(\mathbf{R}^{d}\right)$, with the norm equal to the L^{∞} norm of ψ, respectively ϕ. Therefore, the commutator of these operators

$$
K:=\left[P_{\psi}, M_{\phi}\right]=P_{\psi} M_{\phi}-M_{\phi} P_{\psi},
$$

is also bounded on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.

First commutation lemma

The crucial step in Tartar's construction of H -measures is the result called the First commutation lemma. More precisely, for $\psi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ we define the Fourier multiplier operator by

$$
P_{\psi}: \mathrm{L}^{2}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \quad P_{\psi} u:=(\psi \hat{u})^{\vee}
$$

and the operator of multiplication by $\phi \in \mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)$ by

$$
M_{\phi}: \mathrm{L}^{2}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{L}^{2}\left(\mathbf{R}^{d}\right), \quad M_{\phi} u:=\phi u
$$

The above operators are bounded on $L^{2}\left(\mathbf{R}^{d}\right)$, with the norm equal to the L^{∞} norm of ψ, respectively ϕ. Therefore, the commutator of these operators

$$
K:=\left[P_{\psi}, M_{\phi}\right]=P_{\psi} M_{\phi}-M_{\phi} P_{\psi}
$$

is also bounded on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$. Furthermore, Tartar proved that if we take ψ to be homogeneous of order zero and continuous (except at the origin), while $\phi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right)$, then K is compact on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$.

Fractional H-measures

Theorem 2. Let Q be an ellipsoid

$$
\frac{\xi_{1}^{2}}{\alpha_{1}}+\frac{\xi_{2}^{2}}{\alpha_{2}}+\cdots+\frac{\xi_{d}^{2}}{\alpha_{d}}=\frac{1}{\alpha_{\min }}
$$

and for each $\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{d}\right) \in Q$ we define

$$
\varphi_{\boldsymbol{\eta}}(s)=\operatorname{diag}\left\{s^{\frac{1}{\alpha_{1}}}, \ldots, s^{\frac{1}{\alpha_{d}}}\right\} \boldsymbol{\eta}
$$

where $\alpha_{k} \in\langle 0,1]$. Also, π_{Q} is a projection on Q along φ_{η}.

Fractional H-measures

Theorem 2. Let Q be an ellipsoid

$$
\frac{\xi_{1}^{2}}{\alpha_{1}}+\frac{\xi_{2}^{2}}{\alpha_{2}}+\cdots+\frac{\xi_{d}^{2}}{\alpha_{d}}=\frac{1}{\alpha_{\min }}
$$

and for each $\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{d}\right) \in Q$ we define

$$
\varphi_{\boldsymbol{\eta}}(s)=\operatorname{diag}\left\{s^{\frac{1}{\alpha_{1}}}, \ldots, s^{\frac{1}{\alpha_{d}}}\right\} \boldsymbol{\eta}
$$

where $\alpha_{k} \in\langle 0,1]$. Also, π_{Q} is a projection on Q along φ_{η}.
If $\mathrm{u}_{n} \longrightarrow 0$ in $\mathrm{L}^{2}\left(\mathbf{R}^{d} ; \mathbf{C}^{r}\right)$, then there exist a subsequence $\left(\mathrm{u}_{n^{\prime}}\right)$ and a Hermitian matrix Radon measure $\boldsymbol{\mu}=\left\{\mu^{i j}\right\}_{i, j=1, \ldots, r}$ on $\mathbf{R}^{d} \times Q$ so that for $\varphi_{1}, \varphi_{2} \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right), \psi \in \mathrm{C}(Q)$, and $i, j=1, \ldots, r$:

$$
\begin{aligned}
\lim _{n^{\prime} \rightarrow \infty} \int_{\mathbf{R}^{d}}\left(\varphi_{1} u_{n^{\prime}}^{i}\right)(\mathbf{x}) \overline{\mathcal{A}_{\psi \circ \pi_{Q}}\left(\varphi_{2} u_{n^{\prime}}^{j}\right)(\mathbf{x})} d \mathbf{x} & =\left\langle\mu^{i j}, \varphi_{1} \overline{\varphi_{2} \psi}\right\rangle \\
& =\int_{\mathbf{R}^{d} \times Q} \varphi_{1}(\mathbf{x}) \overline{\varphi_{2}(\mathbf{x}) \psi(\boldsymbol{\xi})} d \mu^{i j}(\mathbf{x}, \boldsymbol{\xi})
\end{aligned}
$$

Properties of projections

The projection is given by the formula

$$
\pi_{Q}(\boldsymbol{\xi})=\left(\frac{\xi_{1}}{s(\boldsymbol{\xi})^{\frac{1}{\alpha_{1}}}}, \ldots, \frac{\xi_{d}}{s(\boldsymbol{\xi})^{\frac{1}{\alpha_{d}}}}\right)
$$

where $s(\boldsymbol{\xi})$ is the positive solution of the equation

$$
\sum_{k=1}^{d} \frac{\xi_{k}^{2}}{\alpha_{k} s^{\frac{2}{\alpha_{k}}}}=\frac{1}{\alpha_{\min }}
$$

Properties of projections

The projection is given by the formula

$$
\pi_{Q}(\boldsymbol{\xi})=\left(\frac{\xi_{1}}{s(\boldsymbol{\xi})^{\frac{1}{\alpha_{1}}}}, \ldots, \frac{\xi_{d}}{s(\boldsymbol{\xi})^{\frac{1}{\alpha_{d}}}}\right)
$$

where $s(\boldsymbol{\xi})$ is the positive solution of the equation

$$
\sum_{k=1}^{d} \frac{\xi_{k}^{2}}{\alpha_{k} s^{\frac{2}{\alpha_{k}}}}=\frac{1}{\alpha_{\min }}
$$

i) $s \in \mathrm{C}^{\infty}\left(\mathbf{R}^{d} \backslash\{0\} ; \mathbf{R}^{+}\right)$and $s \in \mathrm{C}\left(\mathbf{R}^{d}\right)$ with $s(0)=0$,
ii) $s\left(\lambda^{\frac{1}{\alpha_{1}}} \xi_{1}, \ldots, \lambda^{\frac{1}{\alpha_{d}}} \xi_{d}\right)=\lambda s(\boldsymbol{\xi}), \quad \lambda \in \mathbf{R}^{+}$,
iii) $\left|\eta_{k}\right| \geqslant\left|\xi_{k}\right|, k=1, \ldots, d \quad \Longrightarrow \quad s(\boldsymbol{\eta}) \geqslant s(\boldsymbol{\xi})$,
iv) $\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right) \quad C_{1} \sum_{k=1}^{d}\left|\xi_{k}\right|^{\alpha_{k}} \leqslant s(\boldsymbol{\xi}) \leqslant C_{2} \sum_{k=1}^{d}\left|\xi_{k}\right|^{\alpha_{k}}$,
v) $d_{s}(\boldsymbol{\xi}, \boldsymbol{\eta}):=s(\boldsymbol{\xi}-\boldsymbol{\eta})$ defines a metric on \mathbf{R}^{d}.

Anisotropic Tartar spaces

For $m \in \mathbf{N}$ and $\boldsymbol{\alpha} \in\langle 0,1]^{d}$ we define

$$
\mathrm{X}^{m \boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{\alpha}^{m} \hat{u} \in \mathrm{~L}^{1}\left(\mathbf{R}^{d}\right)\right\},
$$

where

$$
k_{\alpha}(\boldsymbol{\xi}):=\left(1+\sum_{k=1}^{d}\left|\xi_{k}\right|^{\alpha_{k}}\right) .
$$

Anisotropic Tartar spaces

For $m \in \mathbf{N}$ and $\boldsymbol{\alpha} \in\langle 0,1]^{d}$ we define

$$
\mathrm{X}^{m \boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{\alpha}^{m} \hat{u} \in \mathrm{~L}^{1}\left(\mathbf{R}^{d}\right)\right\},
$$

where

$$
k_{\alpha}(\boldsymbol{\xi}):=\left(1+\sum_{k=1}^{d}\left|\xi_{k}\right|^{\alpha_{k}}\right) .
$$

$\mathrm{X}^{m \alpha}\left(\mathbf{R}^{d}\right)$ is a Banach space with the norm

$$
\|u\|_{\mathbf{X}^{m \alpha}}:=\int_{\mathbf{R}^{d}} k_{\boldsymbol{\alpha}}^{m}|\hat{u}| d \boldsymbol{\xi}
$$

Anisotropic Tartar spaces

For $m \in \mathbf{N}$ and $\boldsymbol{\alpha} \in\langle 0,1]^{d}$ we define

$$
\mathrm{X}^{m \boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right):=\left\{u \in \mathcal{S}^{\prime}: k_{\alpha}^{m} \hat{u} \in \mathrm{~L}^{1}\left(\mathbf{R}^{d}\right)\right\},
$$

where

$$
k_{\alpha}(\boldsymbol{\xi}):=\left(1+\sum_{k=1}^{d}\left|\xi_{k}\right|^{\alpha_{k}}\right) .
$$

$\mathrm{X}^{m \alpha}\left(\mathbf{R}^{d}\right)$ is a Banach space with the norm

$$
\|u\|_{\mathrm{X}^{m \alpha}}:=\int_{\mathbf{R}^{d}} k_{\alpha}^{m}|\hat{u}| d \boldsymbol{\xi}
$$

Assumption: $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}<1$, and $\alpha_{m+1}=\cdots=\alpha_{d}=1$
Notation: $\mathbf{x}=\left(\overline{\mathbf{x}}, \mathbf{x}^{\prime}\right), \overline{\mathbf{x}}=\left(x_{1}, \ldots, x_{m}\right), \mathbf{x}^{\prime}=\left(x_{m+1}, \ldots, x_{d}\right), 0 \leqslant m \leqslant d$

Crutial properties

Lemma 1. Let $m \in \mathbf{N}$ and $\boldsymbol{\alpha} \in\langle 0,1]^{d}$. For $\phi \in \mathrm{X}^{m \boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right)$ we have

$$
\left(\forall \boldsymbol{\beta} \in[0, \infty\rangle^{d}\right) \quad \frac{\beta_{1}}{\alpha_{1}}+\ldots+\frac{\beta_{d}}{\alpha_{d}} \leqslant m \quad \Longrightarrow \quad \partial_{\boldsymbol{\beta}} \phi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right) .
$$

Moreover, the following estimate holds

$$
\left\|\partial_{\boldsymbol{\beta}} \phi\right\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)} \leqslant\left\|\widehat{\partial_{\boldsymbol{\beta}} \phi}\right\|_{\mathrm{L}^{1}\left(\mathbf{R}^{d}\right)} \leqslant(2 \pi)^{m}\|\phi\|_{\mathrm{X}^{m \alpha}\left(\mathbf{R}^{d}\right)}
$$

Crutial properties

Lemma 1. Let $m \in \mathbf{N}$ and $\boldsymbol{\alpha} \in\langle 0,1]^{d}$. For $\phi \in \mathrm{X}^{m \alpha}\left(\mathbf{R}^{d}\right)$ we have

$$
\left(\forall \boldsymbol{\beta} \in[0, \infty)^{d}\right) \quad \frac{\beta_{1}}{\alpha_{1}}+\ldots+\frac{\beta_{d}}{\alpha_{d}} \leqslant m \quad \Longrightarrow \quad \partial_{\boldsymbol{\beta}} \phi \in \mathrm{C}_{0}\left(\mathbf{R}^{d}\right) .
$$

Moreover, the following estimate holds

$$
\left\|\partial_{\boldsymbol{\beta}} \phi\right\|_{\mathrm{L}^{\infty}\left(\mathbf{R}^{d}\right)} \leqslant\left\|\widehat{\partial_{\boldsymbol{\beta}} \phi}\right\|_{\mathrm{L}^{1}\left(\mathbf{R}^{d}\right)} \leqslant(2 \pi)^{m}\|\phi\|_{\mathrm{X}^{m \boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right)} .
$$

Lemma 2. Let $m \in \mathbf{N}$ and $\boldsymbol{\alpha} \in\langle 0,1]^{d}$. If $s>m+\frac{1}{2 \alpha_{1}}+\ldots+\frac{1}{2 \alpha_{d}}$, then we have a continuous embedding

$$
\mathrm{H}^{s \alpha}\left(\mathbf{R}^{d}\right) \hookrightarrow \mathrm{X}^{m \alpha}\left(\mathbf{R}^{d}\right) .
$$

Second commutation lemma

Theorem 3. Let P_{ψ} and M_{ϕ} be a Fourier and pointwise multiplier operators on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ defined by $\mathcal{F}\left(P_{\psi} u\right)=\psi \mathcal{F} u, \quad M_{\phi} u=\phi u$, with associated symbols $\psi \in \mathrm{C}^{1}\left(P^{d}\right)$ and $\phi \in \mathrm{X}^{\boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right)$ respectively.

Second commutation lemma

Theorem 3. Let P_{ψ} and M_{ϕ} be a Fourier and pointwise multiplier operators on $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ defined by $\mathcal{F}\left(P_{\psi} u\right)=\psi \mathcal{F} u, \quad M_{\phi} u=\phi u$, with associated symbols $\psi \in \mathrm{C}^{1}\left(P^{d}\right)$ and $\phi \in \mathrm{X}^{\alpha}\left(\mathbf{R}^{d}\right)$ respectively. Then for a commutator $K:=\left[P_{\psi}, M_{\phi}\right]=P_{\psi} M_{\phi}-M_{\phi} P_{\psi}$ we have (up to a compact operator on $\left.\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)\right):$

$$
\partial_{j}^{\alpha_{j}} K=P_{\frac{\left(2 \pi i \xi_{j}\right)^{\alpha}}{2 \pi i}} \nabla_{\xi^{\prime}{ }_{\psi}{ }^{Q}} M_{\nabla \mathbf{x}^{\prime} \phi}
$$

where $\psi^{Q}=\psi \circ \pi_{Q}$.

The first step in the proof

I. It is sufficient to consider $\phi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ such that $\hat{\phi}$ has compact support

This is based on the fact that such functions are dense in $\mathrm{X}^{\alpha}\left(\mathbf{R}^{d}\right)$ and on the following continuity result.

The first step in the proof

I. It is sufficient to consider $\phi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ such that $\hat{\phi}$ has compact support

This is based on the fact that such functions are dense in $\mathrm{X}^{\alpha}\left(\mathbf{R}^{d}\right)$ and on the following continuity result.

Theorem 4. For $\psi \in \mathrm{C}^{1}(Q)$ and $\phi \in \mathrm{X}^{\boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right)$ a commutator $K:=\left[P_{\psi^{Q}}, M_{\phi}\right]$ is continuous from $\mathrm{L}^{2}\left(\mathbf{R}^{d}\right)$ to $\mathrm{H}^{\alpha}\left(\mathbf{R}^{d}\right)$. Moreover, there exists $C>0$ (depending on ψ) such that

$$
\|K\|_{\mathcal{L}\left(\mathrm{L}^{2}\left(\mathbf{R}^{d}\right) ; \mathrm{H}^{\boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right)\right)} \leqslant C\|\phi\|_{\mathrm{X}^{\boldsymbol{\alpha}}\left(\mathbf{R}^{d}\right)} .
$$

The second step in the proof

II. Cutoff around the origin in the Fourier space

By a simple application of the theory of Hilbert-Schmidt operators we can replace ψ^{Q} with $\tilde{\psi}=(1-\theta) \psi^{Q}$, where $\theta \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ is equal to 1 on a neighbourhood of the origin, and so it remains to prove that

$$
\tilde{D}:=\partial_{j}^{\alpha_{j}}\left[P_{\tilde{\psi}}, M_{\phi}\right]-P_{\frac{\left(2 \pi i \xi_{j}\right)^{\alpha} j}{2 \pi i}}^{\nabla^{\prime} \tilde{\psi}} M_{\nabla_{\mathbf{x}^{\prime} \phi}}
$$

is compact.

The third step in the proof
III. The decomposition: $\mathcal{F} \tilde{D}=A_{m}+B_{m}, m \in \mathbf{N}$

We decompose $\mathcal{F} \tilde{D}=A_{m}+B_{m}$, where

$$
\begin{gathered}
\left(A_{m} u\right)(\boldsymbol{\xi}):=\int_{\mathbf{R}^{d}} \chi_{\mathcal{K}_{m}}(\boldsymbol{\xi}) \Psi(\boldsymbol{\xi}, \boldsymbol{\eta}) \cdot \widehat{\nabla_{\mathbf{x}}} \phi(\boldsymbol{\xi}-\boldsymbol{\eta}) \hat{u}(\boldsymbol{\eta}) d \boldsymbol{\eta}, \\
\left(B_{m} u\right)(\boldsymbol{\xi}):=\int_{\mathbf{R}^{d}}\left(1-\chi_{\mathcal{K}_{m}}(\boldsymbol{\xi})\right) \Psi(\boldsymbol{\xi}, \boldsymbol{\eta}) \cdot \widehat{\nabla_{\mathbf{x}}} \phi(\boldsymbol{\xi}-\boldsymbol{\eta}) \hat{u}(\boldsymbol{\eta}) d \boldsymbol{\eta},
\end{gathered}
$$

The third step in the proof

III. The decomposition: $\mathcal{F} \tilde{D}=A_{m}+B_{m}, m \in \mathbf{N}$

We decompose $\mathcal{F} \tilde{D}=A_{m}+B_{m}$, where

$$
\begin{gathered}
\left(A_{m} u\right)(\boldsymbol{\xi}):=\int_{\mathbf{R}^{d}} \chi \mathcal{K}_{m}(\boldsymbol{\xi}) \Psi(\boldsymbol{\xi}, \boldsymbol{\eta}) \cdot \widehat{\nabla_{\mathbf{x}} \phi}(\boldsymbol{\xi}-\boldsymbol{\eta}) \hat{u}(\boldsymbol{\eta}) d \boldsymbol{\eta}, \\
\left(B_{m} u\right)(\boldsymbol{\xi}):=\int_{\mathbf{R}^{d}}\left(1-\chi \mathcal{K}_{m}(\boldsymbol{\xi})\right) \Psi(\boldsymbol{\xi}, \boldsymbol{\eta}) \cdot \widehat{\nabla_{\mathbf{x}} \phi}(\boldsymbol{\xi}-\boldsymbol{\eta}) \hat{u}(\boldsymbol{\eta}) d \boldsymbol{\eta}, \\
\mathcal{K}_{m}:=\left\{\boldsymbol{\xi} \in \mathbf{R}^{d}: s(\boldsymbol{\xi}) \leqslant m\right\}, \\
\left.\Psi(\boldsymbol{\xi}, \boldsymbol{\eta}):=\frac{\left(2 \pi i \xi_{j}\right)^{\alpha_{j}}}{2 \pi i}\left[\begin{array}{c}
\nabla^{\overline{\boldsymbol{\xi}}} \tilde{\psi}(\boldsymbol{\zeta}) \\
\nabla^{\boldsymbol{\xi}^{\prime}} \tilde{\psi}(\boldsymbol{\zeta})-\nabla^{\prime} \\
\boldsymbol{\xi}^{\prime} \\
\psi
\end{array}\right)\right],
\end{gathered}
$$

and then prove that $(\forall m \in \mathbf{N}) A_{m}$ is compact, while $B_{m} \longrightarrow 0$.

An example application

We study sequence of equations

$$
i u_{t}^{n}+\left(a(t, x) u_{x x}^{n}\right)_{x x}=f^{n}
$$

where $a \in \mathrm{X}^{\left(\frac{1}{4}, 1\right)}\left(\mathbf{R}^{2}\right), f \in \mathrm{~L}^{2}\left(\mathbf{R}^{2}\right)$ and a is real.

An example application

We study sequence of equations

$$
i u_{t}^{n}+\left(a(t, x) u_{x x}^{n}\right)_{x x}=f^{n}
$$

where $a \in \mathrm{X}^{\left(\frac{1}{4}, 1\right)}\left(\mathbf{R}^{2}\right), f \in \mathrm{~L}^{2}\left(\mathbf{R}^{2}\right)$ and a is real.
Using second commutation lemma and assumptions

$$
u_{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}, \quad u_{x}^{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}
$$

and

$$
f_{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}, \quad u_{x x}^{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}
$$

An example application

We study sequence of equations

$$
i u_{t}^{n}+\left(a(t, x) u_{x x}^{n}\right)_{x x}=f^{n}
$$

where $a \in \mathrm{X}^{\left(\frac{1}{4}, 1\right)}\left(\mathbf{R}^{2}\right), f \in \mathrm{~L}^{2}\left(\mathbf{R}^{2}\right)$ and a is real.
Using second commutation lemma and assumptions

$$
u_{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}, \quad u_{x}^{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}
$$

and

$$
f_{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}, \quad u_{x x}^{n} \longrightarrow 0 \text { in } \mathrm{L}^{2}
$$

we obtain

$$
4\left\langle\mu, a \phi_{x} \boxtimes \psi\right\rangle-\left\langle\mu, a_{x} \phi \boxtimes\left(\psi+\xi\left(\psi^{Q}\right)_{\xi}\right)\right\rangle=0
$$

where μ is a fractional $\left(\alpha_{1}=\frac{1}{4}, \alpha_{2}=1\right) \mathrm{H}$-measure associated with the sequence $\left(u_{x x}^{n}\right)$ and $\psi \in \mathrm{C}^{1}(Q), \phi \in \mathrm{C}_{c}^{1}\left(\mathbf{R}^{2}\right)$.

Sketch of the proof

For $\psi \in \mathrm{C}^{1}(Q)$ and $\phi \in \mathrm{C}_{c}^{1}\left(\mathbf{R}^{2}\right)$ we apply operators P_{ψ} and M_{ϕ} on our equation, and then form a scalar product in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$ with u_{x}^{n} obtaining

$$
\left\langle i \phi P_{\psi} u_{t}^{n} \mid u_{x}^{n}\right\rangle+\left\langle\phi P_{\psi}\left(a u_{x x}^{n}\right)_{x x} \mid u_{x}^{n}\right\rangle=\left\langle\phi P_{\psi} f^{n} \mid u_{x}^{n}\right\rangle .
$$

The idea is to get $\left(a u_{x x}^{n}\right)_{x x}$ in the second argument, by using integration by parts.

Sketch of the proof

For $\psi \in \mathrm{C}^{1}(Q)$ and $\phi \in \mathrm{C}_{c}^{1}\left(\mathbf{R}^{2}\right)$ we apply operators P_{ψ} and M_{ϕ} on our equation, and then form a scalar product in $\mathrm{L}^{2}\left(\mathbf{R}^{2}\right)$ with u_{x}^{n} obtaining

$$
\left\langle i \phi P_{\psi} u_{t}^{n} \mid u_{x}^{n}\right\rangle+\left\langle\phi P_{\psi}\left(a u_{x x}^{n}\right)_{x x} \mid u_{x}^{n}\right\rangle=\left\langle\phi P_{\psi} f^{n} \mid u_{x}^{n}\right\rangle .
$$

The idea is to get $\left(a u_{x x}^{n}\right)_{x x}$ in the second argument, by using integration by parts.

The second commutation lemma comes in the following calculation

$$
\begin{aligned}
\lim _{n}\left\langle\phi\left(\left[P_{\psi}, M_{a}\right)\right] u_{x x}^{n}\right)_{x}\left|u_{x x}^{n}\right\rangle & =\lim _{n}\left\langle\phi P_{\xi\left(\psi^{Q}\right)^{\xi}}\left(a_{x} u_{x x}^{n}\right) \mid u_{x x}^{n}\right\rangle \\
& =\left\langle\mu, a_{x} \phi \boxtimes \xi\left(\psi^{Q}\right)_{\xi}\right\rangle
\end{aligned}
$$

Concluding remarks

After some manipulations we also obtain

$$
\langle\mu,\{\Psi, W\}\rangle+\left\langle\mu, \Psi \frac{3 \kappa^{2}\left(5-\kappa^{2}\right)}{16\left(\kappa^{2}-1\right)} \xi W_{x}\right\rangle=0,
$$

where $\Psi=\phi \boxtimes \psi^{Q}, W=2 \pi \tau-16 \pi^{4} \xi^{4} a$ and $\kappa=\left(\tau_{0}^{2}+\frac{\xi_{0}^{2}}{16}\right)^{-\frac{1}{2}}$.

Concluding remarks

After some manipulations we also obtain

$$
\langle\mu,\{\Psi, W\}\rangle+\left\langle\mu, \Psi \frac{3 \kappa^{2}\left(5-\kappa^{2}\right)}{16\left(\kappa^{2}-1\right)} \xi W_{x}\right\rangle=0,
$$

where $\Psi=\phi \boxtimes \psi^{Q}, W=2 \pi \tau-16 \pi^{4} \xi^{4} a$ and $\kappa=\left(\tau_{0}^{2}+\frac{\xi_{0}^{2}}{16}\right)^{-\frac{1}{2}}$.
Also, under assumption that μ is absolutely continuous with respect to the Lebesgue measure, we get
$\partial_{x} \mu\left(\partial^{\xi} W-\left(\frac{\kappa^{2}}{16}+\frac{\kappa^{2}}{4}+\frac{3 \kappa^{2}\left(5-\kappa^{2}\right)}{16\left(\kappa^{2}-1\right)}\right) \xi W\right)-\nabla^{\tau, \xi} \mu \cdot\left(\left[\begin{array}{c}0 \\ \partial_{x} W\end{array}\right]-\left(\left[\begin{array}{c}0 \\ \partial_{x} W\end{array}\right] \cdot \mathrm{n}\right) \mathrm{n}\right)=0$
which we call the propagation principle for μ associated to our equation.

